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Abstract: The paper deals with the problem of synthesis of a stable characteristic polynomial families describing the control 

systems' dynamics in conditions of the interval uncertainty. Investigation is based on the system mathematical model in the form 

of its root locus portrait generated by the polynomial free term variation that is named in the paper as the "free root locus portrait". 

The root loci of the Kharitonov's polynomials family (subfamily) is picked out of the whole polynomial family and is considered 

for carrying out the investigation. Specific regularities of the interval root locus portrait have been discovered. On the basis of 

these regularities main properties of the system root locus portrait have been defined. A stability condition has been formulated 

that allows to calculate the polynomial free term variation interval ensuring the polynomial family hurwitz stability. This stability 

condition is applicable to the class of polynomials having their free root locus poles lying within the left half-plane of roots or, in 

other words, being stable when their free term is equal to zero. The stable family is being synthesized by setting up (adjusting) the 

given initial family that is supposed to be unstable, i.e. the proposed method of synthesis allows to turn stable (hurwitz) the given 

nonhurwitz interval polynomial family. The setting up criterion is specified in terms of proximity i.e. as the nearest distance from 

the "unstable" system roots to the "stable" ones as measured along the root trajectories. The stable polynomial could be selected 

as the nearest to the given unstable one with or without consideration of the system quality requirements. In the course of the 

setting up procedure new boundaries of only the polynomial free term variation interval (stability interval) are calculated that 

allows to ensure system stability without modification of its root locus portrait configuration. A numerical example of the 

polynomial setting up procedure has been given. 

Keywords: Unstable Control System, Parametric Uncertainty, Interval Characteristic Polynomial, Parametric Synthesis,  

Root Locus, Kharitonov's Polynomials 

 

1. Introduction 

The issues of assuring the acceptable dynamic 

characteristics of the plants operation in conditions of 

uncertainty are currently among the most important ones that 

drive forward the development of the automatic control theory. 

[1, 2]. In this area three basic directions of investigation could 

be singled out: algebraic, frequency and root locus one. 

Algebraic and root locus approaches both could be referred to 

the so-called "polynomial approach", the appearance of which 

dates back to the 1960 – 70th of the XX century, and which 

has been formed as the special approach to control systems 

design and synthesis [3]. In this connection in his book [3] V. 

Kučera mentions that in many cases polynomial 

representation appears more natural. 

The dynamic systems stable characteristic polynomials and 

polynomial families synthesis, analysis of the polynomial 

families stability, constituting one of the main directions of the 

parametric approach to robustness, represent today the 

complicated and important tasks [4, 5]. Within the parametric 

approach to the problem the series of effective methods for 

analysis have been developed. One of the pioneer works in 

this direction was the paper of V. L. Kharitonov [6], where he 

proved that for the interval uncertain polynomial family 

asymptotic stability verification it is necessary and enough to 

check only four specific polynomials of the family with the 
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definite combinations of constant coefficients. An analogue of 

Kharitonov theorem was formulated for the unstable interval 

polynomials' homogeneous classes of equivalence [7]. 

The algebraic approach [6] was then further developed in the 

series of works [7, 9–12], which comprise in particular the 

conditions of retaining strict hurwitz property (hurwitz robust 

stability criteria for polynomials with perturbed coefficients 

(polynomial families)) [9–11], i.e. the techniques were offered 

for calculating maximal possible deviations of the hurwitz 

characteristic polynomial coefficients (parameters) from their 

nominal values, which ensure retaining strict hurwitz property 

of the polynomial. The first work that appeared in this area was 

the paper of B. R. Barmish [9]. The task here was reduced to the 

single-parameter optimization problem. The close tasks were 

solved by Y. Soh in [10]. Conditions for the generalized 

stability of polynomials with the linearly dependent coefficients 

(polytopes) were obtained in paper [11] by G. Rantzer. 

Based on the new interval polynomial stability criterion and 

Lyapunov theorem, a robust optimal 

proportional-integral-derivative (PID) controller is proposed 

in paper [12] to carry out design for different plants that 

contain perturbations of multiple parameters. A new stability 

criterion of the interval polynomial is presented to determine 

whether the interval polynomial belongs to Hurwitz 

polynomial or not. 

In the works of Y. Z. Tsypkin and B. T. Polyak (see [4, 5, 8]) 

the frequency-domain approach to the polynomially described 

systems robustness was offered. The tasks, related to synthesis, 

were discussed in [13] and [14]. 

The root locus approach to robustness is considered in 

paper [15] by B. R. Barmish and R. Tempo, in the works of the 

author [16–20] and series of other works. Paper [15] deals 

with the method for synthesis of a compensator ensuring the 

required robust quality of uncertain plant. Solutions for the 

tasks of parametric synthesis and analysis of uncertain 

systems (interval dynamic systems (IDS) in particular) with 

application of the main provisions of the root locus theory are 

offered in [16–20]. 

However, the above mentioned techniques do not give the 

complete and general answer to the question about how do the 

given polynomial family coefficients' values should be changed 

to move the system roots (by some criteria) inside the given 

region in case when initially they do not get there. The existing 

methods in many cases are either too complicated and not easy 

for use or stuck to the specific application, and, therefore the 

field still keeps being opened for various creative solutions. 

Substantial results obtained in the area of parametric 

approach to robustness are represented in the books [4, 5] by B. 

T. Polyak, P. S. Scherbakov and M. V. Khlebnikov. In [4, 5] 

several tasks still finding their solutions are indicated and 

among them the task of searching the stable polynomial being 

the nearest to the given unstable one. 

The contents of this paper are devoted to the root locus 

approach to the above described problem solution in 

application to the interval polynomial. It represents further 

development of works [16–20]. One of the main advantages of 

the root locus approach in application to uncertain systems 

investigation is that by its nature that approach implies 

variation of system parameters and allows to look at the 

system as if “from the inside” and to follow up how do the 

roots move in response to the parameters variation. The 

technique that has been developed can be used for setting up 

the values of the parameter variation intervals limits for 

ensuring the IDS stability in the cases when the stability test 

had shown that the given system was unstable. 

2. The Problem Formulation 

For getting more complete picture of the processes that occur 

in uncertain control systems it seems important to find 

correlation between algebraic, root locus and frequency 

methods of investigation. Such correlation exists and can be 

applied for finding dependence between the values of the 

system characteristic equation coefficients (parameters) 

variation and its dynamic properties and further determination 

of how and what specific coefficients should be altered for 

ensuring robust stability. A possible way of establishing the 

above mentioned correlation could be investigation of the 

systems root locus portraits versus Kharitonov's polynomials 

[6], which could be called root locus Kharitonov's polynomials. 

Let us consider the IDS, described by the family of 

characteristic polynomials like 
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0

∑
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j
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jsasPF             (1) 

where 

],,[ jjj aaa ∈                  (2) 

,,0,00 nja => ja  and ja  are correspondingly the 

lower and the upper bounds of the closed interval of 

uncertainty ],[ aa j , s = σ + iω. The coefficients of 

polynomial (1) represent in fact the uncertain parameters. 

Assume that the given family (1) is unstable. The task 

consists in synthesis of the stable interval family of 

polynomials on the basis of the given unstable one, i.e. for the 

case when checking stability of Kharitonov's polynomials 

gives a negative result. The "stable" intervals of the parameter 

variation assuring the family stability are calculated from the 

given intervals (2) so that they will have met the desirable 

dynamic characteristics of the system. The stability intervals 

definition criteria may in general be different. In our case in 

particular the criterion is specified in terms of proximity i.e. as 

the nearest distance from the "unstable" system roots to the 

"stable" ones as measured along the root trajectories. 

3. Free Root Locus Portrait as a Model of 

the Interval System 

Write an expression for any arbitrary subfamily f (either 

continuous or not) of the polynomial family F: 
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.Ff ⊂                  (3) 

Introduce the series of definitions [16]. 

Definition 1. Name the root locus of the dynamic system 

characteristic equation (polynomial) as the dynamic system 

root locus. 

Consider the family of the interval system root loci 

generated for the characteristic polynomials of (1). 

Definition 2. Name the family (the set) of the interval 

dynamic system root loci as the root locus portrait of the 

interval dynamic system. 

Definition 3. The algebraic equation coefficient or the 

parameter of the dynamic system, described by this equation, 

being varied in a definite way for generating the root locus, 

when it is assumed that all the rest coefficients (parameters) 

are constant, name as the free parameter of the algebraic 

equation root locus or simply the root locus parameter. 

Definition 4. The algebraic equation root locus, which 

parameter is the coefficient ak, name as the root locus relative 

to the coefficient ak. 

Definition 5. The root locus relative to the constant term of 

the dynamic system characteristic equation name as the free 

root locus of the dynamic system. 

The peculiarity of the free root loci, which distinguishes 

them from another types of root loci, consists in the fact that 

all their branches strive to infinity along the corresponding 

asymptotes. 

Definition 6. The points, from which the root locus 

branches initiate and where the root locus parameter is equal 

to zero, name as the root locus initial points. 

 

Figure 1. Root loci (subfamily) of the root locus portrait for the interval 

system of the third order. 

Remark 1. One of the free root locus initial points is always 

located at the origin of the complex plane of roots s. 

The above remark correctness follows from the form of 

equation (1). It is illustrated by Figure 1 where three root loci 

of the third order are represented. Root loci branches are 

indicated by the corresponding root locus sequential number: 

1, 2, 3. Initial points in Figure 1 are depicted by X-s and 

symbols r
lp  with two indexes, of which the lower one means 

the initial point sequential number, l = 1, 2, 3, and the upper – 

the number of the root loci, r = 1, 2, 3. From Figure 1 it is 

evident that one initial point of every root loci is located at the 

origi: 3
1

2
1

1
1 ppp ≡≡ . 

Remark 2. The real positive branch of the free root locus, 

which begins at the initial point located at the origin, always 

strives along the negative real semi-axis σ of the complex 

plane and is directed to the left half-plane. 

Remark 2 is correct because real roots of equations with 

positive coefficients are always negative and also over the root 

loci properties [1]. 

Remark 2 is confirmed by Figure 1. In this figure the real 

portion ],[ 1
11 pt  of the root locus 1 branch, located between 

points 1
1p  and t1, is directed from the initial point 1

1p  to 

point t1 and then along the right branch 1 to the point b1 and 

further to infinity. The same feature holds for root loci 2 and 3. 

The real portion ],[ 2
13 pt  of the root locus 2 branch, located 

between points 2
1p  and t3, is directed from the origin to the 

left half-plane. 

For carrying out investigation apply the Teodorchik – Evans 

free root loci (TEFRL). The Teodorchik – Evans root locus 

[16] means the root locus generated by the root locus 

parameter ak variation within the interval – ∞ < ak < + ∞ of the 

real values. Thus, hereinafter the term "root locus" means the 

TEFRL, and its root locus parameter represents the constant 

term of the system characteristic polynomial. 

To generate the IDS root locus portrait apply the family of 

the mapping functions 

sn + a1s
n–1 + … + an-1s = u(σ,ω) + iv(σ,ω) = – an,  (4) 

obtained from (1), where u(σ,ω) and v(σ,ω) are harmonic 

functions of two independent real variables σ and ω; an is the 

root locus parameter. Analytical and graphical root loci are 

formed using mapping function (4). The root locus equation is 

as follows: 

v(σ,ω) = 0,                (5) 

and the parameter equation [16] as follows: 

u(σ,ω) = – an.               (6) 

The fragmentary root locus portrait [16] for the IDS of the 

forth order made up of four Kharitonov's polynomials free 

root loci is shown in Figure 2. The Kharitonov's polynomials 

h1, h2, h3 and h4 in this figure are represented by points 

(polynomial roots) marked with circles, white squares, 

triangles, and black squares correspondingly. Branches, 
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belonging to the root locus of the definite polynomial, are 

designated similar to the corresponding polynomial, i.e. h1, h2, 

etc. The following designations are accepted in Figure 2: 

symbols c1 and c2 indicate the asymptotes cross centers for the 

root loci of polynomials hi; points bi, i ∈ {1, 2, 3, 4}, represent 

the cross points of the root loci branches, located in the upper 

half-plane, with the system asymptotic stability boundary, axis 

iω; αq, q = 8,1 , are the root loci asymptotes. The root loci 

initial points, which represent zeroes of mapping function (4), 

are depicted by X-s and the letters r
lp  of which the lower 

index l means the definite root locus initial point sequential 

number and the upper one r is the sequential number of the 

corresponding polynomial (root locus), 4,1=l , 4,1=r . 

Initial points with number "1" ( rp1 ) coincide at the origin, 

4
1

3
1

2
1

1
1 pppp ≡≡≡ . 

From Figure 2 it is evident that two complex-conjugate 

roots of each one of the Kharitonov's polynomials are located 

in the right half-plane. Therefore, the given interval system is 

asymptotically unstable [6]. 

 

Figure 2. Root loci of Kharitonov's polynomials for the system of the fourth 

order. 

4. The Uncertain System Root Locus 

Portrait Dynamics Investigation 

Those branches of the IDS free root locus portrait that cross 

the stability boundary, i.e. the axis iω of the complex plane s, 

generate on this axis a region (set) of cross points. Let's name 

this region as the cross region and designate it as Rω. Along 

the complex variable theory and over the complex mapping 

function (4) continuity property this region Rω represents a 

many-sheeted region and is composed of the separate sheets 

with every sheet (a continuous subregion) formed by a 

separate root locus branch as it moves in the complex plane 

following the parameters variation. The cross region portion 

generated by only positive branches of the system root locus 

portrait name as the positive cross region and designate it as 

Rω
+
, 

.ωω RR ⊂+                 (7) 

Specify also some subregion +
ωr  (either continuous one or 

not) of the cross region Rω
+ (7) generated by the root loci 

branches of any arbitrary subfamily (subset) f of the interval 

system polynomial family (1), and name it as the (positive) 

cross subregion. Hence, 

.
++ ⊂ ωω Rr                 (8) 

In Figure 2 the subregion +
ωr  is formed by the brunches of 

the Kharitonov's polynomials and lies between points b1 and 

b2, i.e. 21bbr =+
ω . 

Then introduce the following sets: 

},{
irrW ++ = ω                (9) 

},{
irr aA ++ =                (10) 

where Wr
+ is the set (family) of coordinates ir

+ω  of points 

forming the cross subregion rω
+ (8); Ar

+ is the set (family) of 

values ira+
 of the root locus parameter аn at the 

corresponding points forming the set Wr
+. 

Now define the minimal value min
+
ra  of the root locus 

parameter within the cross subregion rω
+: 

.inf
min

++ = rr Aa              (11) 

Peculiarities of the IDS root loci branches initial points 

location make it possible to conclude about existence of its 

characteristic equation coefficient variation intervals ensuring 

asymptotic stability of the given system. 

Statement. If the initial points of the interval polynomial 

subfamily f (3) free root loci (except the points always situated 

at the origin) are located in the left half-plane s, there exists the 

maximum possible interval d of the root locus parameter an 

values, 

),0(
min

+= rad ,              (12) 

that ensures the asymptotic stability of the subfamily f. 

Proof. The subfamily f free root loci generate at the system 

stability boundary, axis iω, the cross subregion rω
+
 (8) of cross 

points (see Figure 2), which corresponds to some subsets from 

the set Wr
+
 (9) of these cross points coordinates and the set Ar

+
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(10) of the parameter values at these cross points. Due to the 

statement precondition that the initial points of the given 

subfamily f free root loci are located in the left half-plane it 

can be stated that on every i-th branch of these root loci, which 

crosses the axis iω, there exists an interval (an interval set) of 

roots, 

),,( iii bpS =                  (13) 

lying between the i-th branch initial point pi (see points r
lp : 

1
2p , 1

3p , 4
2p , 4

3p , 1
1p , 2

4p , 3
4p  in Figure 2) and the 

cross point bi (points b1, b2, b3, b4 in Figure 2) of this branch 

with the stability boundary iω that is completely located in the 

left half-plane. Real coordinates σ of interval (13) points lay 

within the corresponding interval 

),0,(),(
ipibipi σσσ ==Ω            (14) 

where ipσ  is the coordinate σ at the initial point pi, and ibσ  

is the coordinate σ at the cross point bi. The corresponding 

root locus parameter an values for points of interval (13) lie 

within the interval 

),,0(),( iriripin aaaA
++ ==            (15) 

where ipa  is the value of an at the initial point pi, and ira+
 

see in (10). Root locus parameter values within (15) guarantee 

asymptotic stability of the corresponding i-th root loci branch. 

Intervals inA  for the whole subfamily f constitute the set An 

of the root locus parameter intervals: 

)},,0{(},,,,{}{ 21 iriinn aAAAAA +=== KK    (16) 

which ensures asymptotic stability of the whole subfamily f, 

and intervals (14) for the whole subfamily constitute the set 

)},0,{()},{(}{
ipibipi σσσ ==Ω=Ω        (17) 

which includes intervals of real coordinates σ corresponding 

to the intervals of set (16). 

The minimal element dnA  of ),( ndnn AAA ∈  

),,0(inf
min

+== rndn aAA             (18) 

obtained on the base of (11), (15) and (16), name the 

parameter dominating interval, and the branch, on which this 

interval is located, name the dominating branch. The interval 

σd ∈ Ω corresponding to the dominating interval (18) is 

determined from (17) as 

),0,(),(
dpdbdpd σσσσ ==            (19) 

where dpσ  and dbσ  are coordinates σ of points 

corresponding to the dominating interval minimum and 

maximum limit values. So, the expression for the intersection 

of sets inA : 

daAAAA rdnn
AA

incn

nin

===== +

∈
),0(inf

minI     (20) 

gives us the maximal possible interval ensuring the system 

stability. Interval (20) is similar to interval (12) that proves 

existence of interval (12). Interval (12) is the maximum 

possible one also because it is similar to the dominating 

interval (18), and for this reason on the base of (19) it can be 

stated that 0
min

≥→≥ +
dbrn aa σ  that completely proves the 

statement. 

It should be mentioned here that the initial points located at 

the origin (see Remark 1) do not have an influence upon 

stability because, in accordance with Remark 2, the positive 

real branches initiating at this points within their vicinity are 

always directed along the negative real axis to the left 

half-plane. 

Definition 7. The maximal possible interval of polynomial 

(1) root loci parameter values ensuring the polynomial 

asymptotic stability property name the polynomial stability 

interval (by this parameter) or the polynomial dominating 

interval. 

When some root locus initial points are located at the 

stability boundary (except the points that are always located at 

the origin), and on the assumption that all the rest points are 

located in the left half-plane, the additional analysis is 

required for finding the stability interval existence. The 

analysis implicates necessity to define the root loci branches 

direction in the vicinity of the initial points, located at the 

stability boundary, i.e. just to determine what half-plane they 

are directed to: left one or right one. Such stability interval 

exists in the following cases: 

a) all the root locus branches, starting at initial points 

located on the stability boundary, are directed from these 

points to the left half-plane; 

b) all positive root loci branches, starting at initial points 

located on the stability boundary, are directed from these 

points to the left half-plane. 

For determination of the above indicated branches direction 

at the initial points it is enough to define the root locus 

sensitivity vector [16] direction at this points. 

The IDS root locus portraits analysis that has been carried 

out made it possible to find several general regularities being 

inherent in the Kharitonov’s polynomials free root loci: 

1. paired convergence of the root loci branches for the pair 

h1(s) – h3(s) and pair h2(s) – h4(s) at the complex plane 

imaginary axis (points b1, b2, b3, b4 in Figure 2); 

2. paired convergence of the corresponding asymptotes 

centers for the pair h1(s) – h3(s) and pair h2(s) – h4(s) at 

the real axis of the complex plane at points c1 and c2 (see 

in Figure 2); 

3. the tendency for the system robust properties variation 

while varying its characteristic polynomial coefficients 

values. 

The results obtained provide the possibility to determine 

existence of the system characteristic equation coefficients' 
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variation intervals ensuring its robust stability and also to 

define how the coefficients values should be changed for the 

system dynamic characteristics correction if it is required. The 

obtained results hold for the whole interval family (1). 

The IDS root locus portraits investigation, which has been 

carried out, confirms that they can be successfully applied for 

the in-depth studying robust properties for systems of this 

kind. 

5. An Algorithm for the Stable Uncertain 

Families Synthesis 

The previous section provided us with the statement for 

checking existence of the polynomial family (1) coefficients 

stability intervals. In this section we define what the values of 

these intervals should be. For this purpose consider 

polynomial subfamily (3), consisting of the IDS Kharitonov’s 

polynomials, and develop the procedure for synthesis of the 

stable Kharitonov’s polynomials on the base of the given 

unstable ones, which depends on the system root loci initial 

points location in relation to the asymptotic stability boundary 

iω. For the synthesis procedure development apply the 

Kharitonov’s polynomials free root loci. Consider the case, 

when initial points are located in the left half-plane. In this 

case the algorithm of synthesis could be represented by the 

following stages. 

Stage 1. Obtaining the TEFRL analytical equation (5) for 

each one of the IDS four Kharitonov’s polynomials. 

As the Kharitonov’s polynomials represent the subfamily f 

(3) of the IDS polynomial family, they generate the above 

described cross subregion rω
+ (8) on the stability boundary, 

which is formed by the set +
rW  (9) of the cross points 

coordinates. 

Stage 2. Calculating coordinates ir
+ω  of the set (9) at 

points bi (see Figure 2) by solution of the TEFRL equations, 

obtained in stage 1, relative to ω in condition when σ = 0. In 

this way the set +
rW  (9) is formed. 

For every obtained value of ir
+ω  of +

rW  the 

corresponding value ira+
 of the root locus parameter an is 

calculated by formula (6) thus forming the set +
rA  (10). 

Stage 3. Determination of the stability (dominating) interval 

by the coefficient an. 

For this purpose, using (11), define the minimal one, min
+
ra , 

of the parameter values at points of the set +
rA . Thus, obtain 

the stability interval d (12) of the parameter an variation, 

which ensures stability of the Kharitonov’s polynomials and, 

therefore, the system in whole. Formulate the following 

theorem. 

Stability condition. For ensuring robust stability of the 

polynomial family (1) it is necessary and sufficient to ensure 

that the upper limit of the constant term an variation gets 

within the interval 

min
0 +<< rn aa ,               (21) 

if the family is stable when an = 0. 

Proof. Let the coefficient an to be the polynomial family (1) 

root locus parameter. Along the stability condition family (1) 

is stable when an = 0, i.e. its root loci initial points are located 

in the left half-plane. In such case in accordance with the 

above statement the family is asymptotically stable when the 

root locus parameter values lay within interval (12). Therefore, 

in view of the above statement the stability condition is 

correct. 

Stage 4. Comparing stability interval (21), obtained on the 

previous stage, with the given interval ],[ nnn aaa ∈  of the 

parameter an variation and altering the system stability in 

correspondence with inequality (21). In case if condition (21) 

is not satisfied the upper limit na  of the constant term an 

variation interval is set up in accordance with this inequality 

(21). 

When the power n of the IDS characteristic polynomial is 

less than or equal to 3, n ≤ 3, the above given stability 

condition can be applied without any preconditions i.e. for 

applying the stability condition it is not required to satisfy the 

asymptotic stability precondition of the given family when an 

= 0, because in this case the polynomial coefficients positivity 

always guarantees negativity of all the roots real parts. 

The above described algorithm allows to carry out the 

parametric synthesis of the stable interval system without 

modification of its root locus portrait configuration i.e. only 

by the simple procedure of setting up the characteristic 

polynomial constant term variation interval limits. 

6. A Numerical Example 

Consider a numerical example, demonstrating the results 

obtained. 

Describe the interval system by the characteristic 

polynomial like 

,0s 43
2

2
3

1
4 =++++ asasasa         (22) 

where the real coefficients vary within the following intervals: 

а0 = 1; 8 ≤ а1 ≤ 11; 25 ≤ а2 ≤ 50; 26 ≤ а3 ≤ 84; 550 ≤ а4 ≤ 560. 

Consider the coefficient a4 to be the root locus parameter 

(see Definition 3). Define the mapping function (4) (root locus 

equation in the general form) for the given system: 

.23

3464

33
2

22
2

2
3

1
2

1

2
1

3
1

4
0

3
0

22
0

3
0

4
04

ω+σ+ω−σδ+σ+ω−δσ−
−ωσ+σ+ω+ωσ−ωσ−ωσ+σ=−

iaaaiaaiaa

iaaaiaaiaaa
 

Then proceed along the corresponding stages of the 

algorithm given in section 5. 

Stage 1. Define correspondingly the TEFRL (5) and the 

parameter (6) equations: 

.36

;0)2344(

42
2

2
2

1
3

1
4

0
22

0
4

0

32
2

1
2

1
2

0
3

0

aaaaaaaa

aaaaaa

−=σ−σ+σω−σ+ω+ωσ−σ
=+σ+ω−σ+σω−σω
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These equations are required correspondingly to generate 

the root locus curves and calculate the parameter values at any 

point of these curves. 

Specify the Kharitonov’s polynomials [6] for the interval 

system described by (22): 

;56084258)( 234
1 ++++= sssssh  

;550265011)( 234
2 ++++= sssssh  

;55084508)( 234
3 ++++= sssssh  

.560262511)( 234
4 ++++= sssssh  

Free root loci of these polynomials are represented in 

Figure 2 described above (see section 3). 

Number of asymptotes na (in Figure 2 the asymptotes are 

indicated as α1, α2,…, α8) is constant for each one of 

Kharitonov’s polynomials and is equal to na = n – m = 4 – 0 = 4, 

where m is the number of poles of the function (4). The centers 

of asymptotes are located on the axis σ and have the following 

coordinates: c1 = 2.0; c2 = 2.7 (see Figure 2). The asymptotes 

and their centers' coordinates coincide in pairs: for the pair 

)(1 sh  – )(3 sh  and for the pair )(2 sh  – )(4 sh  the root loci 

asymptotes centers are located correspondingly at point c1 and 

point c2; the root loci branches of the polynomial pair )(1 sh  – 

)(3 sh  strive to the same asymptotes α1, α2, α3 and α4 and of 

the pair )(2 sh  – )(4 sh  – to the asymptotes α5, α6, α7 and α8. 

The inclination angles of asymptotes for the given root loci 

are correspondingly the following: 

ϕ1 = 0° (for asymptotes α4 and α8); ϕ2 = 45° (for asymptotes 

α3 and α7); 

ϕ1 = 90° (for asymptotes α1 and α5); ϕ1 = 135° (for 

asymptotes α2 and α6). 

The cross subregion +
ωr  (8) for the given interval 

subfamily is defined as ],[ 12 bbr =+
ω  (see it in Figure 2). 

Stage 2. Obtain the set +
rW  = {3.24, 1.537, 3.24, 1.537} of 

coordinates ir
+ω  (see (9)) correspondingly for points b1 (0; 

3.24), b2 (0; 1.537), b3 (0; 3.24), b4 (0; 1.537). 

Calculate using formulas (4) and (6) and define the 

following values of root locus parameter ira+
 for the set +

rA  

(10) at points b1, b2, b3 and b4 where the corresponding 

Kharitonov's polynomials' root loci branches cross the 

imaginary axis: 

1
+
ra  = 152.3 for polynomial h1 at point b1; 

2
+
ra  = 112.6 for polynomial h2 at point b2; 

3
+
ra  = 414.8 for polynomial h3 at point b3; 

4
+
ra  = 53.5 or polynomial h4 at point b4. 

Thus, the set +
rA  has been formed: +

rA  = {152.3, 112.6, 

414.8, 53.5}. 

Stage 3. For calculating the dominating interval (12), which 

ensures the system stability, the minimal value (11) of the root 

locus parameter within the cross subregion is defined as per 

the algorithm: 

.5.53inf
4min

=== +++
rrr aAa  

Therefore, the stability (dominating) interval (12) is defined 

as 

).5.53,0(),0( 4 == bd             (23) 

Thus, according the stability condition the given system is 

asymptotically stable when the following inequality holds: 

               (24) 

Stage 4. To define the equation (22) coefficient intervals, 

ensuring the system stability, the stability condition (21) is 

applied. As in (22) the coefficient 5.534 >a , then in 

correspondence with (21) the given interval system is 

asymptotically unstable. It is clearly understandable from 

Figure 2, where it is evident that the roots (designates in 

Figure 2 as triangles, squares, circles and filled squares) of 

Kharitonov's polynomials are located in the right half-plane. 

Therefore, the parameter a4 upper limit should be adjusted in 

accordance with the stability condition inequality (24) and 

dominating interval (23). Thus, it should be as follows: 

4 53 5a . .<  

The calculated "stable" locations of the Kharitonov’s 

polynomials roots for the case when 304 =a  are designated 

on the root loci branches, crossing the stability boundary, by 

encircled points with digits that corresponds to the numbers of 

the appropriate polynomials, e.g. for polynomial h1 there are 

four roots indicated by digit 1 (see Figure 2). From Figure 2 it 

is evident that all these roots of Kharitonov's polynomials in 

this case are located in the left half-plane. 

7. Conclusion 

The task of attaining stability of the interval family of 

control system characteristic polynomials has been solved in 

the paper. The initially unstable (nonhurwitz) family is 

converted stable (hurwitz) by specifically setting up the free 

term of the family. For the task solution the investigation of 

the system root locus portrait behavior at the asymptotic 

stability boundary has been carried out by analyzing the 

family's Kharitonov's polynomials root locus portrait. On this 

basis the system robust stability condition has been formulated. 

The method and algorithm have been developed for setting up 

the interval polynomial so that it gets stable in cases when the 

stability verification showed that the initial polynomial was 

unstable. If the system order is n > 3, this stability condition is 

applicable to the class of polynomials having their free root 

locus poles lying within the left half-plane of roots or, in other 

words, being stable when their free term is equal to zero. If n ≤ 

3, the method is applied without any conditions (limitations). 

The algorithm considered allows to carry out parametric 

synthesis of the stable interval family without its root locus 

.5.530 4 << a
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portrait configuration modification, i.e. by only setting up the 

limit values of the characteristic polynomial coefficient 

variation intervals. In this way the stability interval for the 

initially unstable polynomial is defined. The setting up 

criterion is specified in terms of proximity i.e. as the nearest 

distance from the "unstable" system roots to the "stable" ones 

when measured along the root trajectories. The stable 

polynomial could be then selected as the nearest to the given 

unstable one with or without consideration of the system 

quality requirements. A numerical example of the polynomial 

setting up procedure has been given in the paper. 
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