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Abstract: Most of the existing speech enhancement algorithms are aimed at improving the quality of speech, and the 

algorithms that can improve the speech intelligibility effectively are rare. Speech intelligibility has been found to improve 

listening comfort and it is generally related to the distortion of the speech signal closely. Studies have assessed the impact of 

speech distortion introduced by gain functions and shown that one of the main reasons that existing algorithms cannot improve 

speech intelligibility is because they allow amplification distortions more than 6dB. Therefore, these distortions of the enhanced 

amplitude spectrum should be corrected to improve the speech intelligibility. The early research by Loizou et al. obtained the 

experimental results on the ideal state and we are unable to use it in reality because there is no clean speech in reality. In this 

paper, we modify the method proposed by Loizou et al. and select the estimated speech under two hypothetical conditions to 

verify the improvement of the speech intelligibility. The short-term objective intelligibility value verifies the improvement of 

speech intelligibility as the improved algorithm of speech intelligibility is applied to reality successfully. 
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1. Introduction 

Humans communicate with the outside world through 

speech signals, but the ubiquitous noise in life can cause a lot 

of interference to voice communication. Therefore, practical 

speech enhancement technology is needed to reduce noise 

pollution and restore the pure signal as far as possible. Great 

progress has been made in the development of 

singe-microphone noise reduction algorithms for hearing 

applications and speech communication systems [1] and the 

majority algorithms of them are aimed at improving speech 

quality and listening comfort, which is named speech 

intelligibility. Speech intelligibility also can reflect the 

listener's ability to understand the speech signal accurately. 

Existing speech enhancement algorithm can improve the 

speech quality in a certain degree but does not effectively 

improve consistently and substantially speech intelligibility. 

Most noise-reduction algorithms involve two consecutive 

stages of processing as described in Figure 1: estimating SNR 

and applying gain function. This paper mainly focuses on 

improving the speech intelligibility by modifying the gain 

function. The Wiener filtering algorithm is similar to many 

algorithms used in hearing aids [2, 3], which estimated SNR 

though a gain function to the spectral envelopes proportional 

in each frequency bin. Explain in detail, a high SNR spectral 

bin receives a high gain nearly 1, while a low SNR, which 

possibly masked by noise, receives a low gain nearly 0. The 

Wiener gain function has also been applied to hearing 

impaired listeners successfully (maybe under ideal conditions) 

[4]. 

It is critical to choose the frequency-specific gain function 

for the noise-reduction algorithm. Since the target and masker 

signals spectrally overlap, sometimes the target signal may be 

over-attenuated while in other instances, it may be 

over-amplified. Most noise-reduction algorithms usually can 

introduce two types of envelope distortions by the gain 

functions. Amplification distortion arising when the target 

signal is over-estimated (e.g., if we define a  as the true value 

of the target envelope, and the estimated envelope is a a+ ∆ , 

a∆  is some positive increment), and attenuation distortion 

arising when the target signal is underestimated (e.g., a a− ∆  

represent the estimated envelope). It cannot be equivalent of 

the sensory effect of these two distortions on speech 

intelligibility, in practice, there has to exist the right balance 

between these two distortions, in most cases we do not know 
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how a specific parameter of the noise-algorithm need to be 

revised so as to get a higher speech intelligibility. Researches 

by Loizou et al. have shown that the effects of the two 

distortions on speech intelligibility are different. Areas with 

amplification distortion exceeding 6.02dB have serious 

damage to speech intelligibility and other areas have little 

effect on speech intelligibility [5]. 

In order to assess the impact of the speech distortion 

introduced by the gain function on the intelligibility of speech, 

Loizou et al. obtained a series of experiments to conclude that 

the speech intelligibility is damaged seriously when the 

amplification distortion in excess of 6dB. Since the 

experiments use clean speech and there is no clean speech in 

reality, so that the algorithm cannot be applied to reality. This 

paper learn the research thoughts from Loizou et al., and use 

the enhanced speech amplitude spectrum under two different 

assumptions, simulate and average the values and analyze the 

simulation under different background noise and SNR. 

Current study has focused on applying the improved speech 

intelligibility algorithms to reality. In the start of the paper, we 

analyzed the impact of two types of speech distortion 

(amplification distortion and attenuation distortion) 

introduced by noise-suppressive gain functions. Then based 

on the Wiener filter algorithm, there was a modified algorithm 

proposed to improve the speech intelligibility, it is verified 

that the algorithm improves the intelligibility of the speech 

amplitude spectrum estimated by two different amplitude 

square spectrum estimator. Finally, this paper summarized the 

reasons that existing algorithms do not improve the speech 

intelligibility and the methods to improve the speech 

intelligibility. 

 

Figure 1. Signal-processing stages incorporate in noise-reduction algorithms. 

2. Wiener Filtering Algorithm 

The Wiener filtering algorithm is an estimation algorithm 

in the sense of minimum mean square error. Assuming that

( )y t is noisy speech, which consists of clean speech and 

additive noise [6], namely: 

( ) ( ) ( )y t x t d t= +                   (1) 

Simultaneous Fourier transform on both sides: 

( , ) ( , ) ( , )Y k j X k j D k j= +               (2) 

among them, ( , )Y k j , ( , )X k j , ( , )D k j  are the amplitude 

spectrum representation of the time domain signal in the 

frequency domain at the j th frame and k th frequency bin, 

respectively. After a Wiener filtering with a gain function is: 

( , )

1 ( , )

k j
H

k j

ξ

ξ
=

+
                  (3) 

the enhanced speech spectrum: 

( ) ( ) ( ), , ,X k j H k j Y k j

∧

= ⋅              (4) 

where, ( , )k jξ is a priori estimate of the k th spectral 

component, ( , )H k j is the gain function corresponding to the 

spectral, ( ),k jX

∧
 is the enhanced speech amplitude 

spectrum. 
Research in the literature [7] shows: the speech 

intelligibility was influenced by gain bias overestimated 

significantly, while the intelligibility was not affected when 

the gain function underestimated in the positive SNR regions. 

Loizou et al. evaluates the effects of two speech distortions 

introduced by the gain functions and draw important 

conclusions through several sets of experiments: 

amplification distortion occurring when the enhanced speech 

amplitude spectrum is over-estimated, and attenuation 

distortion occurring when the enhanced speech amplitude 

spectrum is under-estimated [1]. Researches by Loizou et al. 

have shown that the effects of the two distortions on speech 

intelligibility are different. Attenuation distortion has less 

effect on speech intelligibility, and when the amplification 

distortion is smaller than 6 dB, the performance of speech 

intelligibility in a stationary noise environment was nearly 

unaffected. One reason that existing speech enhancement 

algorithms do not improve speech intelligibility is to allow 

amplification distortion in excess of 6 dB [1]. In addition, the 

signal-to-noise ratio also has over-estimated and 

under-estimated errors. The experimental results show that 

the SNR estimation error has different influence on the 

intelligibility of enhanced speech in different regions [6]. The 

overestimation of the a priori SNR does more damage to the 

speech intelligibility if the SNR is less than-10dB while in 

other region the underestimation of the a priori SNR has less 

effect on the speech intelligibility. 
According to the relationship between the enhanced 

magnitude spectrum and the clean speech magnitude 

spectrum, the distortion can be divided into three regions: 

Region I, in this region, suggesting only attenuation distortion, 

the region formula as follows: 
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( ) ( ), ,X Xk j k j

∧

≤              (5) 

Region II, in this region, existing amplification distortion 

ranges from 0 to 6 dB, and the region formula as follows: 

( ) ( ) ( ), , 2 ,X k j X k j X k j

∧

≤ ⋅<          (6) 

Region III, in this region, the amplification distortion in 

excess of 6 dB [5], the region formula as follows: 

( ) ( ), 2 ,X k j X k j

∧

> ⋅              (7) 

The above content shows that the speech intelligibility is 

significantly improved with the limitation of regions I+II, and 

declined after the limitation of region III. Combining regions I 

and II as I+II constraint: 

( )
( ) ( ) ( ),

,

2, ,
,

,

0

M

ifk j k j X k
k

j

e e

j

ls

X
X X
∧ ∧

∧
=

≤



        (8) 

It can be seen from the above formula that the speech 

amplitude spectrum of the region III is all set to zero under 

ideal conditions, which was judged by making a comparison 

with the original clean speech. 

3. The Improved Speech Enhancement 

Algorithm 

3.1. The Improved Algorithm in Region III 

In the real application, there is no original clean speech for 

comparison to make a judgment in region III. Therefore we 

make the following improvements by estimating a priori SNR 

and gain function to determine the range: In region III, the 

enhanced magnitude spectrum is as follows: 

( ) ( ), 2 ,X k j X k j

∧

> ⋅               (9) 

Squared on both sides: 

( ) ( ){ }
2

2

4, ,E E Xk j k jX
∧

> ⋅
  
 
  

         (10) 

substitute ( )( , ) ( , ) ( , ) ( , )X k j H k j X k j D k j

∧

= +i into equation
 
(10): 

( ) ( ){ } ( ) ( ){ } ( ){ }22 2 2 2
, , , , 4 ,E H k j X k j E H k j D k j E X k j⋅ + ⋅ >  (11) 

( ) ( ) ( ) ( ) ( )2 2 2 2 2
, , , , 4 ,H k j X k j H k j D k j X k j⋅ + ⋅ >    (12) 

( ) ( ) ( ) ( ) 22 2 2
, , , ,4H k j X k j D k j X k j+⋅ >       (13) 

( ) ( )
( ) ( )

2

2

2 2

4 ,
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, ,
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X k j D k j+
>            (14) 

( ) ( ) ( )
( )
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2
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X k j D k j
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X k j

+
>⋅          (15) 

( )

2 1
( , ) 1 4

,

H k j

k jξ
∧

⋅ + >

 
 
  
 

           (16) 

Therefore the gain function of the amplification distortion 

greater than 6dB is: 

2 ( , )
( , )

( , ) 1

4 k j
H k j

k j

ξ

ξ

∧

∧
>

+

              (17) 

The amplifying distortion region of magnitude spectrum 

greater than 6 dB can be determined by a priori SNR and gain 

function in (17), The T-F units falling in Region III is 

equivalent to have the amplification distortion in excess of 6 

dB and should take measures to eliminate it. The experiments 

of the same article also shows that attenuation distortions had 

a minimal effect on speech intelligibility 

3.2. Two Hypothetical Conditions to Carry Out Simulation 

Experiments 

Let ( ) ( ) ( )y n x n d n= + denote the noise signal, ( )x n and ( )d n

representing the clean speech and noise signals, respectively. 

Giving short time Fourier transforms of the equation then we 

get [7]: 

( ) ( ) ( )k k k
Y X Dω ω ω= +            (18) 

Expressing the equation (18) in polar form [7]: 

( ) ( ) ( )y x d
j k j k j k

k k kY e X e D e
θ θ θ= +       (19) 

where { kY ,
k

X ,
k

D }denote the magnitudes and { ( )
y

kθ , ( )
x

kθ ,

( )
d

kθ }denote the phases at frequency bin k of the noise 

speech, clean speech, and noise, respectively. The MMSE 

estimator of the short-time power spectrum proposed by 

Wolfe and Godsill[7] as follows: 

( ){ }22

k kkX E X Y ω
∧

=  

( )( )2

0

kk k k kXX X Y dXf ω
∞

= ∫
 

21

1 1

k k
k

k k k

Y
ξ ξ

ξ γ ξ
= +

+ +

 
 
 

            (20) 

where 
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2

2
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( )

x

k

d

k

k

σ
ξ

σ
≡ , 

2

2
( )

k
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d

Y

k
γ

σ
≡ ,           (21) 

2 2
( ) { }

x k
k E Xσ ≡ , 2 2

( ) { }
d k

k E Dσ ≡           (22) 

k
ξ and

k
γ denotes the a priori SNR and a posteriori SNR, 

respectively. That’s above derivation is the MMSE estimator. 

Bring (20) into equation (17) and find the range of the gain 

function where the amplification distortion greater than 6dB 

is:

 
1

4
1

k

k k

ξ
γ ξ

+ >
+

                 (23) 

So that the whole gain function is: 
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         (24) 

The gain function of this range is helpful for improving 

speech intelligibility in theory. 

Assuming that ( )x n and ( )d n are uncorrelated stationary 

random processes, ( )yP ω denotes the sum of the power 

spectra of the clean speech and noise [7, 8]. 

( ) ( ) ( )
y x d

P P Pω ω ω= +                (25) 

The above assumption is based on statistical sense. 

Approximating the power spectrum by using the 

magnitude-squared spectrum and rewriting the equation (25) 

as follows:
 

2 2 2

k k k
Y X D≈ +                  (26) 

we are referring to 2

k
Y , 2

k
X and 2

k
D as the magnitude-squared 

spectra of the noisy, clean and noise signals, respectively. 

Using the Bayes’ rule as follows can get the posterior 

probability density of the clean speech magnitude-squared 

spectrum: 

( ) ( ) ( )
( )

2 2

2

2

2 2

2 2 2

2
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k

k
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X Y

f Y X f X

f
f Y

=        (27) 

Computing the mean of the posteriori density [9]in 

equation (27) and obtain the MMSE estimator: 
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∫
           (28) 

Bring (28) into equation (17) and find the range of the gain 

function where the amplification distortion greater than 6dB 

is: 
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, 1
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k e
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So that the whole gain function is: 
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We believe that the gain function of this range is also helpful 

for improving speech intelligibility. 

Specific experimental steps for modified algorithm to test 

and verify the speech intelligibility [10]: 

1. Take four kinds of speech and four kinds of noise in 

MATLAB speech noise library, and experiment in four kinds 

of signal-to-noise ratio environments; 

2. Using two kinds of speech spectrum estimated by 

MMSE estimator; 

3. Calculate the a priori SNR according to the 

"decision-directed " method [11]; 

4. Obtain the modified gain function according to the 

formula (9); 

5. Obtaining the enhanced amplitude spectrum according to 

equation (4); 

6. The area where the speech amplitude spectrum is 

distorted more than 6dB is limited by the formula (17). 

4. Experimental Results and Analysis 

In order to verify the usability of the modified algorithm 

proposed by Loizou et al., using IEEE consonants and 

sentences as corpus for clean speech [11], The noise signal is 

White, Pink, Babble, F16 in the NOISEX-92 database. The 

clean speech signal and the noise signal were recorded at a 

sampling rate of 8 kHz, the quantization precision was 16 

bits and the signal was 20ms per frame during processing 

with 50% overlap. The test condition of the modified 

algorithm is that 4 kinds of clean speech signals and 4 kinds 

of noise signals, which are respectively in 4 kinds of SNR 

environments(0dB、5dB、10dB、15dB) with two different 

estimated speech amplitude spectrum. Calculating the 

average value of objective intelligibility evaluation(LSD、

STOI、PESQ) by MATLAB simulation tool. 

In order to accurately quantify the performance of the 

improved algorithm, three objective evaluation criteria were 

used to assess the intelligibility of speech amplitude spectrum 

in two hypothetical situations [12]. Simulation experiments of 

this paper are based on different background noise and 

different signal-to-noise ratio conditions, and makes compare 
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with the ideal state of Loizou. The objective evaluation 

criteria [13] are Log-Spectral Distance (LSD), Short-Time 

Objective Intelligibility (STOI) and Perceptual Evaluation of 

Speech Quality (PESQ).

Table 1. The comparison of LSD data of three algorithms. 

Noise type Input SNR 
Output LSD average 

Ideal algorithm Amplitude spectrum1 Amplitude spectrum2 

White 

0 dB 3.5012 4.5591 4.3298 

5 dB 3.1295 3.8193 3.7771 

10 dB 2.9418 3.3358 3.4365 

15 dB 2.8721 3.7822 3.2717 

Pink 

0 dB 3.4998 4.8410 4.5800 

5 dB 3.1595 4.0251 3.9238 

10 dB 2.9296 3.4163 3.4768 

15 dB 2.8881 3.0785 3.2931 

Babble 

0 dB 3.4550 4.6033 4.4583 

5 dB 3.0959 3.8898 3.8521 

10 dB 2.9406 3.3642 3.4953 

15 dB 2.8817 3.0333 3.2807 

F16 

0 dB 3.4085 4.5055 4.2789 

5 dB 3.0051 3.7667 3.7039 

10 dB 2.8796 3.2799 3.3655 

15 dB 2.8728 2.9867 3.2148 

Table 2. The comparison of STOI data of three algorithms. 

Noise type Input SNR 
Output STOI average 

Ideal algorithm Amplitude spectrum1 Amplitude spectrum2 

White 

0 dB 0.8299 0.6440 0.6311 

5 dB 0.8718 0.7448 0.7344 

10 dB 0.9091 0.8215 0.8129 

15 dB 0.9330 0.8720 0.8674 

Pink 

0 dB 0.8385 0.6409 0.6199 

5 dB 0.8741 0.7414 0.7277 

10 dB 0.9070 0.8184 0.8086 

15 dB 0.9297 0.8713 0.8631 

Babble 

0 dB 0.8342 0.6310 0.6180 

5 dB 0.8743 0.7394 0.7282 

10 dB 0.9067 0.8209 0.8119 

15 dB 0.9323 0.8747 0.8686 

F16 

0 dB 0.8503 0.6424 0.6291 

5 dB 0.8874 0.7440 0.7341 

10 dB 0.9184 0.8254 0.8157 

15 dB 0.9384 0.8768 0.8716 

Table 3. The comparison of PESQ data of three algorithms. 

Noise type Input SNR 
Output PESQ average 

Ideal algorithm Amplitude spectrum1 Amplitude spectrum2 

White 

0 dB 2.8145 1.9072 1.9528 

5 dB 3.1196 2.2448 2.2947 

10 dB 3.3573 2.5596 2.6038 

15 dB 3.4928 2.8260 2.8769 

Pink 

0 dB 2.7848 1.8157 1.8214 

5 dB 3.0485 2.1718 2.1882 

10 dB 3.3035 2.5054 2.5257 

15 dB 3.4874 2.7876 2.8149 

Babble 

0 dB 2.8013 1.8727 1.8890 

5 dB 3.0762 2.2136 2.2350 

10 dB 3.3443 2.5362 2.5539 

15 dB 3.5469 2.8109 2.8478 

F16 

0 dB 2.7418 1.8588 1.8797 

5 dB 2.9942 2.2025 2.1663 

10 dB 3.2602 2.5270 2.5615 

15 dB 3.4306 2.8054 2.8542 

 

Table 1 shows the results of analysis using Log-Spectral 

Distance. The LSD indicates the degree of closeness between 

the enhanced speech and the clean speech and its expression is 

as follows: 
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∑ ∑       (31) 

From the equation, while the algorithm with LSD value 

small, the enhanced speech is closer to the original speech 

[14], and it presents a better enhancement effect. 

As can be seen from the table 1, at 0dB and 5dB SNR, LSD 

value of amplitude spectrum2 smaller than amplitude 

spectrum1, so that amplitude spectrum 2 with modified 

algorithm is closer to the original speech. At 10dB and 15dB 

SNR, LSD value of amplitude spectrum1 smaller than 

amplitude spectrum2, the situation is exactly the opposite of 

the former. In F16 noise [15], amplitude spectrum1 and 

amplitude spectrum2 all have smaller LSD value than the 

other noise types. Under the same background noise, the 

higher the SNR, the closer the enhanced speech is to original 

speech. 

Table 2 shows the results of analysis using Short-Term 

Objective Intelligibility. STOI is an indicator for evaluating 

enhanced speech intelligibility [12]. In addition, the value 

range of STOI is small, generally between 0 and 1, so only a 

small amount of speech is needed to obtain the required data, 

which is convenient and fast, and it has become the preferred 

measure of objective evaluation criteria. While the algorithm 

with STOI value large, the intelligibility of the speech is 

high, and it presents a well performance of the improved 

algorithm. 

As can be seen from the table 2, at all SNR environments, 

STOI value of amplitude spectrum1 is larger than amplitude 

spectrum2, so that amplitude spectrum1 with modified 

algorithm is closer to the ideal state. Little difference in STOI 

values under different background noises. 

Table 3 shows the results of Perceptual Evaluation of 

Speech Quality. The PESQ is an indicator that uses the overall 

loudness error of the estimated clean speech and the enhanced 

speech to judge the overall quality of the output speech. The 

expression of PESQ is as follows: 

0 1 2ind indPESQ a a D a A= + +             (32) 

Among them, 
0 1 2

4.5,   0.1,   0.0309a a a= = − = − . The range of 

PESQ is between 0.5 ~ 4.5− . While the algorithm with a large 

value of PESQ, the voice quality is favorable. 

As can be seen from the table 3, at all SNR environments, 

PESQ value of amplitude spectrum2 larger than amplitude 

spectrum1, Amplitude spectrum2 with modified algorithm is 

closer to the ideal state, and under the same background noise, 

the higher the SNR, the better the enhanced speech quality. In 

White noise, amplitude spectrum1 and amplitude spectrum2 

all have larger PESQ value than the other noise types. 

In most cases, we usually use Wiener filtering 

noise-reduction algorithm to process the noise-damaged 

speech and the gain-induced distortion is limited to one of 

three areas: Region I involving only attenuation distortion, 

Region II involving only amplification distortion below 6 dB, 

and Region III including amplification distortion in excess of 

6dB. Generous improvements in intelligibility, relative to 

noise-corrupted speech, were acquired when the 

noise-suppressed speech included only attenuation distortion. 

In the case where the attenuation and amplification distortion 

exist simultaneously, if the amplification distortion is less 

than 6 dB, significant intelligibility can be obtained. 

5. Conclusion 

This paper refers to the research results of predecessors and 

introduces the reason that existing algorithms do not improve 

speech intelligibility is because they allow amplification 

distortions in excess of 6dB. Therefore, eliminating the 

amplification distortion in exceed of 6dB or at least properly 

controlled it. Due to the lack of clean speech in reality, the 

experiments of Loizou et al. cannot be applied to the real 

situation. This paper uses the amplitude spectrum under two 

hypothetical conditions to carry out simulation experiments, 

and compares the results with the ideal state, we find the 

speech intelligibility has indeed improved through the 

objective evaluation index of speech intelligibility, and the 

improvement of the methods has been successfully applied to 

reality. In recent years, deep neural network algorithms have 

also been applied to the field of speech enhancement [16]. 

Speech enhancement algorithms based on improved speech 

intelligibility also have good development prospects [17, 18]. 

It should be more effective to identify and eliminate 

amplification distortions greater than 6 dB. In future research, 

we can consider combining speech intelligibility with deep 

neural network algorithms to estimate a priori SNR and 

distortion regions that affect intelligibility accurately [19-21], 

so as to obtain clean speech with better quality and 

intelligibility. 
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