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Abstract: The Echo State Network (ESN) is a novel and special type of recurrent neural network that has become increasingly 

popular in machine learning domains such as time series forecasting, data clustering, and nonlinear system identification. This 

network is characterized by large randomly constructed recurrent neural networks (RNN) called “reservoir”, in which the 

neurons are sparsely connected and the weights remain unchanged during training, leaving the simple training of the output layer. 

However, the reservoir is criticized for its randomness and instability because of the random initialization of the connectivity and 

weights. In this article, we introduced the selective ensemble learning based on BPSO to improve the generalization performance 

of ESN. Two widely studied tasks are used to prove the feasibility and priority of the selective ESN ensemble based on 

BPSO(SESNE-BPSO) model. And the results indicate that the SESNE-BPSO model performs better than the general ESN 

ensemble, the single standard ESN and several other improved ESN models. 

Keywords: Echo State Network, Reservoir Computing, Artificial Neural Network, Ensemble Learning, Selective Ensemble, 

Particle Swarm Optimization 

 

1. Introduction 

In recent years, reservoir computing (RC) [1, 2] has been 

extensively studied as a novel kind of training approach in the 

machine learning community for recurrent neural network 

(RNN). The RC approach consists of a large randomly 

constructed RNN called “reservoir”, wherein the neurons are 

sparsely connected and the weights remain unchanged during 

training. With this approach, only the weights of networks 

from the reservoir to the readout layer require training through 

linear regression methods. Therefore, RC approach has 

numerous advantages such as high modeling accuracy, strong 

modeling capacity and low computational complexity. The 

echo state network (ESN) [3, 4], liquid state machines [5] and 

Evolino [6] are some examples of the RC approach. In this 

paper, we discuss the most popular form of RC, the ESN.  

ESN is characterized by a large reservoir (generally 

100--1000 neurons) converting the input data to a 

high-dimensional dynamic state space, which can be the “echo” 

of recent input history. ESN has been applied in a wide range of 

domains, such as nonlinear system identification [7] and time 

series prediction [8, 9]. However, one of ESN’s flaws is its 

poorly understood reservoir properties. The randomly 

generated connectivity values and the weight structure of 

internal neurons in the reservoir may lead to the randomness 

and instability of ESN in prediction performance. Nevertheless, 

the random and unstable prediction is not constantly considered 

a disadvantage of machine learning algorithm. For ensemble 

learning [10], one of the most popular machine learning 

algorithm, the randomness and diversity of individual learners 

in an ensemble contribute in promoting the generalization 

performance of the learner’s ensembles. Therefore, the 

ensemble learning method is introduced to the ESN model to 

solve the proposed ESN problem.  

Ensemble learning [11-13] is a machine learning algorithm 

which improves learning performance by training multiple 

component learners to solve the same task. The final 

ensemble’s output is the average of all individual learners’ 

outputs. The ensemble learning has been widely recognized to 

provide a better generalization performance compared with a 

single component learner [14]. The effectiveness of ensemble 

learning can be explained by the bias and variance 



85 Xiaodong Zhang and Xuefeng Yan:  Improvement of Echo State Network   

Generalization by Selective Ensemble Learning Based on BPSO 

decomposition of the ensemble error [15]. Ensemble learning 

can reduce both the bias and variance of ensemble error. As is 

studied in [16], the trade-off of individuals’ accuracy and 

diversity is the key to improve the generalization performance 

of ensemble. However, whether all the trained individuals 

networks should be selected into ensemble? Zhou et al. [17] 

proposed that a selective subset of all individuals can be more 

effective than ensemble all the individuals. The selective 

ensemble, which combines the diverse individuals selected 

from plenty of trained accurate networks, has been proved 

effective theoretically and practically. 

One of the most important procedure for selective ensemble 

is how to select the diverse individuals from a number of trained 

accurate networks, which can be regarded as a feature selection 

problem. Some several classical feature methods such as 

forward selection, backward elimination can be applied to 

select the most effective subsets of individuals. However, those 

methods are almost greedy search algorithms, which suffer 

from the stagnation in local optima. As well-known, the 

evolutionary computation techniques are famous for the global 

search ability. Compared with genetic algorithms (GA) [18], 

particle swarm optimization (PSO) [19] has many advantages 

such as fewer parameters and higher convergence speed. 

Additionally, the optimization of whether the individuals are 

selected into the ensemble is a discrete optimization problem. 

Therefore, a discrete binary version of PSO, called binary 

particle swarm optimization (BPSO) [20], is introduced to solve 

the binary combinational optimization problem.  

In this paper, the selective ensemble based on BPSO 

algorithm was incorporated introduced to ESN to promote the 

generalization performance. To my knowledge, this is the first 

time that the selective ensemble algorithm is applied to ESN.  

2. Echo State Network 

2.1. Architecture of the ESN 

 

Fig. 1. Basic structure of a standard ESN. The solid lines denote the randomly 

created connections fixed prior to training. The dotted lines denote the 

connections adjusted during training. The grey solid lines denote the feedback 

connections that are possible but not required. 

The ESN is a kind of RNN whose structure can be divided 

into three sections: a liner input layer with l  input neurons, a 

large and fixed RNN with n  internal neurons, and a linear 

readout layer with m  output neurons. The fixed RNN part 

where the neurons are sparsely connected and the weights 

maintain unchanged during training is called “reservoir”. Fig. 

1 illustrates the basic structure of the ESN.  

The states of internal neurons ( )tx  and output variables 

( )ty  at a specific time point t  are expressed as follows [21]: 

( ) ( ( ) ( 1) ( 1))t f t t t= ⋅ + ⋅ − + −T

in back
x W u W x W y    (1) 

( ) ( )t t= ⋅T

out
y x W               (2) 

where f  is the internal neuron stimulation function(typically a 

tanh sigmoid function), and ( )tu , ( )tx  and ( )ty  are the 

input variable, internal neuron state, and output variable at a 

specified time step t, respectively. 
in

W  is the n l×  matrix, 

which indicates the input weights to the reservoir; W  is the 

n n×  matrix, which denotes the internal connection weights of 

the reservoir; 
out

W  is the m n×  matrix, which represents the 

output (readout) weights from the reservoir.; 
back

W  is the 

n m×  matrix, which indicates the feedback weights from the 

output to the reservoir. The initialization of reservoir state ( )ts
 

is a zero vector. The superscripted T  represents transpose. 

2.2. Training of the ESN 

As discussed above, 
in

W , 
back

W and W  are the fixed 

matrices generated in advance generated by using the 

stochastic numerical values obtained from a uniform 

distribution, which means that only trainable matrix is the 

output weight matrix 
out

W . For ESN to maintain the “Echo 

State Property”, which means that the internal neuron state is a 

nonlinear transformation of the entire history of the input 

signal, the spectral radius of the internal connection weights 

W  should be set to less than 1[3]. Thus W is generally 

scaled by 
max/α λ , where 

maxλ  is the spectral radius of W

and α  is a scaling parameter between 0 and 1. 

The internal neuron state X , obtained during the training 

process, can be expressed as follows: 

(1)

(2)

( )n

 
 
 =
 
 
  

⋮

T

T

T

x

x
X

x

                  (3) 

and the output data stream state matrix Y  can be expressed as 

follows: 

(1)

(2)

( )n
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                  (4) 
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where n represents the number of the training sample. 

Consequently, the output matrix 
out

W  to be adjusted during 

training should solve a linear regression problem: 

⋅ =
out

X W Y                    (5) 

the common method uses the least-squares solution: 

2
arg min

w
= −outW Xw Y              (6) 

where ⋅  denotes the Euclidean norm, and the desired 
out

W  

is calculated by the following equation: 

1( ) T−= T

out
W X X X Y               (7) 

This is implemented by the pseudo-inverse algorithm.  

3. Selective ESN Ensembles Based on 

BPSO 

3.1. Review of BPSO 

Particle swarm optimization (PSO) [22] method was first 

proposed by Kennedy and Eberhart to solve the numerical 

optimization problem. As an evolutionary computational 

technique, PSO introduced a population of particles to 

simulate the bird flocks to search the best solution to the 

problem. Each particle represents a candidate solution. Then 

the discrete binary version of PSO (BPSO)[20] was proposed 

to solve the combinatorial optimization problem in 1997. In 

BPSO, each dimension of a particle’ position is limited to 0 or 

1. The velocity and position of each particle can be updated 

according to Eq.(9)-(11): 

1 2
( 1) ( ) ()( _ ) ()( _ )

id id it id d id
v t w v t c rand p best x c rand g best x+ = ⋅ + ⋅ − + ⋅ −                  (8) 

1
( ) ( )

1 id
id id v

S v sigmoid v
e

−= =
+

                                (9) 

if () ( ( 1))
id

rand S v t< +  then ( 1) 1
id

x t + = , else ( 1) 0
id

x t + =                     (10) 

Where ()rand  represents a random function on the 

domain [0,1], _
it

p best  denotes the personal best of the it

particle and _
d

g best  denotes global best for the d particle; 

1
c ,

2
c

 
and w  are the parameters; 

1 2
( , , , )

i i i iD
x x x x= …

donates the position of thi  particle. 
1 2

( , , , )
i i i id

v v v v= …

represents velocity for particle i . id
v  is limited in the range 

of [
max

,v−
max

v ].  

3.2. SESNE-BPSO 

In this section, the selective ESN ensemble based on BPSO 

(SESNE-BPSO) is described in detail. For the problem of 

selective ensemble, each dimension of the particle’ position 

values 0 or 1 to denote whether the originally generated 

individual ESN is selected or not. The position of particle

1 2
[ , , ]

m
x x x= …x  denotes the selection status of the ensemble. 

The dimension of each particle is the size of the originally 

generated ensemble. 

{ }( ) 1,i j ij jSeEn x ESN x ESN En= = ∈        (11) 

Where SeEn  and En  denote the selective ensemble and 

the originally generated ensemble respectively. 

The objective optimization function is the normalized root 

mean square error(NRMSE). 

2

2
1

ˆ( ( ) ( ))N

t

t t
NRMSE

N σ=

−=
⋅∑

y y
            (12) 

where ( )ty  is the desired output(target), ˆ ( )ty  is the output, 

2σ  is the variance of ( )ty , and N  is the total number of 

( )ty . 

The procedure for the SESNE-BPSO can be summarized as 

follows: 

(1) All the data are divided into three parts: training, 

validation and the testing set. 

(2) Generate m ESNs with the input weights inW  and the 

internal connection weights W  initialized at random 

values. The other parameters of the standard ESN such 

as the sparse degree of reservoir, the spectral radius, and 

the input extension are confirmed through the validation 

set. 

(3) Each generated ESN is trained using the algorithm 

described in section 2.2 with the training data. 

(4) Choose the error function NRMSE of the selected 

ensemble SeEn represented by ix  according to Eq.(11) 

as the objective optimization function. Select SeEn

from En  by minimizing the error function on the 

validation set with the BPSO. 

(5) The best SeEn  of the validation performance is found 

out. 

4. Experiment and Result 

4.1. Experimental Setup 

In this section, the proposed SESNE-BPSO method was 

evaluated using two extensively studied tasks obtained from 

previous literature on ESN. The model performance is 

evaluated by the percentage of the NRMSE. The results of the 

proposed SESNE-BPSO performance are compared with 

those of the general ESN ensemble (ESN-En), which 

ensemble all the originally generated ESNs, and the single 

standard ESN as well as two other improved ESN models. 
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The number of originally generated ESNs is 20 for the 

following two experiments 

4.2. Experiment Tasks and Results 

A) NARMA system 

The 10-th order nonlinear autoregressive moving average 

(NARMA) system is described in the following equation [7]: 

9

0

( 1) 0.3 ( ) 0.05 ( ) ( ) 1.5 ( 9) ( ) 0.1
i

o t o t o t o t i u t u t
=

+ = + − + − +∑  (13) 

where  denotes the NARMA system output at time , 

 represents the system input at time , and  refers 

to an independent identically distributed stream of values 

generated uniformly from [0, 0.5]. The NARMA system 

identification task has been described in Jaeger [7], the ESN is 

trained to output  based on . Modeling the NARMA 

system is generally difficult because the system is strongly 

nonlinear and requires a substantially long memory to 

accurately reproduce the output. The current output of the 

system is decided by both the input data and the previous 

output data from up to 10 steps ago. The NARMA data-set 

used in this experiment contains 6,000 items and all the values 

are divided into 3 parts. The first part is the training data-set 

with 2,000 values, the second part is the validation data-set 

with 2,000 values, and the third part is the testing data-set with 

the remaining 2,000 values. The first 100 values of each part 

are stored to wash out the initial memory of the dynamic 

reservoir. The reservoir size ( ) of ESNs for this task is set to 

100. The experiments are performed 10 times because of the 

random initialization of ESN. The testing performance 

NRMSE of the single standard ESN, ESN-En, and 

SESNE-BPSO are displayed in Table 1. Mean represents the 

mean value of NRMSE, SD stands for the standard deviation 

of NRMSE, Max indicates the maximum value of NRMSE, 

and Min stands for the minimum value of NRMSE.  

Table 1. Testing performance NRMSE of the single standard ESN, ESN-En, 

and SESNE-BPSO for the NARMA time series task. 

Algorithm ESN ESN-En SESNE-BPSO 

Mean 0.169 0.124 0.101 

SD 0.0374 0.0273 0.0316 

Max 0.189 0.137 0.112 

Min 0.152 0.118 0.096 

B) Laser Time Series 

The laser chaotic time series data [23] used in this 

prediction task is a real-world sequence obtained from the 

Santa Fe Competition by sampling the intensity of a 

far-infrared laser in a chaotic regime. The task is set to forecast 

the next value (one step ahead forecast) depending on 

the history values up to time . Laser time series prediction is 

generally difficult because of its numerical round-off noise 

and diverse time scales, especially in the breakdown events of 

the sequence. The laser data set used in this experiment 

contained 10,000 values, which are divided into 3 parts. The 

first part is the training data-set with 6,000 values, the second 

part is the validation data set with 2,000 values, and the third 

part is the testing data set with the remaining 2,000 values. 

The first 1000 values of each part are also stored to wash out 

the initial memory of the dynamic reservoir. This laser series 

prediction task needs feedback connections. The reservoir size 

( ) of the ESNs for this task is also set to 100. The bias input 

is a constant 0.02 value. The experiments are conducted for 10 

times because of the random initialization of the ESN. The 

testing performance of the single standard ESN, ESN-En and 

SESNE-BPSO are displayed in Table 2. 

Table 2. Testing performance NRMSE of the single standard ESN, ESN-En 

and SESNE-BPSO for the laser time series prediction. 

Algorithm ESN ESN-En SESNE-BPSO 

Mean 0.0195 0.0167 0.0149 

SD 5.854e-3 5.810e-3 5.703e-3 

Max 0.0229 0.0173 0.0156 

Min 0.0172 0.0145 0.0128 

To validate the performance of the proposed SESNE-BPSO 

model, other improved ESN models, such as L2-Boost ESN 

[24], Scale-Free Highly Clustered ESN(SFHC-ESN) [25], are 

performed for the comparison. The result of the comparison is 

presented in Table 3. 

Table 3. The test performance of SESNE-BPSO and other improved ESN 

models. 

Algorithm 
Task 

NARMA Laser 

ESN 0.169 0.0195 

L2-Boost ESN 0.12 0.0152 

SFHC-ESN - 0.0163 

SESNE-BPSO 0.101 0.0149 

4.3. Discussion 

Based on the data from Table 1 and Table 2, the 

experimental results indicate that the ESN-En model 

obviously improved the performance of generalization 

compared with the standard ESN and the proposed 

SESNE-BPSO outperformed the ESN-En. Furthermore, 

SESNE-BPSO performs better than several other improved 

ESN models based on Table 3. This result illustrates that the 

selective ensemble learning based on BPSO algorithm 

promotes the generalization performance of the ESN 

ensemble. 

5. Conclusion 

In this paper, a novel ESN ensemble called SESNE-BPSO 

is proposed. Ensemble learning is introduced to improve the 

generalization performance of the ESN model. The diversity 

of the individual ESNs in the ensemble is one of the key 

factors in reducing the ensemble generalization error. The 

diverse ESNs are created because of the random initialization 

of input and internal weights. The selective ensemble learning 

based on BPSO algorithm is applied as an ensemble learning 

approach to further increase the performance of ESN 

ensemble. Two widely used tasks are performed to test the 

performance of the proposed SESNE-BPSO model. The 

( )o t t

( )u t t ( )u t

( )o t ( )u t

N

( 1)o t +
t

N
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results indicate that SESNE-BPSO performs better than the 

general ESN ensemble, the standard ESN and other improved 

ESN models. Consequently the findings demonstrate the 

feasibility and superiority of the selective ensemble learning 

based on BPSO approach to ESN. 
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