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Abstract: In this paper we deal with some classes of self-complementary (sc) perfectly orderable graphs namely sc brittle, 

sc quasi chordal graphs and propose algorithms for these classes. We obtain some results on these classes and an algorithm is 

proposed based on these results that recognize these classes. We also compile a catalogue for these classes up to 17 vertices.  
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1. Introduction 

A graph G is self-complementary (sc) if it is isomorphic 

to its complement. A sc graph exists on 4k or 4k + 1 

vertices, where k is a positive integer. A vertex x is 

simplicial if its neighborhood N(x) induces a complete 

subgraph and it is co-simplicial if its non-neighbors form 

an independent subset of vertices. An induced P4 with 

vertices a, b, c, d and edges ab, bc, cd then we refer to the 

vertices a and d as the endpoints, and the vertices b and c as 

the midpoints of the P4. A graph G is brittle if each induced 

subgraph H of G contains a vertex that is not a midpoint of 

any P4 or not an endpoint of any P4 [1]. A graph is 

quasi-chordal if each of its induced subgraphs contains a 

simplicial or co-simplicial vertex. A self-complementary 

graph which is also quasi-chordal (brittle) is known as sc 

quasi-chordal (brittle) graph. For standard definition not 

mentioned here refer [03], [10] and [16]. 

Recognition Algorithm for brittle graphs was discussed 

by many authors, Hoàng and Khouzam [06] recognized it 

in O(n
3
m) time. Hoàng and Reed [05] recognizes brittle 

graph in O(n
5
) time using the concept of brittle order. After 

that Schäffer [11] dealt specifically with the recognition 

problem for brittle graphs and gave O(m
2
) time but 

complicated recognition algorithm. In a technical report 

[12], Spinrad and Johnson also designed an O(n
3
log

2
n) 

algorithm for brittle graphs. Later Eschen et al. [02] 

presented two algorithms for recognition of brittle graphs 

by direct application of the definition yields an O(n
3
log

2
n) 

time deterministic or O(n
3
) time randomized recognition 

algorithm for brittle graphs. 

Quasi-chordal graphs were introduced by Voloshin [15] 

as a generalization of chordal graphs. Hoàng and Mahadev 

also gave the similar concept in [07], where they called 

quasi-chordal graphs as good graphs. However, no subgraph 

characterization of quasi-chordal graphs is known [10]. The 

recognition problem of quasi-chordal graphs was first 

studied by Voloshin [14], he also proposed an algorithm for 

this. Later Spinrad [13], Hoàng [08] and Gorgos et al. [03] 

improved the time complexity of the recognition algorithm 

for quasi-chordal graphs. 

In this note, we consider sc brittle graphs and sc 

quasi-chordal graphs. Both are subclasses of sc perfectly 

orderable graphs. 

Section 2 is devoted to sc brittle graphs where a 

recognition algorithm for sc brittle graphs is propose. In 

section 3, we study sc quasi-chordal graphs and present an 

algorithm for the recognition of sc quasi-chordal graphs.  

2. Self-Complementary Brittle Graphs 

In this section, we proposed recognition algorithm for sc 

brittle graphs that employs the idea similar to those used in 

above mentioned algorithms. Sc brittle graphs can be 

recognized using the vertex elimination scheme i.e. if all its 

vertices eliminated by successive deletion of no-mid and 

no-end vertices, where a vertex of a graph G is called 

no-mid if it is not the midpoint of any P4 in G. Similarly, a 
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vertex of a graph G is called no-end if it is not the endpoint 

of any P4 in G. If a graph G does not contain any induced 

P4 then all the vertices should be treated as no-mid as well 

as no-end vertices. No-mid and no-end vertices in sc brittle 

graphs have same structure. To ensure this we give 

following Theorem, which relates no-mid vertex to no-end 

vertex in a sc brittle graph. 

Theorem 1. Let G be a sc graph, then if there exists any 

no-mid vertex in G, then there also exists a no-end vertex in 

G. Converse is also true.  

Proof. Let G be a sc graph, suppose a vertex v be a no-mid 

in G, then by definition of no-mid vertex it is not the middle 

vertex of any P4 in G. Now in the complement of the graph G, 

the same vertex v becomes no-end vertex because the 

complement of a P4 is also a P4. Since G is sc graph, 

therefore if there exists any no-mid vertex in G then there 

also exists a no-end vertex in G. The same argument is also 

true for the converse Hence the Theorem. 

The following corollary is immediate. 

Corollary 2. Let G be a sc graph, if there exists no 

no-mid vertex in G then there will be no no-end vertex in G. 

Converse is also true. 

To recognize sc brittle graphs, we have to find first a 

vertex which is either a no-mid or no-end by using 

algorithm-1 

Algorithm 1: An Algorithm for no-mid and no-end vertices. 

Input: A sc graph G. 

Output: Vertex set of no-mid and  no-end vertices. 

Step-1: no-mid set = φ , no-end set = φ  and Rv = φ ,                                                

List all the induced P4’s of G.  

Step-2: Select arbitrary vertex ‘u’ if it is not a middle 

vertex of any P4 in G, then put the vertex ‘u’ in no-mid 

set. Else if it is not a end-vertex of any P4 in G, then put 

the vertex ‘u’ in no-mid set. Else Put the vertex ‘u’ in Rv 

Step-3: If all the vertices scanned then Stop. 

Else goto step-2 

End. 

*where Rv is the vertex set which are neither no-mid nor no-end. 

Complexity Since all the P4’s are generated in O(n
2
m) 

time [11] and there can be at most O(n
2
m) P4’s in G, so 

step-1 can be done O(n
2
m) time. From step-3 to step-4, we 

require one more iteration of size n, each of which requires 

O(n
2
m) time. So overall time complexity is O(n

3
m). 

After computing no-mid vertex set and no-end vertex set, 

we are in a position to discuss algorithm for recognition of 

sc brittle graphs. Algorithm-2, which recognizes whether a 

given sc graph is sc brittle or not works as follows: first it 

computes no-mid and no-end vertex set in step-1 by using 

algorithm-1. Now if both the sets i.e. no-mid and no-end 

vertex sets are empty then algorithm terminates and gives 

output that the given sc graph is not sc brittle, otherwise 

algorithm proceeds to the next step i.e. step-3. In this step, 

it deletes vertex either from no-mid or no-end vertex set 

(note that the choice of no-mid or no-end vertex to delete is 

arbitrary since the deletion of a vertex cannot cause another 

vertex to become the midpoint or endpoint of a P4). Then 

the algorithm repeats the procedure from step-1 to step-3. 

In this way if all the vertices are eliminated then 

algorithm-2 decides that the given sc graph is sc brittle. 

Algorithm-2 is as follows. 

Algorithm 2: An Algorithm for recognition of sc brittle graph. 

Input: A sc graph G. 

Output: “G is sc brittle graph” or “G is not sc brittle 

graph”. 

Step-1: Compute the no-mid and no-end vertex set and 

elimination order = φ   

Step-2: If no-mid set = φ  = no-end set, then return “G 

is not sc brittle”.Stop. 

Step-3: eliminate vertex ‘u’ either from no-mid set or 

no-end set. Put ‘u’ in elimination order. 

Step-5: update the graph and goto step-1. 

Step-6: If all the vertices of G are eliminated in this way, 

then “G is sc brittle” and print the vertices of the 

elimination order. Else“G is not sc brittle”. 

End. 

Complexity. In algorithm-2, the bottleneck is step-1, 

which requires O(n
3
m) time. All the other steps have lower 

complexity. So the overall time complexity is O(n
3
m). 

The following result justifies the claim of algorithm-2. 

Theorem 3. Algorithm-2 checks whether an input sc 

graphs is sc brittle or not correctly. 

Proof. By the definition of brittle graphs, its each 

induced subgraph contains either a no-mid or no-end vertex. 

So we start with a sc graph G and look for no-mid or 

no-end vertex, if found, remove that vertex (let it be u). 

Now by definition of brittle graphs, G - u again contains 

no-mid or no-end vertex, if found, remove that vertex again. 

Clearly if all the vertices are removed in this manner, then 

we are left with no vertex and the graph G is sc brittle. If 

while deleting the vertices we found that there does not 

exist any no-mid or no-end vertex in any subgraph of G, 

then at that stage we decide that the graph is not sc brittle. 

Hence the Theorem. □ 

To illustrate algorithm-2, we consider the following sc 

graphs G1 shown in figure-1. 

Let graph G1 be the input to algorithm-2. Step-1 of 

algorithm-2 computes its no-mid set as {v3,v4} and no-end 

set as {v7,v8}, by calculating all induced P4’s as [v1,v5,v2,v6], 

[v1,v8,v6,v2], [v1,v8,v6,v3], [v2,v5,v1,v4], [v2,v5,v8,v4], 

[v2,v6,v8,v4], [v2,v7,v1,v4], [v2,v7,v8,v4], [v3,v6,v2,v5], 

[v3,v6,v8,v4], [v3,v6,v8,v5], [v3,v7,v1,v4], [v3,v7,v1,v5], 

[v3,v7,v2,v5], [v3,v7,v8,v4], [v3,v7,v8,v5], [v4,v1,v7,v6] and 

[v5,v1,v7,v6] using algorithm-1. Since both the no-mid and 

no-end sets are not empty thus algorithm proceeds to step-3. 

In step-3 any vertex from either no-mid or no-end vertex 

set can be deleted, let it be v3. The graph is updated in 

step-5 and then algorithm repeats the procedure. In this way 

algorithm-2 successfully eliminates all the vertices of G1 
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and produces output as G1 is a sc brittle graph. The overall 

procedure of elimination of vertices from no-mid and 

no-end set can be seen in figure-2, where a vertex which is 

enclosed by dotted line is deleted vertex.  

 

Figure 1. sc brittle graph on 8 vertices 

 

Figure 2. Illustration of algorithm-2 

3. Self-Complementary Quasi-Chordal 

Graphs 

The following Theorem was known to researchers and 

referred in the literature but its proof had never been 

published. Recently Gorgos et al. [04] proved the Theorem. 

Theorem 4 [04]. For a graph G, the following conditions 

are equivalent: 

(i) G is quasi-chordal. 

(ii) G does not contain a latticed subgraph as an induced 

subgraph. 

(iii) G admits a good order. 

Where an order v1<v2<,…,<vn  on a graph G is good if, 

for any induced subgraph H of G, either the largest vertex of 

(H, <) is simplicial or the smallest vertex of (H, <) is 

co-simplicial  and a graph with each vertex belonging to 

some hole and some antihole is called latticed.  

Recently, in [09] Hoàng et al. reported the following 

result. 

Theorem 5 [09]. If G is a weakly chordal graph such that 

every pair of squares meets in a non-edge, then G is a 

quasi-chordal graph. 

Next we investigate the case when at least one pair of 

squares meets in an edge and and obtain the following 

Theorem 6. Let G be a sc graph, such that at least one pair 

of squares meets in an edge then G contains one or more of 

the following graphs as induced subgraphs. 

 

Proof. Let G be sc graph, suppose there exists at least one 

pair of squares which meets in an edge. Now whenever two 

squares meet in an edge then the graph formed in this way 

will always have six vertices only, however they may have 

seven vertices but in this case the graph has no edge 

common as shown in figure-3, so we do not consider this 

graph ,  

Now consider a six cycle graph with vertices v1, v2, v3, v4, 

v5,v6  with edges v1v2, v2v3, v3v4, v4v5, v5v6, v6v1. We add an 

edge between the vertices v2 and v5 as v2v5. This obtained 

graph is shown in figure-4 as graph D1. The graph D1 has 

clearly two squares as {v1,v2,v5,v6}, {v2,v3,v4,v5} and they 

meet on edge v2v5.  

If we add edges on graph D1 one by one between the 

non-adjacent pair of vertices then we get following graphs 

D2, D3, D4, D5, D6, D7, D8 and D9 as follows; 

The graphs D2 and D3 as shown in figure-5 are obtained 

by just adding a single edge on graph D1 between the 

vertices v1,v4 and  v1,v3 respectively.   

The graphs D4, D5 and D6 as shown in figure-6 are 

obtained by adding edges on D1 as (v1,v4), (v3,v6) for D4, 

edges (v1,v4), (v1,v3) for D5 and edges (v1,v3), (v4,v6) for D6. 

Similarly graphs D7, D8 and D9 as shown in figure-7, can 

be obtained from D1 by adding the edges as follows;  

(v1,v4), (v1,v3), (v3,v6) for D7, (v1,v4), (v1,v3) (v4,v6) for D8 

and (v1,v4), (v1,v3), (v3,v6), (v4,v6) for D9. 

Clearly graphs D1 to D9 are the only possible graphs on 

six vertices such that two squares meet in an edge. Hence 

the Theorem. 

We note that the graph D3 given in figure-5(b) contains 

an induced cycle C5: v1, v3, v4, v5, v6 and v1 and the graph D6 

is the complement of induced cycle C6 as given in 

figure-6(c). This observation shows that both the graphs D3 

and D6 are not weakly chordal, so we have the following 

result. 
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Figure 3. Pair of squares meeting at vertex 

 

Figure 4. Pair of squares meeting at edge 

 

Figure 5. Graphs obtained from D1 (Fig-4) by adding an edge 

 

Figure 6. Graphs obtained from D1 by adding two edges 

 

Figure 7. Graphs obtained from D1 by adding three edges 

Corollary 7. Let G be a sc weakly chordal graph such that 

at least one pair of squares meet in an edge then G does not 

contain the following graphs as induced subgraphs. 

 

Many graph classes are defined or characterized in terms 

of an elimination scheme. For example chordal graphs are 

defined as having no induced cycles of length greater than 

3. They are characterized as those graphs which have an 

elimination scheme with the property that neighbors of vi 

induce a clique. Trees can be characterized as those graphs 

such that every eliminated vertex (except for vn) has degree 

1 in the remaining graph. Similarly for quasi-chordal graph 

there also exists an elimination scheme, which is ensured 

by the following result given by Voloshin [14].  

Theorem 8 [14]. Let G be a graph on n vertices. Then G 

is quasi-chordal if and only if each of its induced subgraph 

contains a simplicial or co-simplicial vertex.   

Based on the above result, recognition of quasi-chordal 

was first studied by Voloshin in [14] and he proposed an 

O(n
4
) time algorithm. Later Spinrad [13] proposed an 

O(n
2.77

) time algorithm. Hoàng [08] also independently 

proposed an O(nm) time algorithm. Much recently Gorgos 

et al. [04] also proposed an O(nm) time algorithm for 

recognizing quasi-chordal graphs.    

Quasi-chordal graph may admit many different 

elimination schemes i.e. if it has eliminated scheme only on 

the basis of simplicial vertices then the graph is chordal and 

if the eliminated vertices are only co-simplicial then the 

graph is co-chordal. Now if the vertices of quasi-chordal 

graphs are eliminated by first removing simplicial and then 

co-simplicial vertices then the graph is called semi-chordal. 

The following lemma shows the connection between the 

simplicial vertices and no-mid vertices as well as 

co-simplicial vertices and no-end vertices.  

Lemma 9. Every simplicial vertex is no-mid vertex and 

every co-simplicial vertex is no-end vertex. Converse need 

not to be true. 

Proof. Since simplicial vertex cannot be middle vertex of 

any induced P3 and every induced P4 always contains two, 

P3 as a induced subgraphs. This implies that the middle 

vertices of both P3 are always mid vertices of P4, therefore 

simplicial vertices cannot be middle vertex of any P4. 

Hence they are always no-mid vertex. Now suppose x is 

any end vertex of an induced P4 then the non-neighbors of x 

will never form stable set as one of its non-neighbors is an 

end-vertex and the other is mid-vertex, therefore end 

vertices of any P4 cannot be co-simplicial. Hence 

co-simplicial vertex is always no-end vertex. 

Now for converse consider a chordless cycle of length 4 

(i.e. C4), then each vertex of this chordless C4 is no-mid but 

not simplicial. Similarly in the complement of this C4(i.e. 

2K2) , every vertex is no-end but not co-simplicial. 

Hence the result. 

The following result shows the relation between 

simplicial and co-simplicial vertices in sc graphs. 

Theorem 10. Let G be a sc graph, if there exists any 

simplicial vertex in G then there also exists a 

co-simplicial vertex, converse is also true.  

Proof. Let G be a sc graph, suppose a vertex v be a 

simplicial in G, then by definition of simplicial vertex, all 

the neighborhood vertices of v are adjacent to each other. 

Now, in the complement of the G, same vertex v and 

 v4 

 v3 
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adjacent vertices make an independent set of vertices i.e. v 

becomes co-simplicial in G . Since G and G  are 

isomorphic, thus in G, there also exist a co-simplicial 

vertex. The same argument also holds for the converse. □ 

The following corollary is immediate from the above 

Theorem. 

Corollary 11. Let G be a sc graph, if there exist no 

simplicial vertex in G then there exist no co-simplicial 

vertex, converse is also true. 

For recognizing whether a sc graph is quasi-chordal 

graph, we use a different method as compare to algorithms 

discussed in [13], [04]. The basic difference between the 

algorithms in [13], [04] and the one given here is that we 

find the simplicial and co-simplicial vertices within the set 

of no-mid and no-end vertices while the other algorithms 

find simplicial and co-simplicial vertices in whole graph. 

So to decide whether a vertex is simplicial or co-simplicial 

or not first we present an algorithm-3 which is also used as 

subroutine in algorithm-4. The algorithm-3 is as follows. 

Algorithm 3: An Algorithm for recognizing simplicial and co-simplicial 

vertices.  

Input:     A graph G and a vertex ‘u’. 

Output:  Return either simplicial or co-simplicial vertex. 

Step-1: Compute neighborhood of ‘u’ i.e. N(u). 

Step-2: If N(u)induces a complete subgraph of G, then 

return “ ‘u’ is a simplicial vertex” Stopelse compute its 

non-neighbors )(uN ′  

If )(uN ′ induces a stable set of G, then return “‘u’ is 

co-simplicial vertex” Stop. 

Else 

return “‘u’ is neither simplicial nor co-simplicial ”. 

End. 

Complexity.  The time complexity of the algorithm-3 is 

O(n
2
) by [09]. 

The algorithm-4 as given here mainly depends on finding 

no-mid and no-end vertex set in the input graph G. As soon 

as it computes no-mid and no-end vertex set, algorithm 

goes for the search of simplicial and co-simplicial vertices 

within the set of no-mid and no-end vertices. If no-mid and 

no-end vertex sets do not contain any simplicial and 

co-simplicial vertices respectively then at the initial stage 

of algorithm it is possible to get the output i.e. the input 

graph is not quasi-chordal.  

Algorithm 4: Algorithm for recognizing sc quasi-chordal graph. 

Input:  A sc graph G. 

Output: “G is sc quasi-chordal graph” or “G is not sc 

quasi-chordal graph”.  

Step-1: Compute set of no-mid, no-end, Rv (using 

algorithm-1)and elimination order = φ  

Step-2: If all the vertices of no-mid and no-end set are 

simplicial and co-simplicial respectively and no-mid ∪
no-end = vertex set of graph, then print “ G is  sc 

quasi-chordal graph” and  print “vertex set of G” Stop. 

Else if no-mid and no-end set contains no simplicial and 

no co-simplicial vertices respectively, then print “G is 

not sc quasi-chordal graph” Stop. 

Step-3:  select either a simplicial vertex from no-mid 

set or co-simplicial vertex from no-end set ( let this 

vertex be u) remove vertex ‘u’ and put ‘u’ in elimination 

order. 

Step-4: update the graph and goto step-1. 

Step-5: If all the vertices are eliminated in this way then 

print “G is sc quasi-chordal graph” and print 

“elimination order set” 

Else print “G is not sc quasi-chordal graph”   

End. 

Complexity. Algorithm-4 first uses algorithm-1 in step-1, 

which has time complexity O(n
3
m). All the other steps 

require lesser time. Hence the overall time complexity is 

O(n
3
m). 

The correctness of algorithm-4 is as follows. 

Theorem 12. Algorithm-4 checks whether an input sc 

graphs is quasi-chordal or not correctly. 

Proof.  Simplicial vertices are no-mid vertices and 

co-simplicial vertices are no-end vertices. So while 

running the algorithm-4, when we compute set of no-mid 

and no-end vertices simplicial vertex always lies in 

no-mid and co-simplicial vertex lies in no-end set. Now 

from the statements (iii) and (i) of Theorem-4, it is clear 

that if we eliminate all the vertices in such a way then 

the resulting graph is always a quasi-chordal. Hence the 

Theorem. 

To illustrate algorithm 4 we consider the sc graphs G1 

and G2 on 9 vertices as shown in figure-8(a) and figure-8(b) 

respectively.  

Let the sc graph G1 as shown in figure-8(a) be input to 

the algorithm-4. Step-1 finds no-mid set, no-end set and Rv 

as follows. no-mid = {v3,v4}, no-end = {v7,v8}, Rv = 

{v1,v2,v5,v6,v9}, this is done by using algorithm-3. Now 

step-2 of algorithm-4 finds that vertices v3, v4 from no-mid 

set and vertices v7, v8 from no-end set. These are simplicial 

and co-simplicial vertices respectively (this is done by 

using algorithm-3). Although all the vertices of no-mid and 

no-end sets are simplicial and co-simplicial respectively, 

but no-mid ∪no-end ≠  vertex set of graphs i.e. {v3,v4}

∪ {v7,v8} ≠  {v1,v2,v3,v4,v5,v6,v7,v8v9} therefore 

algorithm-4 proceeds to step-3. In this step let vertex v3 be 

eliminated first. Then step-4 updates the graph and repeats 

the process again. Eventually algorithm-4 successfully 

eliminates all the vertices of G1 one by one and produces 

the elimination order set = {v3,v4,v7,v1,v8,v6,v5,v2,v9}.  

Thus algorithm-4 decides that the input graph G1 is sc 

quasi-chordal graph. The overall procedure of elimination 

of vertices can be seen in figure-9. 
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Figure 8a. sc quasi-chordal graph on 9 vertices; Figure 8b. sc graph on 9 

vertices but not quasi chordal 

In the similar fashion It can be decided that Graph G2 in 

figure-8(b) is not quasi chordal graph. 

 

Figure 9. Illustration of algorithm-4 

4. Catalogue Compilation 

Using algorithm-2 and algorithm-4 we compile the 

catalogue of sc brittle graphs and sc quasi-chordal graphs 

with at most 17 vertices from the available catalogue of sc 

graphs with at most 17 vertices. 

Table 1. catalogue of sc brittle and sc quasi chordal graphs 

Vertices(n) 4 5 8 9 12 13 16 17 

Sc Graphs 1 2 10 36 720 5600 703760 11220000 

Sc quasi chordal 

Graphs 
1 1 5 5 62 62 2406 2406 

Sc brittle graphs 1 1 6 6 82 82 5912 5912 
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