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Abstract: This paper considers the turbulent-flow characteristics and the mechanism of vortex shedding behind one and 

two square obstacles centered inside a 2-D channel. The investigation was carried out for a range of Reynolds number (Re) 

from 1 to 300 with a fixed blockage ratio β = 0.25. Comparison of the flow patterns for the single and two obstacles was 

feasible. The computations were based on the finite-element technique. Large-eddy simulation (LES) with the Smagorinsky 

method was used to model the turbulent flow. Streamline patterns and velocity contours were visualized to monitor the 

vortex shedding. The results show that the mechanism of the vortex shedding has different characteristics for the two cases 

of one and two square obstacles. Interesting findings and useful conclusions were recorded. 
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1. Introduction 

1.1. Importance 

The channel flow is an interesting problem in fluid 

dynamics. This type of flow is found in many real-life 

applications such as irrigation systems, pharmacological 

and chemical operations, oil-refinery industries, etc. 

Usually, the flow velocity is low in such applications, 

which leads to small values of Reynolds number (Re). 

However, due to practical reasons, the flow may be 

completely turbulent in spite of the low Reynolds number. 

The turbulent nature of the flow is more assured if 

obstacles are presented inside the channel. In this case, the 

obstacles provoke asymmetry and instability behind them 

in the flow until vortex shedding becomes a periodic event. 

The periodic vortex shedding with unsteady nature 

strengthens the mixing of the fluid particles. Thus, the 

process of mixing becomes more successful, which is 

important for many industrial applications where chemical 

mixing is a principal process. 

In the present study, the channel flow with one and two 

obstacles are considered. At first, the flow pattern around a 

single obstacle at the centerline of the channel is studied. 

This is a basic step to obtain results for comparison with 

the case of two obstacles. Secondly, the flow pattern around 

two tandem square obstacles inside the channel is 

investigated. This application resembles the off-shore 

structures that are frequently found in marine channels, 

which acquires special importance as a fluid-structure 

interaction application. Moreover, such configuration may 

be found in many thermo-fluid industrial, chemical and 

technological applications such as microfluidic devices. 

1.2. Previous Investigations 

The present problem was investigated by other 

researchers from different points of view. The variational 

multiscale method was concerned by investigators to be 

applied for flow problems. Gravemeier [1] reviewed the 

variational multiscale method as a framework for the 

development of computational methods for the simulation 

of laminar and turbulent flows, with the emphasis placed 

on incompressible flows. He illustrated the separation of 

the scales of the flow problem into two and three different 

scale groups for the variational formulation of the Navier-

Stokes equations with referencing to direct numerical 

simulation (DNS) and large-eddy simulation (LES). He 

showed that the two distinguishing features of the 

variational multiscale LES in comparison to the traditional 

LES are the replacement of the traditional filter by a 

variational projection and the restriction of the effect of the 

unresolved scales to the smaller of the resolved scales. He 
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presented and categorized the existing solution strategies 

for the variational multiscale LES for both the finite-

element method (FEM) and the finite-volume method 

(FVM). He emphasized the suitability of the variational 

multiscale method for the numerical simulation of both 

laminar and turbulent flows. Borst et al. [2] gave an 

overview of the multiscale methods in computational fluid 

mechanics and for fluid-structure interaction problems. 

They briefly elaborated some of the variational multiscale 

methods that were developed for compressible and 

incompressible flows with application to a channel flow. 

Also, they showed the versatility of the multigrid methods, 

after cast in the format of a multiscale method, for solving 

fluid-structure interaction problems. Gravemeier et al. [3] 

proposed an algebraic variational multiscale-multigrid 

method for large-eddy simulation (LES) of turbulent flow. 

They employed level-transfer operators from plain 

aggregation algebraic multigrid methods for scale 

separation. They mentioned that in contrast to earlier 

approaches based on geometric multigrid methods, their 

purely algebraic strategy for scale separation obviates any 

coarse discretization besides the basic one. They stated that 

the application of their algebraic variational multiscale-

multigrid method to turbulent flow in a channel produces 

results notably close to the reference results of direct 

numerical simulation (DNS). 

The adaptive time-stepping algorithm was adopted for 

incompressible flows and applied for advection-diffusion 

problems [4] and Navier-Stokes Equations [5]. For Navier-

Stokes equations, Kay et al. [5] describe a general solution 

strategy that has two basic building blocks: an implicit time 

integrator using a stabilized trapezoid rule with an explicit 

Adams-Bashforth method for error control, and a robust 

Krylov subspace solver for the spatially discretized system. 

They applied the algorithm to two cases; (i) Classical lid-

driven cavity, (ii) cylindrical obstruction of diameter unity 

centered in a rectangular domain −5 < x < 16,−4.6 < y < 4.5. 

They showed that even simple flow problems can have 

quite complex time scales, some physical and some of 

numerical origin. They demonstrated that some form of 

adaptive time integrator is essential in order to efficiently 

respond to the different time scales taking into account the 

wide range of dynamics of the flow simulations. Also, John 

and Rang [6] presented a systematic study of three classes 

of implicit and linearly implicit time stepping schemes with 

adaptive time step control applied to a 2-D laminar flow 

around a cylinder: θ-schemes, diagonal-implicit Runge-

Kutta (DIRK) methods and Rosenbrock-Wanner (ROW) 

methods. They controlled the time step using embedded 

methods. They mentioned that adaptive time stepping is an 

important tool in computational fluid dynamics (CFD) for 

controlling the accuracy of simulations and for enhancing 

their efficiency. They also stated that several ROW methods 

clearly outperform the more standard θ-schemes and the 

DIRK methods. 

The problem of channel flow was studied by some 

researchers using the Lattice Boltzmann Method (LBM). 

Ratanadecho [7] described the lattice Boltzmann method 

(LBM) with a single relaxation-time technique called the 

lattice-BGK method. He used the method to show the 

results for a low-Reynolds-number flow in a two-

dimensional channel. He found that his approach improves 

the understanding of the flow pattern in highly complex 

geometries and helps in obtaining a reliable model for its 

operating behavior and design. Yojina1 et al. [8] used the 

mesoscopic modeling via a computational lattice 

Boltzmann method (LBM) to investigate the flow pattern 

phenomena and the physical properties of the flow field 

around one and two square obstacles inside a two-

dimensional channel. Their results showed that the flow 

patterns can initially exhibit laminar flow at low values of 

Reynolds number (Re) and then make a transition to 

periodic, unsteady, and, finally, turbulent flow as Re gets 

higher. They discussed the possible connection between the 

mixing process and the appropriate design of a chemical 

mixing system. Their results are used for comparison with 

the results of the present study. 

Moreover, finite-element method (FEM) was used to 

handle the thermo-fluid problems. Parvin and Nasrin [9] 

used finite-element method (FEM) based on Galerkin 

Weighted Residual (GWR) approach to solve two-

dimensional governing mass, momentum and energy 

equations for steady state, natural convection flow in 

presence of magnetic field inside a square enclosure. Their 

cavity consists of three adiabatic walls and one constantly 

heated wall. A uniformly heated circular solid body is 

located at the centre of the enclosure. The aim of their 

study is to describe the effects of magneto hydrodynamic 

(MHD) on the flow and thermal fields in presence of such 

heated obstacle. Their results indicate that the flow pattern 

and temperature field are significantly dependent on 

Rayleigh number (Ra), Hartmann number (Ha), average 

Nusselt number (Nu), and the diameter of the circular solid 

body. 

1.3. Objectives and Methodology 

From the literature survey of the previous section, it is 

clear that there is still a big need for more investigations to 

clarify the flow characteristics of obstacles in channels. 

Thus, the main objective of the present study is to 

enhance the understanding of the characteristics of the low-

Reynolds-number turbulent flow in a small channel with 

obstacles. This is an important step to find the optimal 

arrangement of the obstacles and flow conditions to get the 

best mixing inside the channel. Another objective is to 

develop a simple and robust computational algorithm to 

solve the governing equations of the present problem. 

The methodology is based on the numerical solution of 

the Navier-Stokes equations which using a suitable 

computational domain with appropriate grid and correct 

boundary conditions. Large-eddy simulation (LES) was 

used to handle the turbulent flow with Smagorinsky 

modeling. Finite-element method (FEM) was used for the 

discretization of the governing equations. 
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Artificial source of turbulence is introduced in the inflow 

velocity profile to ensure the turbulent nature of the flow as 

will be seen in section (4). 

2. Governing Equations and Numerical 

Treatment 

2.1. Navier-Stokes Equations 

The Navier-Stokes system of equations is the basis for 

the computational modeling of the incompressible flow of 

different fluids such as air or water. The set of unsteady 

incompressible Navier-Stokes equations is given as 

������ � �  	
 ��� �  ��� . 	��� � 	
 � � 

in 

Ω×(0,T) 

∇. ���=0 

in 

Ω×(0,T)                                    (1) 

with initial condition 

��� � ���� 

��  
Ω � �0� 

where, ν > 0 is a given constant called the kinematic 

viscosity and the initial velocity vector ���� is assumed to be 

divergence-free, which is characterized by 

∇. ���� � 0 

The variable ��� represents the velocity vector of the fluid 

and p represents the pressure. The convection term ���. ∇��� is 

simply the vector obtained by taking the convective 

derivative of each velocity component in turn, that is  
���. ∇���  � ����. ∇����. 

The fact that this term is nonlinear is what makes 

boundary-value problems (BVP) associated with the 

Navier-Stokes equations can have more than one stable 

solution. The non-uniqueness solution presents an 

additional challenge for the numerical analysis of 

approximations to the system (Eq. 1). The present 

boundary-value problem (BVP) is the system of 

equations (1) posed on a two- or three-dimensional domain 

Ω, together with boundary conditions on 

�� � ��� � ��� 

given by 

��� �  �  !� ���  , � #$���#% � ���
 � 0 !� ���   (2) 

where, ��� is the outward-pointing normal to the boundary. 

2.2. Modeling of Turbulent Flows 

The variational multi-scale method [10,11] was extended 

to the problem of the incompressible Navier-Stokes 

equations by Hughes et al. [12] to generate a new approach 

of large-eddy simulation (LES) of turbulent flows. In 

general, Smagorinsky-type models provide the opportunity 

of re-introducing the insufficiently resolved dissipation in 

the form of an additional artificial viscosity, the so-called 

sub-grid viscosity term (�&). That is � in Eq. (1) is replaced 

by �� � �&�. The sub-grid viscosity can be expressed using 

Smagorinsky model, which gives the eddy viscosity (�&) in 

the form: 

�& � �'()�
|+|                             (3) 

where, 

) � ,- � .  
is the local grid size, (m and q are the grid sizes in x- and 

y-direction, respectively), '( is the Smagorinsky coefficient, 

S is the rate-of-strain tensor 

(|+| � ,2 +01+01  ) 

and 

+01 � 12 3��0�41 � ��1�405 

where, ui and uj are the components of ��� in x- and y-

direction, respectively. 

It is important to notice that, although the kinematic 

viscosity � is constant, the Smagorinsky sub-grid viscosity �&  is a function of the local mesh size h and the rate-of-

strain tensor S. What is more important is that �&  is a 

function of the unknown function ��� and hence adds a new 

source of nonlinearity to the governing equations. 

2.3. Time Discretization 

The time-stepping algorithm adopted here is based on 

the well-known, second-order accurate, trapezoidal rule 

(TR). Now, returning to Eq. (1) and replacing � by �� � �&� 

with substituting � � 0 for simplicity, then 

������ � �� � �&������  	
 ��� � ��� . 	��� � 	
 � 0 

in 

Ω×(0,T) 

∇. ���=0 

in 

Ω×(0,T)                                    (4) 

Let the interval [0, T] be divided into N steps ��0�&67� , and 
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let 8�1 denote 8��4�, �1�. The semi-discretized problem is the 

following: Given (���9, 
9 ) at time level �% and boundary 

data  �9:7at time level �%:7, compute ����9:7, 
9:7� via 

 ������
%:7 � ;� � �&����%:7�<	
���%:7 � ���%:7. 	���%:7 � 	
%:7

� 0 �� � 

	. ���%:7 � 0  �� �                          (5) 

Applying the trapezoidal rule (TR): 

���%:7 � ���% = ∆?@A
 B #$���#&
%:7 �  #$���#&

%C      (6) 

where, 

∆%:7� � �%:7 � �%� 

then Eq. (5) becomes after rearrangement 

2∆%:7 ���%:7 � �� � �&����%:7��	
���%:7 � ���%:7. 	���%:7
� 	
%:7 � 2∆%:7 ���% � ����%�� �� � 

�	. ���%:7 � 0 �� �                            (7) 

Notice that the time step ∆%:7  must be determined 

before the solution of Eq. (7). In the present work,  ∆%:7 is 

predicted by an efficient-adaptive-stabilized time-stepping 

algorithm (TR-AB2) [4]. This algorithm enables the 

possibility of self-adaptive time-step control, with time 

steps automatically chosen to “follow the physics”. This 

methodology is implemented in a practical code such that 

successive time steps are selected based on local error 

estimation. After computing the new time step, a check is 

performed to see if the discrete problem in next step is 

solved to the required accuracy otherwise the next time step 

is rejected and the step is repeated with a smaller step size. 

2.4. Space Discretization 

The finite-element discretization [13, 14] is used for the 

Naveir-Stokes equations. A discrete weak formulation is 

defined using different finite-dimensional spaces such 

that ��� D  EF7 and 
 D  J
���. The fact that these spaces are 

approximated independently leads to the nomenclature 

mixed approximation. Implementation entails defining 

appropriate bases for the chosen finite-element spaces and 

construction of the associated finite-element coefficient 

matrix. 

2.4.1. Weak Formulation  

The weak formulation of flow problem (Eq. 7) in d-

dimensional space needs to define the solution and test 

spaces as 

 EF7 � ���� D E7���K|��� �  � !� ����         (8) 

EFL7 � M8� D E7���KN8� � 0�� !� ���O        (9) 

Then, the standard weak formulation is the following: 

Find ��� D  EF7 and 
 D  J
��� such that 
 
∆?@A U 8� . ���%:7 V�W �
U 8� · �� � �&����%:7�� 	
���%:7 V�W � U 8� · ����%:7 ·W	���%:7� V� � U 8� · 	
 V�W �  U 8� · Y 
∆?@A ���% � #$���?

#& Z V�W ,�![ \]] 8� D  EFL7                                                               (10) 

U .�	. ���%:7� � 0W   �![ \]] . D  J
���                          (11) 

2.4.2. Linearization 

The second and third terms in the right-hand side of (10) 

are nonlinear. To linearize them ���%:7 is approximated by 

linear extrapolation using ���%  and ���%^7  (the solutions at 

previous time steps) as 

���%:7 _ �̀��%:7 � 31 � Y∆?@A∆? Z5 ���% � Y∆?@A∆? Z ���%^7   (12) 

Specifically, we substitute in Eq. (10) 

���%:7. 	���%:7 _ �̀��%:7. 	���%:7 

and 

�&����%:7� 	
���%:7  _ �&��̀��%:7� 	
���%:7 

The fully discrete problem is to find 

 ����a%:7, 
a%:7� D bc��  � d 

such that: 


∆?@A ����a%:7, 8�a� � Y;� � �&��̀��a%:7�<	 ���a%:7, 	 8�aZ ��̀��a%:7. 	���a%:7, 8�a� � �
a%:7, 	. 8�a� � 
∆?@A ����a%, 8�a� �
�$���e?#& , 8�a� �� �                               (13) 

�	. ���a%:7, .a� � 0 �� �            (14) 

for all 

�8a�����, .a� D b � d 

To minimize potential round-off instability and inhibit 

subtractive cancellation, Eq. (13) is solved for the discrete 

velocity updates scaled by the time-step rather than velocity. 

Let the new unknown be 

V�a% � ���a%:7 � ���a%∆%:7  

then substituting by 

���a%:7 � ���a% � ∆%:7V�a%, ����a%:7
�� � 2V�a% � ����a%��  

in Eqs. (13, 14). Thus, they reduce to 

2;V�a%, 8�a< � ∆%:7 Y�� � �&��̀��a%:7��	 V�a% , 	 8�aZ �
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∆%:7��̀��a%:7. 	V�a%, 8�a� � �
a%:7, 	. 8�a� � Y#$���e?#& , 8�aZ �Y;� � �&��̀��a%:7�<	 ���a%, 	 8�aZ � �`a������%:7. 	���a% , 8�a� �� � (15) 

�	. V�a%, .a� � 0 �� �                (16) 

2.4.3. Linear Algebraic System 

Let �f0�067%g  define the basis set for the approximation of 

the unknown function V�9  and let �h1�167%i
define a basis set 

for the discrete pressure. The fully discrete solution 

(V�a%, 
a%:7) corresponding to problem (15)-(16) is: 

V�a% � j∑ l0m,%:7%g067 f0 , ∑ l0n,%:7%g067 f0 o, 

a%:7 � ∑ lpq,%:7%ip67 hp     (17) 

Where,  lm,%:7, ln,%:7, lq,%:7  represent vectors of 

coefficients. These are computed by solving the linear 

equation system defined below. 

Given the basis set (17), we define 

matrices dr , srand tr representing identity, diffusion, and 

convection operators, respectively: 

dr � udv01 � ;f0  , f1<               (18) 

sr � usv01 � Y�� � �&��̀��a%:7�� . 	f0  , 	f1Z   (19) 

 tr��a������ � utv01 � ;�̀��a%:7. 	f0  , f1<     (20) 

In addition, given the pressure basis set, a discrete 

divergence matrix w � jwm  , wn o is defined such that 

wm � uwmvp0 � � Yhp , #xy#m Z            (21) 

wn � jwnop0 � � Yhp  , #xy#n Z             (22) 

Finally, the discrete problem at the end of time step n can 

be expressed as the following system: 

find ulm,%:7, ln,%:7, lq,%:7v D z%g�%g�%i such that 

{|% 0 wm}0 |% wn}wm wn 0 ~ � lm,%:7 ln,%:7lq,%:7 � � {�m,%�n,%�q,%~  (23) 

where, 

|% �2 M+∆9:7�A � N� 

The right-hand side vector f is constructed from the 

boundary data, the computed velocity  �a�����  and the 

acceleration #$e�������
#&  at the pervious time level. 

2.5. Stability Considerations 

To get a stable finite-element method (FEM), the 

approximation of velocity needs to be enhanced relative to 

the pressure. In the present work, bi-quadratic 

approximation is used for the velocity components, 

whereas, bi-linear approximation is used for the pressure. 

The resulting mixed method is called Q2-Q1 approximation. 

The nodal positions of velocities and pressure are 

illustrated on a rectangular element in Fig. (1). 

 

Fig. 1. Q2–Q1 element (  velocity components;  pressure). 

3. Computational Domain and 

Boundary Conditions 

In the present research, we study the two-dimensional (2-

D) flow around one and two square obstacles with diameter 

d, centered inside a plane channel (height H, length L). The 

inflow length is l and the distance between the two square 

obstacles is ]� � � V , where, n = 5, 10, 15. The flow is 

simulated numerically on tm  � tn grid (lattice) for 1≤ Re 

≤ 300, where, Re is the flow Reynolds number ( �� �$��� K� ), �  is the kinematic viscosity and  ���m  is the 

maximum flow velocity of the parabolic inflow profile. The 

computational domains are shown in Fig. 2. The blockage 

ratio, β = d/H, is fixed at β = 0.25. 

In the present simulation, we use the parameters that are 

shown in Table 1. Concerning the boundary conditions, we 

consider two types, namely: solid-wall and open boundary 

conditions. For the solid-wall boundary, the no-slip and no-

penetration conditions are applied. The solid-wall lies 

exactly at the grid nodes and it is assumed that all particles 

entering the boundary node leave with the same magnitude 

of speed but in the opposite direction of their incoming 

velocities. For the open boundary (such as inlet/outlet of 

the channel), it is common to assign a given velocity profile 

to the flow inlet, while either a given pressure or zero 

normal-velocity gradient is assigned to the flow outlet. The 

boundaries of the domain coincide exactly with the grid 

(lattice) points. 

Table 1. Parameters of the simulations. 

Parameter Symbol Value 

Number of grid nodes in x-direction tm 

250 (One obstacle) 

500 (Two 

obstacles) 

Number of grid nodes in y-direction tn  41 

Size of the obstacle               d 10 

Maximum velocity of inflow ���m 0.02 

Blockage ratio               β  0.25 

Inflow length ]         50 

Inter-distance between two obstacles 
]� � �V � � 5, 10, 15 

50, 100, 150 
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4. Turbulence Generation 

In the present study, it is important to ensure that the 

flow is fully-turbulent. As the values of Reynolds number 

(1≤ Re ≤ 300) are small, it is not feasible to expect that the 

flow will develop to be fully-turbulent within the limited 

computational domain under-consideration. Thus, it is vital 

to introduce a source of turbulence (perturbation) in the 

velocity profile of the inflow. The instantaneous velocity u 

of the parabolic inflow profile at a certain position can be 

expressed as u = U ± u'. Where, U is the mean velocity and 

u' is the instantaneous turbulence (perturbation). In the 

present work, u' is introduced numerically by a 

mathematical random generator such that its values range 

between -1 and +1. 

5. Results and Discussions 

The numerical simulation was performed for a range of 

Re between 1 and 300. For all the considered cases, the size 

of the obstacle d × d = 10 × 10 of the grid units (grid step-

size). The square obstacle was positioned at l = 50 of the 

grid units downstream the entrance of the channel. The 

simulations were carried out for 100,000 seconds to ensure 

complete convergence. The following sections describe the 

flow patterns (shown by streamline plots and velocity 

contours) with different values of Reynolds number (Re). 

5.1. Flow Pattern around a Single Square Obstacle 

We study the flow around a single square obstacle, with 

size d =10 of the grid units, which is positioned inside the 

channel along its centerline as shown in Fig. 2(a). The 

streamline patterns and velocity contours for different 

values of Re are shown in Figs. 3 and 4, respectively, to 

demonstrate the flow characteristics. A comparison with the 

results of Yojina et al. [8] is carried out for validation of the 

present results, Fig. 3. 

 

(a) 

 

(b) 

Fig. 2. (a) The geometry and domain for a single square obstacle. (b) The geometry and domain for two square obstacles [8]. 



 Applied and Computational Mathematics 2013, 2(1): 1-13 7 

 

 

Present Results                                                                                           Results of Yojina et al. [8] 

Fig. 3. Streamline patterns around a single square obstacle for different values of Reynolds number. 

 

(a) Re=1                                 (b) Re=30 

 

(c) Re=60                               (d) Re=85 

 

(e) Re=100                           (f) Re=160 

 

(g) Re=200                                 (h) Re=300 

Fig. 4. Velocity contours around a single square obstacle for different 

values of Reynolds number. 
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For Re = 1, the flow pattern resembles that of steady 

laminar flow without separation, Fig. 3(a). For 30 ≤ Re < 

85, the flow pattern is separated at the trailing edge of the 

obstacle. The length of the recirculation region increases 

with Re, Figs. 3(b)-(c). The results are very much 

symmetric with respect to the channel centerline. It seems 

that the turbulence effect is almost negligible for the values 

of Re below 85. The flow has a small amount of kinetic 

energy that is not enough to excite the turbulence in the 

flow. 

When Re increases, the symmetry of the flow starts to 

vanish gradually, Figs. 3(d)-(e). The flow becomes 

eventually unstable with continuous vortex shedding, Figs. 

3(f)-(h). This means that the effect of turbulence becomes 

dominant. This occurs when Re reaches 85, which is called 

the critical Reynolds number (Recrit) [8]. 

These results are supported by the flow velocity 

visualization, Fig. 4. When, Re < Recrit, the velocity 

contours resemble the steady flow without vortex shedding, 

Figs. 4(a)-(c). In Figs. 4(d)-(h), the flows become periodic 

and alternate the shedding of vortices into the stream. This 

is known as a von Karman vortex street, which exhibits an 

unstable flow pattern and performs a shedding pattern 

behind the obstacle. The present results compare very well 

to the results of Yojina et al. [8] as can be seen in Fig. 3. 

To demonstrate the effect of the monitoring position on 

the periodic flow, the time-series data of the velocity values 

behind the obstacle were recorded at several stream-wise 

positions (Nx = 120, 140, 180) at Re = 85, Fig. 5. It is 

shown that the position close to the obstacle (Nx = 120) 

generates periodic patterns quicker than the other two 

positions. Naturally, the amplitudes of these time-series 

data decrease as the position moves away from the obstacle. 

As can be seen in Fig. 5, the frequency amplitudes are 

approximately independent of the position (Nx = 120, 140) 

in the near wake behind the obstacle. 

 

Fig. 5. Time-series data of the flow velocity for a single obstacle at several positions, Re=85. 

To illustrate the flow behavior behind the obstacle in the 

near wake and the far field, the velocity distributions in the 

cross-wise direction (different values of Ny) for different 

stream-wise positions (Nx) are shown in Fig. 6. It is noticed 

that the velocity profile at Nx = 60 (the end of the obstacle) 

has values of zero at the back-face of the obstacle which 

corresponds correctly to the applied boundary conditions. 

At the outflow boundary of the computational domain 

(Nx = 250), the velocity profile takes the same shape and 

values of the inflow velocity profile. This gives confidence 

in the present results and shows that the extension of the 

present computational domain is suitable for the 

investigated problem. 
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Fig. 6. Cross-wise distributions of the flow velocity at different positions (Nx), Re = 85. 

5.2. Flow pattern around two square obstacles 

As a real-life application, we consider the flow pattern 

around two tandem square obstacles inside the channel. 

This application resembles the off-shore structures that are 

frequently found in marine channels. Moreover, such 

configuration may be found in many thermo-fluid industrial, 

chemical and technological applications such as 

microfluidic devices. 

The two square obstacles are modeled on a 41 × 500 grid 

with a fixed blockage ratio β = 0.25. The span-wise 

distance (inter-distance) between the two obstacles ]� 

varies such that ]� � �V, where, n takes the values 5,10,15, 

respectively. 

To illustrate the flow phenomena, the flow characteristics 

are presented via the streamline patterns and velocity 

contours as shown in Figs. 7 and 8. A comparison between 

the present results and the results of Yojina et al. [8] are 

also carried out in Fig. 7. 

 

Fig. 7. Streamline patterns around the two square obstacles for different values of Re and ]� . 

a) (Upper) Present Results  (]� = 50 (upper), ]� = 100 (middle) and ]� = 150 (lower)).  

b) (Lower) Results of Yojina et al. [8] (]� = 50 (left), ]� = 100 (middle) and ]� = 150 (right)). 
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(a) Re=70 

 

(b) Re=85 

 

(c) Re=100 

 

(d) Re=160 
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(e) Re=180 

 

(f) Re=200 

Fig. 8. Velocity contours around the two square obstacles for different values of Re and ]� (]� = 50 (left), ]� = 100 (middle) and ]� = 150 (right)). 

As can be seen in Fig. 7, the flow of low Reynolds 

number (Re = 70) separates at the trailing edge of both 

obstacles, and the recirculation length does not increase 

when the distance ]� increases, Fig. 7(a). The flow pattern 

is steady and symmetric with respect to the oncoming flow. 

When Re increases to greater than Recrit, the flow 

becomes unstable and breaks into asymmetry. We notice in 

Fig. 7(b) that asymmetrical flow occurs earlier in the case 

of ]� = 50 before the other two values of 100, 150. 

Therefore, it is easy to conclude that the asymmetrical flow 

for ]� = 50 appears at a Reynolds number below Recrit of 

the flow past one square obstacle (70 < Re < 85). However, 

for ]�  = 100, 150, the asymmetry appears at a Reynolds 

number above Recrit (85 < Re < 100). As Re increases, the 

flow becomes asymmetrical and unstable. Thus, the flow 

generates a periodicity of vortex shedding into the stream, 

Figs. 7(c)-(f). 

It is obvious from Fig. 7 that the present results compare 

very well to the results of Yojina et al. [8] for all the 

considered values of Re. 

Figure 8 shows visualization of the flow velocity for 

further examination of the flow features. The flow pattern 

at low Re shows that there is no generation of a vortex 

shedding, Fig. 8(a). For Re = 85, the visualization clearly 

illustrates the shedding pattern behind the two obstacles for ]� = 50, Fig. 8(b). While the vortex shedding appears in the 

flow pattern at Re = 100 for the two cases of ]� = 100,150, 

Fig. 8(c). It is easy to notice that the vortex shedding starts 

to appear earlier as the distance ]�  decreases, i.e., as the 

inter-distance between the two obstacles becomes smaller 

at the same value of Re. Generally, for Re > 85, it is found 

that the flow wake shows asymmetry due to the vortex 

shedding behind the two obstacles for the three values of ]�, 

Figs. 8(c)-(f). 

It is clear that there are two regions where the vortex 

shedding occurs, namely: (i) the inter-space between the 

two obstacles (behind the upstream obstacle), (ii) the region 

behind the second (downstream) obstacle. The absence of 

vortex shedding in the wake of the upstream obstacle is 

mainly due to the small inter-spacing (distance) between 

the two square obstacles. This observation points out that 

the upstream obstacle controls the unsteady wake of the 

downstream obstacle. Since the flow velocity in front of the 

downstream obstacle is mainly influenced by the inter-

spacing (distance) between obstacles, the inter-spacing 

(distance) becomes a key parameter that governs the 

generation of the unsteady flow. 

6. Conclusions 

The present study concerns the turbulent-flow 

characteristics and the mechanism of vortex shedding 

behind one and two square obstacles centered inside a 2-D 

channel. The investigation was carried out for a range of 

Reynolds number (Re) from 1 to 300 with a fixed blockage 

ratio β = 0.25. Thus, comparison of the flow patterns for 

the single and two obstacles was feasible. 

The computations were based on the finite-element 

technique. Large-eddy simulation (LES) with the 

Smagorinsky method was used to model the turbulent flow. 



12 A. F. Abdel Gawad et al.: Investigation of the channel flow with internal obstacles  

using large eddy simulation and finite-element technique 

Based on the above discussions, the following 

concluding points can be stated: 

1. The present results compare very well to the results 

of other researchers. 

2. The flow behaves similar to the steady flow for low 

values of Reynolds number (Re) with symmetry in 

respect to the channel centerline. Then, the 

symmetry breaks down and the flow becomes 

unstable (When Re ≥ Recrit for the single obstacle). 

3. As Re increases, the asymmetry of the flow 

increases and the flow becomes unstable (periodic) 

and generates vortex shedding into the main stream, 

which is known as a von Karman vortex street. 

4. The mechanism of the vortex shedding has different 

characteristics for the two cases of one and two 

square obstacles. 

5. Behind a single obstacle, the position close to the 

obstacle generates periodic velocity patterns 

quicker than the other positions that are located 

further away from the obstacle. 

6. The frequency amplitudes of the periodic pattern of 

flow velocity are approximately independent of the 

position in the near wake behind the single obstacle. 

7. For the case of two obstacles, the inter-spacing 

(distance) between the obstacles appears as a key 

parameter that controls the nature of the unsteady 

flow. 

8. The inter-spacing (distance) affects the rate and 

degree of mixing of the flow. 

9. The value of Re is also a critical parameter in the 

mixing process that may occur in the flow field due 

to the presence of the obstacles. 

Finally, more research work is still needed to reveal the 

optimum operating conditions for such type of flow with 

consideration of other parameters such as the number of 

obstacles (more than two), the obstacle shape, the boundary 

conditions, etc. 

7. Nomenclature 

sr= Diffusion operator w= Discrete divergence matrix '(= Smagorinsky coefficient 

d = Obstacle diameter 

H = Plane channel height 

h = Local grid size 

L = Plane channel length 

l = Inflow length ]� � � V= Inter-distance between the two square 

obstacles, n = 5, 10, 15 dr= Identity operator 

m = Grid sizes in x-direction tr= Convection operator tm= Number of grid (lattice) nodes in x-direction tn= Number of grid (lattice) nodes in y-direction 

n = Number of time step ���= Outward-pointing normal to the boundary 

p = Pressure 

q = Grid sizes in y-direction 

Re = Flow Reynolds number, �� � $���K�  

Recrit = Critical Reynolds number 

S = Rate-of-strain tensor �%:7= Time level 

U = Mean velocity ���= Velocity vector of the fluid 

u = Instantaneous velocity 

u' = Instantaneous turbulence (perturbation) 

ui and uj= Components of ��� in x- and y-direction, 

respectively ����= Initial velocity vector ���m= Maximum flow velocity of the parabolic inflow 

profile. 

Greek 

β = Blockage ratio, β = d/H ∆%:7= Time step 

ν  = Kinematic viscosity �&= Sub-grid viscosity (eddy viscosity) 

Ω = Two- or three-dimensional domain 

Abbreviations 

2-D = Two-Dimensional 

BVP = Boundary-Value Problem 

CFD = Computational Fluid Dynamics  

DIRK = Diagonal-Implicit Runge-Kutta method 

DNS = Direct Numerical Simulation  

FEM = Finite-Element Method  

FVM = Finite-Volume Method  

GWR = Galerkin Weighted Residual  

Ha = Hartmann number  

LBM = Lattice Boltzmann Method  

LES = Large-Eddy Simulation  

MHD = Magnetohydrodynamic  

Nu = Average Nusselt number  

Ra = Rayleigh number  

ROW = Rosenbrock-Wanner method 

TR = Trapezoidal Rule 
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