

Automation, Control and Intelligent Systems
2014; 2(5): 71-80

Published online September 30, 2014 (http://www.sciencepublishinggroup.com/j/acis)

doi: 10.11648/j.acis.20140205.11

ISSN: 2328-5583 (Print); ISSN: 2328-5591 (Online)

 A novel artificial bee colony algorithm with an
overall-degradation strategy and its performance on the
benchmark functions of CEC 2014 special session

Bai Li
1, 2, 3

1School of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, China
2School of Advanced Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
3Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan

Email address:
libai@zju.edu.cn

To cite this article:
Bai Li. A Novel Artificial Bee Colony Algorithm with an Overall-Degradation Strategy and Its Performance on the Benchmark Functions of

CEC 2014 Special Session. Automation, Control and Intelligent Systems. Vol. 2, No. 5, 2014, pp. 71-80. doi: 10.11648/j.acis.20140205.11

Abstract: The artificial bee colony (ABC) algorithm has been a well-known swarm intelligence algorithm, which assimilates

the cooperating behavior of bees when seeking for nectar sources. Aiming to improve the conventional ABC algorithm, we focus

on the re-initialization phase. In this paper, an overall-degradation-oriented artificial bee colony (OD-ABC) algorithm is

proposed, pursuing to fight against premature convergence. This is achieved through re-initializing majority of the employed bees

at one time, rather than generating at most one scout bee in each iteration. In this work, our OD-ABC algorithm is compared

against the conventional ABC algorithms using 24 benchmark functions that origin from the CEC 2014’s competition on single

objective real-parameter numerical optimization. The numerical results show that the OD-ABC algorithm is effective and thus can

be employed to fight against premature convergence.

Keywords: Artificial Bee Colony, Numerical Optimization, CEC 2014 Competition, Overall Degradation Strategy,

Evolutionary Algorithm

1. Introduction

Investigations on evolutionary algorithms have been the

focus of research for decades [1], which are designed in

general for the derivation of optimal or near-optimal

solutions of the objective functions [2].

The Artificial bee colony (ABC) is a swarm intelligence

algorithm inspired by the foraging behavior of honey bees

[3]. In this algorithm, the bee swarm mainly consists of three

components, namely the employed bees, onlooker bees, and

scout bees. In each cycle of iteration, the employed bees first

carry out a global exploration. Those “qualified” employed

bees then attract the onlooker bees to follow them. Due to the

roulette selection strategy adopted in ABC, the relative

qualification of each employed bee is related to its

corresponding probability of being followed by onlooker

bees. At the end of each iteration, “unqualified” employed

bee will perish and then a randomly re-initialized scout bee

will take their places. It is worthwhile to notice that in the

conventional ABC algorithm at most one scout bee can

emerge in each iteration.

Several previous research studies on the basis of different

numerical benchmark tests have confirmed that the ABC

algorithm is competitive comparing to some other

well-known evolutionary algorithms (e.g., genetic algorithm,

differential evolution algorithm, ant colony optimization

algorithm and particle swarm optimization algorithm) [4]. In

addition, the framework of ABC is relatively simple and

clear, making it easy to acquire satisfactory results at a low

computational cost. Such merits have given rise to

applications of ABC spanning across various areas, such as

trajectory planning [5-7], structure optimization [8-10],

clustering [11], machine learning [12], scheduling [13-16],

image recognition [17-20] etc.

72 Bai Li: A Novel Artificial Bee Colony Algorithm with an Overall-Degradation Strategy and Its Performance on the

Benchmark Functions of CEC 2014 Special Session

Regarding the modifications ever made for the

conventional ABC, from the author’s viewpoint, the

prevailing ways can be broadly classified into three

categories. Methods in the first category usually adopt some

strategies or theories from the outside world (e.g., see Refs.

[21] and [22]). Those so-called hybridized algorithms that

combine ABC with exterior techniques fall in this category as

well. The methods in the second category mainly focus on

making some small changes on the search equations of the

conventional ABC (e.g., see Refs. [23-25]). Regarding the

modifications in the third category, some changes in the

algorithm’s framework should be carried out (e.g., see Refs.

[8, 10, 17, 19, 26, 27]). Here in this work, our interest is

focused on improving the conventional ABC algorithm using

a strategy that falls in the third category.

We notice that the conventional re-initialization process in

ABC is not competent to handle premature convergence,

especially when a “super individual” in a swarm emerges,

which denotes a discovered local optimal location that

attracting nearly all the bees to search around. In our

enhanced re-initialization procedure, we do not restrict it to

generate only one scout bee at each time. We intend to

accumulate such inefficiency convergence information and

make the required changes all at once. We call this an

overall-degradation strategy. In this work, we proposed a

hybrid ABC algorithm combined with such

overall-degradation strategy (namely the OD-ABC

algorithm).

The remainder of this paper is organized as follows. In

Section 2, we review the fundamental principle of the

conventional ABC algorithm. In Section 3, we present the

motivation that has inspired us to improve the conventional

ABC algorithm. Then in Section 4, we describe our OD-ABC

algorithm, followed by Section 5 where the numerical tests as

well as experimental results are presented. Thereafter, we

discuss our findings in Section 6, and finally, the concluding

remarks are provided in the last section.

2. Conventional ABC algorithm

The conventional ABC algorithm employs three kinds of

bees: scout bees searching for nectar sources randomly,

employed bees associated with specific nectar sources, and

onlooker bees following the guidance of employed bees.

Typically, half of a bee colony would consist of the employed

bees and the other half the onlooker bees [28].

At the very beginning, the scout bees are set out to

randomly search for nectar sources. Thereafter, they are

replaced by employed bees responsible for global

exploration. During the global exploration procedure, those

employed bees can share information (i.e., nectar source

quality and the current location) with companions by means

of “dancing”. Then the onlooker bees select the nectar

sources that the employed bees have discovered to exploit. It

is worth pointing out that relatively higher-quality nectar

sources are more likely to be chosen by the onlooker bees to

exploit (as a natural consequence of utilizing the roulette

selection strategy). If an employed bee finds no better nectar

source than the one that it has previously discovered within a

certain cycle, it turns into a scout bee again, which implies

that its position will be randomly initialized in the search

space.

A location of a nectar source represents a feasible solution

to the problem, and the nectar quantity is reflected by the

objective function value. Let 1 2

1
X (, , ,)D

D
X X X ×= ⋯

represent a solution in the feasible solution space, ()fun ⋅ be

the objective function that needs to be minimized,

(,)rand m n be a random number between m and n obeying

the uniform distribution, and SN be the population size of a

bee swarm. As aforementioned, the number of onlooker bees

in a bee colony is
2

SN , equalling that of the employed bees.

At first, as many as
2

SN scout bees are randomly

initialized in the feasible solution space. Equation (1) shows

how the thj element of the thi scout bee’s location X
i
 is

calculated:

{ } { }
min max min

(0,1) (),

 1, 2,..., , 1, 2,..., ,
2

j j j j

i
X X rand X X

SNi j D

← + ⋅ −

∈ ∈
 (1)

where
min

jX and
max

jX denote the lower and upper

boundaries of this thj element, and D denotes the

dimension of a feasible solution. Thereafter, the
2

SN scout

bees will become the employed bees and an iterated process

begins from here.

In each cycle of iteration, an employed bee will share

information with a randomly chosen companion and change

one randomly chosen element of its location vector from j

i
X

to * j

i
X using the following equation:

{ } { }

* (1,1) (),

 1, 2, , , 1, 2, , , .
2

j j j j

i i k i
X X rand X X

SNk j D k i

← + − ⋅ −

∈ ∈ ≠… …

 (2)

It is necessary to note that j and k are both randomly

selected integers. When all the employed bees arrive at their

new nectar sources *X
i
 { } 1, 2, ,

2
SNi ∈ … , they evaluate the

quality of these new nectars and then decide whether to stay

at the new location or the previous one by means of a greedy

selection strategy. Specifically, if the thi employed bee

finds that *(X) (X)
i i

fun fun< , it will go to the new location

*X
i

, i.e., *X X
i i

← ; otherwise, it remains at the previous

location X
i
.

When all the employed bees have decided on their

locations, a roulette selection strategy will direct the

onlooker bees to select “qualified” employed bees to follow.

A probability index P is calculated according to Equations

(3) and (4) to reflect the relative quality of nectar sources at

which the employed bees are located.

Automation, Control and Intelligent Systems 2014; 2(5): 71-80 73

{ }
2

1

() , 1,2, , ,
2SN

j

fitness i SNP i i
fitness j

=

= ∈
∑

…

()

()
 (3)

1
 if (X) 0

1 (X)() .

1 (X) if (X) 0

i

i

i i

fun
funfitness i

fun fun

 ≥ += 
 + <

 (4)

Each onlooker bee will search locally around an employed

bee. For some thi onlooker bee, a comparison is made

between a random number (0,1)rand and ()P j . If

() (0,1)P j rand≥ , this onlooker bee will search around the

thj employed bee; otherwise, a comparison between

(0,1)rand and (1)P j + will be made. If even ()
2

SNP

happened to be smaller than (0,1)rand , such a comparison

process is repeated from the first employed bee’s (1)P again

until a larger ()P j is found. Then, the corresponding thj

employed bee will be chosen. The following equation (i.e.,

Equation (5)) shows the location of the thi onlooker bee

()1 1 1

1
Y , , , , , ,k k k D

i j j i j j D
X X Y X X− +

×
= … … that searches locally

around the selected thj employed bee.

{ } { }
(1,1) (),

 1,2, , , 1, 2, , , .
2

k k k k

i j m j
Y X rand X X

SNm k D m j

← + − ⋅ −

∈ ∈ ≠… …

 (5)

Note that in this equation m and k are randomly selected

integers as well. When all the
2

SN onlooker bees have

determined their locations, a greedy selection strategy is

implemented. This time, however, a comparison is made

between (X)
j

fun and (Y)
i

fun , { } 1, 2, ,
2

SNi ∈ … . If

(Y)
i

fun is smaller than (X)
j

fun , the thj employed bee

will discard its current location X
j

 and fly to Y
i

, i.e.,

X Y
j i

← ; otherwise, the thj employed bee remains at X
j
.

It is interesting to point out that every time the greedy

selection is carried out, it involves one central employed bee.

There is an index that is associated with each of the employed

bees, namely trial , which memorizes inefficient search

times that concerns each of the employed bees. Specifically,

()trial i records the number of times that the thi employed

bee has searched inefficiently. That is, ()trial i is

incremented by one each time when the condition
*(X) (X)
i i

fun fun≥ or (Y) (X)
j i

fun fun≥ is satisfied. At the

beginning, each ()trial i is set to zero. As the iteration goes

on, when ()trial i reaches a predefined threshold Limit , the

thi employed bee will turn into a scout bee again.

3. Motivation

In this section, we elaborate on the reason why it is

advisable to make some changes in the re-initialization phase

of ABC [1].

At the end of each iteration, having just one scout bee at

most to be generated during the re-initialization phase limits

the capability of the algorithm to overcome premature

convergence. As a matter of fact, it has been confirmed in

some numerical experiments that directly discarding the

scout bees will not necessarily deteriorate the convergence

performance [29].

Particularly, when a “super individual” (i.e., a discovered

local optimal location that attracting nearly all the bees to

search around) emerges in a swarm, such re-initialization

process is not efficient at all to overcome. Once an employed

bee is re-initialized in one iteration, it is likely to be attracted

back to the same local optimal location again since other

companions are still gathering around that place.

The emergence of super individuals is one cause of

premature convergence in swarm intelligence algorithms.

Another chief cause may be that the search domain is too

large, thus making the optimization process slow to

converge. In such cases, re-initializating a majority (but not

all) of bees in the colony will be a feasible way to improve the

situation.

In the next section, we will introduce the OD-ABC

algorithm in detail.

4. Overall-degradation ABC Algorithm

The OD-ABC is different from the conventional ABC

algorithm in the re-initialization phase. Here, before a new

iteration begins (i.e., at the end of each iteration), any ()trial i

that has exceeded Limit will be reset to Limit (rather than

0). Thereafter, average value of trial (i.e., 2

1

2
()

SN

i
trial i

SN =∑)

is compared to
odr

Limitα ⋅ , where ()0,1
odr

α ∈ is a

user-specified scalar. If
odr

Limitα ⋅ is smaller than

2

1

2
()

SN

i
trial i

SN =∑ , the whole swarm is considered to be not

working efficiently to a degree of
odr

α . Then, as many as

()round
2odr

SNα ⋅ randomly selected employed bees will be

re-initialized according to Equation (1). At the same time,

their corresponding trial indices should be reset to zero. If

2

1

2
()

SN

i
trial i

SN =∑ is smaller, the current iteration is

terminated directly and a new iteration will begin.

The pseudo-code and a flowchart (see Fig. 1) of the

OD-ABC algorithm are given as follows [1].

74 Bai Li: A Novel Artificial Bee Colony Algorithm with an Overall-Degradation Strategy and Its Performance on the

Benchmark Functions of CEC 2014 Special Session

Algorithm 1. OD-ABC Algorithm

1. Set the population size SN , overall degradation rate
odrα , and

maximum cycle number MCN ; Set the invalid trial time counter

() 0trial ⋅ ← { }(1, 2, ,)
2

SNi ∈ … ;

2. Randomly initialize locations of
2

SN scout bees using Equation (1);

3. For 1iter = to MCN , do

4. For 1item = to
2

SN , do % the employed bee phase

5. Generate *X
item

 for the -thitem employed bee to search according

to Equation (2);

6. If *(X) (X)
item item

fun fun< , then % implement the greedy

selection

7. *X X
item item

← , and set () 0trial item ← ;

8. Else

9. () () 1trial item trial item← + ;

10. If ()trial item Limit> , then

11. ()trial item Limit←

12. End if

13. End if

14. End for

15. For 1i = to
2

SN , do % prepare for the roulette selection

16. Calculate ()P i using Equations (3) and (4);

17. End for

18. Set 1j = ;

19. Set 0item = ;

20. While
2

SNitem < , do % implement the roulette selection

21. If () (0,1)P j rand> , then % the onlooker bee phase

22. 1item item← + ;

23. Choose the thj employed bee to follow, and then generate

Yitem
 using Equation (5);

24. If (Y) (X)item jfun fun< , then % implement the greedy

selection

25. X Yj item← , and set () 0trial j ← ;

26. Else

27. () () 1trial j trial j← + ;

28. If ()trial j Limit> , then

29. ()trial j Limit←

30. End if

31. End if

32. End if

33. 1j j← + ;

34. If
2

SNj > , then

35. Set 1j ← ;

36. End if

37. End while

38. If 2

1

2
()

SN

odri
trial i Limit

SN
α

=
> ⋅∑ , then % implement the overall

degradation strategy

39. Randomly re-initialize as many as ()round
2odr

SNα ⋅ employed

bees’ locations according to Equation (1);

40. Set their corresponding scalars () 0trial ⋅ ← ;

41. End if

42. Memorize the best solution;

43. End for

44. Output the best solution;

Initialize food source using Eq. (1)

Set trial = 0, iter = 0.

Start

iter = iter+1

iter>MCN?

Generate each of the employed

bees using Eq. (6)

Is better position derived

for i-th employed bee?

Set trial(i) = 0

Select employed bee for each onlooker

to follow using Eqs. (3) and (4)

Is better position derived

for j-th employed bee?

Let trial(j) = trial(j) + 1

Output best position

End

Y

N

N

Y

N

Y

Set trial(j) = 0

Let trial(i) = trial(i) + 1

Store best position in the

current iteration

Generate each of the onlookers using Eq. (5)

(choose j-th employed bee to follow)

Set such trial to LimitAny trial exceeds Limit?
Y

N

mean(trial)>

odrLimit?

N

Y
Re-initialize (100 odr)% randomly

selected employed bees using Eq. (1);

Set corresponding trial(·) = 0

Fig 1. A flowchart of OD-ABC algorithm.

5. Experiments and Results

In order to see the performance of the OD-ABC algorithm in

comparison with the conventional ABC algorithm, we

systematically conducted a number of comprehensive

simulation experiments (i.e., the first 24 benchmark functions

for the competition of the CEC 2014 Special Session [30]). In

all our computational experiments, the maximum number of

cycles MCN was constantly set to 5000 and the swarm

population (i.e., 2 SN⋅) was set to 40 for both algorithms

involved. Each of the experiments was repeated for 30 times

with different random seeds. The search range is constantly set

to [100,100]Dim− , where 50Dim = refers to the dimension of

the benchmark problems in this work. All the simulations were

carried out in a Matlab R2011b environment and executed on a

Intel Core 2 Duo CPU with 2GB RAM running at 2.53 GHz

under the Microsoft Windows XP operating system.

The experimental results are listed in Table 1, where

“Mean” denotes the average value at the 500th iteration from

the 30 runs and S.D. is the corresponding standard deviation.

Automation, Control and Intelligent Systems 2014; 2(5): 71-80 75

In the last columns of this table, we report the statistical

significance level of the difference of the means of the results

produced by the best and the second best algorithms (with

respect to their final accuracies). Note that here “p value”

reveals the chance if the null hypothesis (the differences

between OD-ABC and ABC can form a normal distribution) is

true. ‘+’ indicates the OD-ABC works better than ABC at a

0.10 level of significance by two-tailed test; ‘-’ indicates the

ABC works better than OD-ABC at a same level of

significance; while ‘.’ indicates the two algorithm show no

difference in statistics.

Three-dimensional visualization of a selected number of

two-dimensional benchmark functions are illustrated in Figs.

2-10.

Table 1. Result comparisons of ABC and OD-ABC on 24 benchmark functions in CEC 2014’s competition.

Test Function
ABC OD-ABC

p-value Significance
Mean S.D. Mean S.D.

f1 6114570.5025 2419997.7581 6724954.4722 3359427.9062 0.3493 .

f2 530.5217 581.4641 755.1771 1232.0369 0.2134 .

f3 1818.6106 1719.7908 1355.3680 791.5116 0.1779 .

f4 445.8312 29.4235 446.6215 31.2563 0.8774 .

f5 520.1571 0.0236 520.0829 0.0186 0.0000 +

f6 614.8564 1.5735 615.1491 1.5120 0.5716 .

f7 700.0009 0.0049 700.0006 0.0032 0.9426 .

f8 800.0000 0.0000 800.0000 0.0000 1.0000 .

f9 996.6754 14.1212 990.5091 14.9428 0.1846 .

f10 1000.6780 0.5567 1000.7694 0.5598 0.6143 .

f11 3255.2904 213.0970 3138.9450 311.3926 0.0656 +

f12 1200.1958 0.0349 1200.1587 0.0245 0.0001 +

f13 1300.2369 0.0362 1300.2237 0.0366 0.1529 .

f14 1400.1969 0.0227 1400.2157 0.0184 0.0011 -

f15 1508.6140 1.5702 1508.9653 1.3481 0.5440 .

f16 1609.9398 0.3453 1610.0154 0.3368 0.6143 .

f17 2408523.2800 956030.9703 1841845.1394 1105817.4900 0.0300 +

f18 2731.6489 749.3723 2480.4172 633.9575 0.3286 .

f19 1907.3927 0.8670 1907.4452 0.7566 0.7655 .

f20 11923.4498 5260.5395 17061.2679 7256.6336 0.0111 -

f21 272118.8254 149638.8018 178289.7058 118298.2170 0.0098 +

f22 2502.2540 129.5824 2570.8483 112.8751 0.0387 -

f23 2615.3930 0.2305 2615.4770 0.4185 0.2134 .

f24 2626.3521 6.6572 2628.2003 2.0630 0.0060 -

Fig 2. 3-D visualization for2-D benchmark function 5.

76 Bai Li: A Novel Artificial Bee Colony Algorithm with an Overall-Degradation Strategy and Its Performance on the

Benchmark Functions of CEC 2014 Special Session

Fig 3. 3-D visualization for 2-D benchmark function 9.

Fig 4. 3-D visualization for 2-D benchmark function 11.

Fig 5. 3-D visualization for 2-D benchmark function 12.

Automation, Control and Intelligent Systems 2014; 2(5): 71-80 77

Fig 6. 3-D visualization for 2-D benchmark function 17.

Fig 7. 3-D visualization for2-D benchmark function 21.

Fig 8. 3-D visualization for 2-D benchmark function 14.

78 Bai Li: A Novel Artificial Bee Colony Algorithm with an Overall-Degradation Strategy and Its Performance on the

Benchmark Functions of CEC 2014 Special Session

Fig 9. 3-D visualization for 2-D benchmark function 22.

Fig 10. 3-D visualization for 2-D benchmark function 24.

6. Discussion

According to the results listed in Table 1, we find that in

most cases, the OD-ABC algorithm cannot outperform the

conventional ABC algorithm with statistical significance.

However, it is worthwhile to notice that the several benchmark

functions that OD-ABC works better on (see Figs. 2-7) are far

more complicated than the ones that ABC works better on (see

Figs. 8-10). As in Figs. 2-7, there are in general a large number

of local minimums around the global optimum, making it

difficult to overcome premature convergence. In contrast, local

minimums are not so close to the global optimums in the cases

of benchmark functions 14, 22 and 24. All the mentioned

above indicate that, the OD-ABC algorithm works well to

handle the objective functions that are more challenging.

7. Conclusion

In this paper, we have proposed an OD-ABC algorithm, the

main idea of which is to provide a more efficient

re-initialization phase in the algorithm’s framework. The

innovations and highlights of in this work can be summarized

as follows.

First, we have pointed out a critical issue that deserves well

considered in the framework of the conventional ABC

algorithm. Then, we provide a modification solution to this

issue accordingly. Second, we adopt a state-of-the-art set of

benchmark functions to test the performance of the concerns

algorithms. The experimental results we obtained support our

conclusion that the OD-ABC algorithm is efficient to fight

against premature convergence.

Automation, Control and Intelligent Systems 2014; 2(5): 71-80 79

Despite these highlights and innovations, we confess there is

still room for improvement since OD-ABC becomes

inefficient when tested on some unimodal and/or simple

multimodal benchmarks. As a feasible suggestion, combining

such overall-degradation strategy with other existing strategies

may work (e.g., see Refs. [1, 7, 31]).

After all, we believe that the unique and promising idea

behind our OD-ABC algorithm is worth pursuing further.

Acknowledgements

The author declares that there is no conflict of interests

regarding the publication of this paper. This work was

supported in part by the 6th National College Students’

Innovation & Entrepreneurial Training Program in China

under Grant No. 201210006050.

References

[1] B. Li, R. Chiong and R. Zhang, Balancing Exploration and
Exploitation: An Analysis of the Balance-Evolution Artificial
Bee Colony Algorithm, unpublished.

[2] D. Dasgupta and Z. Michalewicz (Eds.). Evolutionary
algorithms in engineering applications. Springer Berlin
Heidelberg, 1997.

[3] D. Karaboga and B. Akay, A modified artificial bee colony
(ABC) algorithm for constrained optimization problems,
Applied Soft Computing, Vol. 11, No. 3, pp. 3021-3031, 2011.

[4] D. Karaboga and B. Basturk, A powerful and efficient
algorithm for numerical function optimization: artificial bee
colony (ABC) algorithm, Journal of global optimization, Vol.
39, No. 3, pp. 459-471, 2007.

[5] B. Li, L. G. Gong and C. H. Zhao, Unmanned combat aerial
vehicles path planning using a novel probability density model
based on Artificial Bee Colony algorithm, In 2013 Fourth
International Conference on Intelligent Control and Information
Processing (ICICIP 2013), pp. 620-625, IEEE, 2013.

[6] H. Duan, S. Shao, B. Su and L. Zhang, New development
thoughts on the bio-inspired intelligence based control for
unmanned combat aerial vehicle, Science China Technological
Sciences, Vol. 53, No. 8, pp. 2025-2031, 2010.

[7] B. Li, L. G. Gong and W. L. Yang, An improved Artificial Bee
Colony algorithm based on balance-evolution strategy for
unmanned combat aerial vehicle path planning, The Scientific
World Journal, Vol. 2014, No. 23704, pp. 1-10, 2014.

[8] B. Li, L. G. Gong and Y. Yao, On the performance of internal
feedback artificial bee colony algorithm (IF-ABC) for protein
secondary structure prediction. In 2013 Sixth International
Conference on Advanced Computational Intelligence (ICACI
2013), pp. 33-38, IEEE, 2013.

[9] H. Sun, H. Luş and R. Betti, Identification of structural models
using a modified Artificial Bee Colony algorithm, Computers
& Structures, Vol. 116, pp. 59-74, 2013.

[10] B. Li, Y. Li and L. G. Gong, Protein secondary structure
optimization using an improved artificial bee colony algorithm
based on AB off-lattice model, Engineering Applications of
Artificial Intelligence, Vol. 27, pp. 70-79, 2014.

[11] R. J. Kuo, Y. D. Huang, C. C. Lin, Y. H. Wu and F. E. Zulvia,
Automatic kernel clustering with bee colony optimization
algorithm, Information Sciences, Vol. 283, pp. 107-122, 2014.

[12] B. Li, Research on WNN modeling for gold price forecasting
based on improved Artificial Bee Colony
algorithm, Computational intelligence and neuroscience, Vol.
2014, No. 270658, pp. 1-10, 2014.

[13] Q. K. Pan, M. Tasgetiren, P. N. Suganthan and T. J. Chua, A
discrete artificial bee colony algorithm for the lot-streaming
flow shop scheduling problem, Information sciences, Vol. 181,
No. 12, pp. 2455-2468, 2011.

[14] J. Q. Li, Q. K.Pan and K. Z. Gao, Pareto-based discrete
artificial bee colony algorithm for multi-objective flexible job
shop scheduling problems, The International Journal of
Advanced Manufacturing Technology, Vol. 55, pp. 1159-1169,
2011.

[15] L. Wang, G. Zhou, Y. Xu, S. Wang and M. Liu, An effective
artificial bee colony algorithm for the flexible job-shop
scheduling problem, The International Journal of Advanced
Manufacturing Technology, Vol. 60, No. 4, pp. 303-315, 2012.

[16] M. F. Tasgetiren, Q. K. Pan, P. N. Suganthan and A. H. Chen,
A discrete artificial bee colony algorithm for the total flowtime
minimization in permutation flow shops, Information
Sciences, Vol. 181, No. 16, pp. 3459-3475, 2011.

[17] B. Li, L. G. Gong and Y. Li, A Novel Artificial Bee Colony
Algorithm Based on Internal-Feedback Strategy for Image
Template Matching, The Scientific World Journal, Vol. 2014,
No. 906861, pp. 1-14, 2014.

[18] C. Chidambaram and H. S. Lopes, An improved artificial bee
colony algorithm for the object recognition problem in complex
digital images using template matching, International Journal
of Natural Computing Research, Vol. 1, No. 2, pp. 54-70,
2010.

[19] B. Li and Y. Yao, An edge-based optimization method for
shape recognition using atomic potential function, Engineering
Applications of Artificial Intelligence, Vol. 35, pp. 14-25,
2014.

[20] C. Xu and H. Duan, Artificial bee colony (ABC) optimized
edge potential function (EPF) approach to target recognition
for low-altitude aircraft, Pattern Recognition Letters, Vol. 31,
No. 13, pp. 1759-1772, 2010.

[21] W. F. Gao, S. Y. Liu and L. L. Huang, A novel artificial bee
colony algorithm with Powell's method, Applied Soft
Computing, Vol. 13, No. 9, pp. 3763-3775, 2013.

[22] F. Kang, J. Li and Z. Ma, Rosenbrock artificial bee colony
algorithm for accurate global optimization of numerical
functions, Information Sciences, Vol. 181, No. 16, pp.
3508-3531, 2011.

[23] G. Zhu and S. Kwong, Gbest-guided artificial bee colony
algorithm for numerical function optimization, Applied
Mathematics and Computation, Vol. 217, No. 7, pp.
3166-3173, 2010.

[24] G. Q. Li, P. Niu and X. Xiao, Development and investigation of
efficient artificial bee colony algorithm for numerical function
optimization, Applied soft computing, Vol. 12. No. 1, pp.
320-332, 2012.

80 Bai Li: A Novel Artificial Bee Colony Algorithm with an Overall-Degradation Strategy and Its Performance on the

Benchmark Functions of CEC 2014 Special Session

[25] W. L. Xiang and M. Q. An, An efficient and robust artificial
bee colony algorithm for numerical optimization, Computers &
Operations Research, Vol. 40, No. 5, pp. 1256-1265, 2013.

[26] A. Alizadegan, B. Asady and M. Ahmadpour, Two modified
versions of artificial bee colony algorithm, Applied
Mathematics and Computation, Vol. 225, pp. 601-609, 2013.

[27] B. Li and Y. Li, Y, BE-ABC: hybrid artificial bee colony
algorithm with balancing evolution strategy, In 2012 Third
International Conference on Intelligent Control and
Information Processing (ICICIP 2012), pp. 217-222, IEEE,
2012.

[28] B. Li, R. Chiong and L. G. Gong, Search-Evasion Path
Planning for Submarines Using the Artificial Bee Colony
Algorithm, In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2014), pp. 528-625, IEEE,
2014.

[29] D. Karaboga and B. Basturk, B, On the performance of
artificial bee colony (ABC) algorithm, Applied soft computing,
Vol. 8, No. 1, pp. 687-697, 2008.

[30] J. J. Liang, B. Y. Qu and P. N. Suganthan, Problem definitions
and evaluation criteria for the CEC 2014 special session and
competition on single objective real-parameter numerical
optimization, Technical Report 201311, Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou
China and Technical Report, Nanyang Technological
University, Singapore, 2013..

[31] B. Li and Y. Li, A novel image matching method via lateral
inhibition using balance-evolution artificial bee colony
(BE-ABC) algorithm, submitted.

