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Abstract: The artificial bee colony (ABC) algorithm has been a well-known swarm intelligence algorithm, which assimilates 

the cooperating behavior of bees when seeking for nectar sources. Aiming to improve the conventional ABC algorithm, we focus 

on the re-initialization phase. In this paper, an overall-degradation-oriented artificial bee colony (OD-ABC) algorithm is 

proposed, pursuing to fight against premature convergence. This is achieved through re-initializing majority of the employed bees 

at one time, rather than generating at most one scout bee in each iteration. In this work, our OD-ABC algorithm is compared 

against the conventional ABC algorithms using 24 benchmark functions that origin from the CEC 2014’s competition on single 

objective real-parameter numerical optimization. The numerical results show that the OD-ABC algorithm is effective and thus can 

be employed to fight against premature convergence. 

Keywords: Artificial Bee Colony, Numerical Optimization, CEC 2014 Competition, Overall Degradation Strategy, 

Evolutionary Algorithm 

 

 
 

1. Introduction 

Investigations on evolutionary algorithms have been the 

focus of research for decades [1], which are designed in 

general for the derivation of optimal or near-optimal 

solutions of the objective functions [2]. 

The Artificial bee colony (ABC) is a swarm intelligence 

algorithm inspired by the foraging behavior of honey bees 

[3]. In this algorithm, the bee swarm mainly consists of three 

components, namely the employed bees, onlooker bees, and 

scout bees. In each cycle of iteration, the employed bees first 

carry out a global exploration. Those “qualified” employed 

bees then attract the onlooker bees to follow them. Due to the 

roulette selection strategy adopted in ABC, the relative 

qualification of each employed bee is related to its 

corresponding probability of being followed by onlooker 

bees. At the end of each iteration, “unqualified” employed 

bee will perish and then a randomly re-initialized scout bee 

will take their places. It is worthwhile to notice that in the 

conventional ABC algorithm at most one scout bee can 

emerge in each iteration. 

Several previous research studies on the basis of different 

numerical benchmark tests have confirmed that the ABC 

algorithm is competitive comparing to some other 

well-known evolutionary algorithms (e.g., genetic algorithm, 

differential evolution algorithm, ant colony optimization 

algorithm and particle swarm optimization algorithm) [4]. In 

addition, the framework of ABC is relatively simple and 

clear, making it easy to acquire satisfactory results at a low 

computational cost. Such merits have given rise to 

applications of ABC spanning across various areas, such as 

trajectory planning [5-7], structure optimization [8-10], 

clustering [11], machine learning [12], scheduling [13-16], 

image recognition [17-20] etc. 
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Regarding the modifications ever made for the 

conventional ABC, from the author’s viewpoint, the 

prevailing ways can be broadly classified into three 

categories.  Methods in the first category usually adopt some 

strategies or theories from the outside world (e.g., see Refs. 

[21] and [22]). Those so-called hybridized algorithms that 

combine ABC with exterior techniques fall in this category as 

well. The methods in the second category mainly focus on 

making some small changes on the search equations of the 

conventional ABC (e.g., see Refs. [23-25]). Regarding the 

modifications in the third category, some changes in the 

algorithm’s framework should be carried out (e.g., see Refs. 

[8, 10, 17, 19, 26, 27]). Here in this work, our interest is 

focused on improving the conventional ABC algorithm using 

a strategy that falls in the third category. 

We notice that the conventional re-initialization process in 

ABC is not competent to handle premature convergence, 

especially when a “super individual” in a swarm emerges, 

which denotes a discovered local optimal location that 

attracting nearly all the bees to search around. In our 

enhanced re-initialization procedure, we do not restrict it to 

generate only one scout bee at each time. We intend to 

accumulate such inefficiency convergence information and 

make the required changes all at once. We call this an 

overall-degradation strategy. In this work, we proposed a 

hybrid ABC algorithm combined with such 

overall-degradation strategy (namely the OD-ABC 

algorithm). 

The remainder of this paper is organized as follows. In 

Section 2, we review the fundamental principle of the 

conventional ABC algorithm. In Section 3, we present the 

motivation that has inspired us to improve the conventional 

ABC algorithm. Then in Section 4, we describe our OD-ABC 

algorithm, followed by Section 5 where the numerical tests as 

well as experimental results are presented. Thereafter, we 

discuss our findings in Section 6, and finally, the concluding 

remarks are provided in the last section. 

2. Conventional ABC algorithm 

The conventional ABC algorithm employs three kinds of 

bees: scout bees searching for nectar sources randomly, 

employed bees associated with specific nectar sources, and 

onlooker bees following the guidance of employed bees. 

Typically, half of a bee colony would consist of the employed 

bees and the other half the onlooker bees [28]. 

At the very beginning, the scout bees are set out to 

randomly search for nectar sources. Thereafter, they are 

replaced by employed bees responsible for global 

exploration. During the global exploration procedure, those 

employed bees can share information (i.e., nectar source 

quality and the current location) with companions by means 

of “dancing”. Then the onlooker bees select the nectar 

sources that the employed bees have discovered to exploit. It 

is worth pointing out that relatively higher-quality nectar 

sources are more likely to be chosen by the onlooker bees to 

exploit (as a natural consequence of utilizing the roulette 

selection strategy). If an employed bee finds no better nectar 

source than the one that it has previously discovered within a 

certain cycle, it turns into a scout bee again, which implies 

that its position will be randomly initialized in the search 

space. 

A location of a nectar source represents a feasible solution 

to the problem, and the nectar quantity is reflected by the 

objective function value. Let 1 2

1
X ( , , , )D

D
X X X ×= ⋯  

represent a solution in the feasible solution space, ( )fun ⋅  be 

the objective function that needs to be minimized, 

( , )rand m n  be a random number between m  and n  obeying 

the uniform distribution, and SN  be the population size of a 

bee swarm. As aforementioned, the number of onlooker bees 

in a bee colony is 
2

SN , equalling that of the employed bees. 

At first, as many as 
2

SN  scout bees are randomly 

initialized in the feasible solution space. Equation (1) shows 

how the thj  element of the thi  scout bee’s location X
i
 is 

calculated: 

{ } { }
min max min

(0,1) ( ),   

                         1, 2,..., ,  1, 2,..., ,
2

j j j j

i
X X rand X X

SNi j D

← + ⋅ −

∈ ∈
   (1) 

where 
min

jX  and 
max

jX  denote the lower and upper 

boundaries of this thj  element, and D  denotes the 

dimension of a feasible solution. Thereafter, the 
2

SN  scout 

bees will become the employed bees and an iterated process 

begins from here. 

In each cycle of iteration, an employed bee will share 

information with a randomly chosen companion and change 

one randomly chosen element of its location vector from j

i
X  

to * j

i
X  using the following equation: 

{ } { }

* ( 1,1) ( ),  

        1, 2, , ,  1, 2, , ,  .
2

j j j j

i i k i
X X rand X X

SNk j D k i

← + − ⋅ −

∈ ∈ ≠… …

   (2) 

It is necessary to note that j  and k  are both randomly 

selected integers. When all the employed bees arrive at their 

new nectar sources *X
i
 { } 1, 2, ,

2
SNi ∈ … , they evaluate the 

quality of these new nectars and then decide whether to stay 

at the new location or the previous one by means of a greedy 

selection strategy. Specifically, if the thi  employed bee 

finds that *(X ) (X )
i i

fun fun< , it will go to the new location 

*X
i

, i.e., *X X
i i

← ; otherwise, it remains at the previous 

location X
i
. 

When all the employed bees have decided on their 

locations, a roulette selection strategy will direct the 

onlooker bees to select “qualified” employed bees to follow. 

A probability index P  is calculated according to Equations 

(3) and (4) to reflect the relative quality of nectar sources at 

which the employed bees are located. 
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Each onlooker bee will search locally around an employed 

bee. For some thi  onlooker bee, a comparison is made 

between a random number (0,1)rand  and ( )P j . If 

( ) (0,1)P j rand≥ , this onlooker bee will search around the 

thj  employed bee; otherwise, a comparison between 

(0,1)rand  and ( 1)P j +  will be made. If even ( )
2

SNP  

happened to be smaller than (0,1)rand , such a comparison 

process is repeated from the first employed bee’s (1)P  again 

until a larger ( )P j  is found. Then, the corresponding thj  

employed bee will be chosen. The following equation (i.e., 

Equation (5)) shows the location of the thi  onlooker bee 

( )1 1 1

1
Y , , , , , ,k k k D

i j j i j j D
X X Y X X− +

×
= … …  that searches locally 

around the selected thj  employed bee. 

{ } { }
( 1,1) ( ),  

          1,2, , ,  1, 2, , , .
2

k k k k

i j m j
Y X rand X X

SNm k D m j

← + − ⋅ −

∈ ∈ ≠… …

   (5) 

Note that in this equation m  and k  are randomly selected 

integers as well. When all the 
2

SN  onlooker bees have 

determined their locations, a greedy selection strategy is 

implemented. This time, however, a comparison is made 

between (X )
j

fun  and (Y )
i

fun , { } 1, 2, ,
2

SNi ∈ … . If 

(Y )
i

fun  is smaller than (X )
j

fun , the thj  employed bee 

will discard its current location X
j

 and fly to Y
i

, i.e., 

X Y
j i

← ; otherwise, the thj  employed bee remains at X
j
. 

It is interesting to point out that every time the greedy 

selection is carried out, it involves one central employed bee. 

There is an index that is associated with each of the employed 

bees, namely trial , which memorizes inefficient search 

times that concerns each of the employed bees. Specifically, 

( )trial i  records the number of times that the  thi employed 

bee has searched inefficiently. That is, ( )trial i  is 

incremented by one each time when the condition 
*(X ) (X )
i i

fun fun≥  or (Y ) (X )
j i

fun fun≥  is satisfied. At the 

beginning, each ( )trial i  is set to zero. As the iteration goes 

on, when ( )trial i  reaches a predefined threshold Limit , the 

thi  employed bee will turn into a scout bee again. 

 

3. Motivation 

In this section, we elaborate on the reason why it is 

advisable to make some changes in the re-initialization phase 

of ABC [1]. 

At the end of each iteration, having just one scout bee at 

most to be generated during the re-initialization phase limits 

the capability of the algorithm to overcome premature 

convergence. As a matter of fact, it has been confirmed in 

some numerical experiments that directly discarding the 

scout bees will not necessarily deteriorate the convergence 

performance [29]. 

Particularly, when a “super individual” (i.e., a discovered 

local optimal location that attracting nearly all the bees to 

search around) emerges in a swarm, such re-initialization 

process is not efficient at all to overcome. Once an employed 

bee is re-initialized in one iteration, it is likely to be attracted 

back to the same local optimal location again since other 

companions are still gathering around that place. 

The emergence of super individuals is one cause of 

premature convergence in swarm intelligence algorithms. 

Another chief cause may be that the search domain is too 

large, thus making the optimization process slow to 

converge. In such cases, re-initializating a majority (but not 

all) of bees in the colony will be a feasible way to improve the 

situation. 

In the next section, we will introduce the OD-ABC 

algorithm in detail. 

4. Overall-degradation ABC Algorithm 

The OD-ABC is different from the conventional ABC 

algorithm in the re-initialization phase. Here, before a new 

iteration begins (i.e., at the end of each iteration), any ( )trial i  

that has exceeded Limit  will be reset to Limit  (rather than 

0). Thereafter, average value of trial  (i.e., 2

1

2
( )

SN

i
trial i

SN =∑ ) 

is compared to 
odr

Limitα ⋅ , where ( )0,1
odr

α ∈  is a 

user-specified scalar. If 
odr

Limitα ⋅  is smaller than 

2

1

2
( )

SN

i
trial i

SN =∑ , the whole swarm is considered to be not 

working efficiently to a degree of 
odr

α . Then, as many as 

( )round
2odr

SNα ⋅  randomly selected employed bees will be 

re-initialized according to Equation (1). At the same time, 

their corresponding trial  indices should be reset to zero. If 

2

1

2
( )

SN

i
trial i

SN =∑  is smaller, the current iteration is 

terminated directly and a new iteration will begin. 

The pseudo-code and a flowchart (see Fig. 1) of the 

OD-ABC algorithm are given as follows [1]. 
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Algorithm 1. OD-ABC Algorithm 

1. Set the population size SN , overall degradation rate 
odrα , and 

maximum cycle number MCN ; Set the invalid trial time counter 

( ) 0trial ⋅ ←  { }( 1, 2, , )
2

SNi ∈ … ; 

2. Randomly initialize locations of 
2

SN scout bees using Equation (1); 

3. For 1iter =  to MCN , do  

4.     For 1item =  to 
2

SN , do % the employed bee phase 

5.         Generate *X
item

 for the -thitem  employed bee to search according 

to Equation (2); 

6.         If *(X ) (X )
item item

fun fun< , then % implement the greedy 

selection 

7.             *X X
item item

← , and set ( ) 0trial item ← ; 

8.         Else 

9.             ( ) ( ) 1trial item trial item← + ; 

10.             If ( )trial item Limit> , then 

11.                 ( )trial item Limit←  

12.             End if 

13.         End if 

14.     End for 

15.     For 1i =  to 
2

SN , do % prepare for the roulette selection 

16.         Calculate ( )P i  using Equations (3) and (4); 

17.     End for 

18.     Set 1j = ; 

19.     Set 0item = ; 

20.     While 
2

SNitem < , do % implement the roulette selection 

21.         If ( ) (0,1)P j rand> , then % the onlooker bee phase 

22.             1item item← + ; 

23.             Choose the thj  employed bee to follow, and then generate 

Yitem
 using Equation (5); 

24.             If (Y ) (X )item jfun fun< , then % implement the greedy 

selection 

25.                 X Yj item← , and set ( ) 0trial j ← ; 

26.             Else 

27.                 ( ) ( ) 1trial j trial j← + ; 

28.                 If ( )trial j Limit> , then 

29.                     ( )trial j Limit←  

30.                 End if 

31.             End if 

32.         End if 

33.         1j j← + ; 

34.         If 
2

SNj > , then 

35.             Set 1j ← ; 

36.         End if 

37.     End while 

38.     If 2

1

2
( )

SN

odri
trial i Limit

SN
α

=
> ⋅∑ , then % implement the overall 

degradation strategy 

39.         Randomly re-initialize as many as ( )round
2odr

SNα ⋅  employed 

bees’ locations according to Equation (1); 

40.         Set their corresponding scalars ( ) 0trial ⋅ ← ; 

41.     End if 

42.     Memorize the best solution; 

43. End for 

44. Output the best solution; 

Initialize food source using Eq. (1)

Set trial = 0, iter = 0.

Start

iter = iter+1

iter>MCN?

Generate each of the employed 

bees using Eq. (6)

Is better position derived 

for i-th employed bee?

Set trial(i) = 0

Select employed bee for each onlooker 

to follow using Eqs. (3) and (4)

Is better position derived 

for j-th employed bee?

Let trial(j)  = trial(j)  + 1  

Output best position

End

Y

N

N

Y

N

Y

Set trial(j) = 0

Let trial(i)  = trial(i)  + 1  

Store best position in the 

current iteration

Generate each of the onlookers using Eq. (5) 

(choose j-th employed bee to follow)

Set such trial to LimitAny trial exceeds Limit?
Y

N

mean(trial)> 

odrLimit?

N

Y
Re-initialize (100 odr )% randomly 

selected employed bees using Eq. (1);

Set corresponding trial(·) = 0

Fig 1. A flowchart of OD-ABC algorithm. 

5. Experiments and Results 

In order to see the performance of the OD-ABC algorithm in 

comparison with the conventional ABC algorithm, we 

systematically conducted a number of comprehensive 

simulation experiments (i.e., the first 24 benchmark functions 

for the competition of the CEC 2014 Special Session [30]). In 

all our computational experiments, the maximum number of 

cycles MCN  was constantly set to 5000 and the swarm 

population (i.e., 2 SN⋅ ) was set to 40 for both algorithms 

involved. Each of the experiments was repeated for 30 times 

with different random seeds. The search range is constantly set 

to [ 100,100]Dim− , where 50Dim =  refers to the dimension of 

the benchmark problems in this work. All the simulations were 

carried out in a Matlab R2011b environment and executed on a 

Intel Core 2 Duo CPU with 2GB RAM running at 2.53 GHz 

under the Microsoft Windows XP operating system. 

The experimental results are listed in Table 1, where 

“Mean” denotes the average value at the 500th iteration from 

the 30 runs and S.D. is the corresponding standard deviation. 
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In the last columns of this table, we report the statistical 

significance level of the difference of the means of the results 

produced by the best and the second best algorithms (with 

respect to their final accuracies). Note that here “p value” 

reveals the chance if the null hypothesis (the differences 

between OD-ABC and ABC can form a normal distribution) is 

true. ‘+’ indicates the OD-ABC works better than ABC at a 

0.10 level of significance by two-tailed test; ‘-’ indicates the 

ABC works better than OD-ABC at a same level of 

significance; while ‘.’ indicates the two algorithm show no 

difference in statistics. 

Three-dimensional visualization of a selected number of 

two-dimensional benchmark functions are illustrated in Figs. 

2-10. 

Table 1. Result comparisons of ABC and OD-ABC on 24 benchmark functions in CEC 2014’s competition. 

Test Function 
ABC OD-ABC 

p-value Significance 
Mean S.D. Mean S.D. 

f1 6114570.5025  2419997.7581  6724954.4722  3359427.9062  0.3493  . 

f2 530.5217  581.4641  755.1771  1232.0369  0.2134  . 

f3 1818.6106  1719.7908  1355.3680  791.5116  0.1779  . 

f4 445.8312  29.4235  446.6215  31.2563  0.8774  . 

f5 520.1571  0.0236  520.0829  0.0186  0.0000  + 

f6 614.8564  1.5735  615.1491  1.5120  0.5716  . 

f7 700.0009  0.0049  700.0006  0.0032  0.9426  . 

f8 800.0000  0.0000  800.0000  0.0000  1.0000  . 

f9 996.6754  14.1212  990.5091  14.9428  0.1846  . 

f10 1000.6780  0.5567  1000.7694  0.5598  0.6143  . 

f11 3255.2904  213.0970  3138.9450  311.3926  0.0656  + 

f12 1200.1958  0.0349  1200.1587  0.0245  0.0001  + 

f13 1300.2369  0.0362  1300.2237  0.0366  0.1529  . 

f14 1400.1969  0.0227  1400.2157  0.0184  0.0011  - 

f15 1508.6140  1.5702  1508.9653  1.3481  0.5440  . 

f16 1609.9398  0.3453  1610.0154  0.3368  0.6143  . 

f17 2408523.2800  956030.9703  1841845.1394  1105817.4900  0.0300  + 

f18 2731.6489  749.3723  2480.4172  633.9575  0.3286  . 

f19 1907.3927  0.8670  1907.4452  0.7566  0.7655  . 

f20 11923.4498  5260.5395  17061.2679  7256.6336  0.0111  - 

f21 272118.8254  149638.8018  178289.7058  118298.2170  0.0098  + 

f22 2502.2540  129.5824  2570.8483  112.8751  0.0387  - 

f23 2615.3930  0.2305  2615.4770  0.4185  0.2134  . 

f24 2626.3521  6.6572  2628.2003  2.0630  0.0060  - 

 

Fig 2. 3-D visualization for2-D benchmark function 5. 
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Fig 3. 3-D visualization for 2-D benchmark function 9. 

 

Fig 4. 3-D visualization for 2-D benchmark function 11. 

 

Fig 5. 3-D visualization for 2-D benchmark function 12. 
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Fig 6. 3-D visualization for 2-D benchmark function 17. 

 

Fig 7. 3-D visualization for2-D benchmark function 21. 

 

Fig 8. 3-D visualization for 2-D benchmark function 14. 
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Fig 9. 3-D visualization for 2-D benchmark function 22. 

 

Fig 10. 3-D visualization for 2-D benchmark function 24. 

6. Discussion 

According to the results listed in Table 1, we find that in 

most cases, the OD-ABC algorithm cannot outperform the 

conventional ABC algorithm with statistical significance. 

However, it is worthwhile to notice that the several benchmark 

functions that OD-ABC works better on (see Figs. 2-7) are far 

more complicated than the ones that ABC works better on (see 

Figs. 8-10). As in Figs. 2-7, there are in general a large number 

of local minimums around the global optimum, making it 

difficult to overcome premature convergence. In contrast, local 

minimums are not so close to the global optimums in the cases 

of benchmark functions 14, 22 and 24. All the mentioned 

above indicate that, the OD-ABC algorithm works well to 

handle the objective functions that are more challenging. 

7. Conclusion 

In this paper, we have proposed an OD-ABC algorithm, the 

main idea of which is to provide a more efficient 

re-initialization phase in the algorithm’s framework. The 

innovations and highlights of in this work can be summarized 

as follows. 

First, we have pointed out a critical issue that deserves well 

considered in the framework of the conventional ABC 

algorithm. Then, we provide a modification solution to this 

issue accordingly. Second, we adopt a state-of-the-art set of 

benchmark functions to test the performance of the concerns 

algorithms. The experimental results we obtained support our 

conclusion that the OD-ABC algorithm is efficient to fight 

against premature convergence. 
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Despite these highlights and innovations, we confess there is 

still room for improvement since OD-ABC becomes 

inefficient when tested on some unimodal and/or simple 

multimodal benchmarks. As a feasible suggestion, combining 

such overall-degradation strategy with other existing strategies 

may work (e.g., see Refs. [1, 7, 31]). 

After all, we believe that the unique and promising idea 

behind our OD-ABC algorithm is worth pursuing further. 
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