

Applied and Computational Mathematics
2013; 2(3): 86-91

Published online July 20, 2013 (http://www.sciencepublishinggroup.com/j/acm)

doi: 10.11648/j.acm.20130203.13

A note on self complementary brittle and self
complementary quasi chordal graphs

Parvez Ali
1
, Merajuddin

2
, Syed Ajaz Kareem Kirmani

3

1Department of Mathematics, Maharana Pratap Engineering College, Mandhana , Kanpur, INDIA
2Department of Applied Mathematics, Faculty of Engineering, Aligarh Muslim University, Aligarh, INDIA
3College of Engineering Unayzah, Qassim University, KINGDOM OF SAUDI ARABIA

Email address:
parvezamu@rediffmail.com(P. Ali), meraj1957@rediffmail.com(Merajuddin), ajazkirmani@rediffmail.com(S. A. K. Kirmani)

To cite this article:
Parvez Ali, Merajuddin, Syed Ajaz Kareem Kirmani. A Note on Self Complementary Brittle and Self Complementary Quasi Chordal

Graphs. Applied and Computational Mathematics. Vol. 2, No. 3, 2013, pp. 86-91. doi: 10.11648/j.acm.20130203.13

Abstract: In this paper we deal with some classes of self-complementary (sc) perfectly orderable graphs namely sc brittle,

sc quasi chordal graphs and propose algorithms for these classes. We obtain some results on these classes and an algorithm is

proposed based on these results that recognize these classes. We also compile a catalogue for these classes up to 17 vertices.

Keywords: Self Complementary, Brittle, Quasi Chordal, No Mid, No End

1. Introduction

A graph G is self-complementary (sc) if it is isomorphic

to its complement. A sc graph exists on 4k or 4k + 1

vertices, where k is a positive integer. A vertex x is

simplicial if its neighborhood N(x) induces a complete

subgraph and it is co-simplicial if its non-neighbors form

an independent subset of vertices. An induced P4 with

vertices a, b, c, d and edges ab, bc, cd then we refer to the

vertices a and d as the endpoints, and the vertices b and c as

the midpoints of the P4. A graph G is brittle if each induced

subgraph H of G contains a vertex that is not a midpoint of

any P4 or not an endpoint of any P4 [1]. A graph is

quasi-chordal if each of its induced subgraphs contains a

simplicial or co-simplicial vertex. A self-complementary

graph which is also quasi-chordal (brittle) is known as sc

quasi-chordal (brittle) graph. For standard definition not

mentioned here refer [03], [10] and [16].

Recognition Algorithm for brittle graphs was discussed

by many authors, Hoàng and Khouzam [06] recognized it

in O(n
3
m) time. Hoàng and Reed [05] recognizes brittle

graph in O(n
5
) time using the concept of brittle order. After

that Schäffer [11] dealt specifically with the recognition

problem for brittle graphs and gave O(m
2
) time but

complicated recognition algorithm. In a technical report

[12], Spinrad and Johnson also designed an O(n
3
log

2
n)

algorithm for brittle graphs. Later Eschen et al. [02]

presented two algorithms for recognition of brittle graphs

by direct application of the definition yields an O(n
3
log

2
n)

time deterministic or O(n
3
) time randomized recognition

algorithm for brittle graphs.

Quasi-chordal graphs were introduced by Voloshin [15]

as a generalization of chordal graphs. Hoàng and Mahadev

also gave the similar concept in [07], where they called

quasi-chordal graphs as good graphs. However, no subgraph

characterization of quasi-chordal graphs is known [10]. The

recognition problem of quasi-chordal graphs was first

studied by Voloshin [14], he also proposed an algorithm for

this. Later Spinrad [13], Hoàng [08] and Gorgos et al. [03]

improved the time complexity of the recognition algorithm

for quasi-chordal graphs.

In this note, we consider sc brittle graphs and sc

quasi-chordal graphs. Both are subclasses of sc perfectly

orderable graphs.

Section 2 is devoted to sc brittle graphs where a

recognition algorithm for sc brittle graphs is propose. In

section 3, we study sc quasi-chordal graphs and present an

algorithm for the recognition of sc quasi-chordal graphs.

2. Self-Complementary Brittle Graphs

In this section, we proposed recognition algorithm for sc

brittle graphs that employs the idea similar to those used in

above mentioned algorithms. Sc brittle graphs can be

recognized using the vertex elimination scheme i.e. if all its

vertices eliminated by successive deletion of no-mid and

no-end vertices, where a vertex of a graph G is called

no-mid if it is not the midpoint of any P4 in G. Similarly, a

 Applied and Computational Mathematics 2013; 2(3): 86-91 87

vertex of a graph G is called no-end if it is not the endpoint

of any P4 in G. If a graph G does not contain any induced

P4 then all the vertices should be treated as no-mid as well

as no-end vertices. No-mid and no-end vertices in sc brittle

graphs have same structure. To ensure this we give

following Theorem, which relates no-mid vertex to no-end

vertex in a sc brittle graph.

Theorem 1. Let G be a sc graph, then if there exists any

no-mid vertex in G, then there also exists a no-end vertex in

G. Converse is also true.

Proof. Let G be a sc graph, suppose a vertex v be a no-mid

in G, then by definition of no-mid vertex it is not the middle

vertex of any P4 in G. Now in the complement of the graph G,

the same vertex v becomes no-end vertex because the

complement of a P4 is also a P4. Since G is sc graph,

therefore if there exists any no-mid vertex in G then there

also exists a no-end vertex in G. The same argument is also

true for the converse Hence the Theorem.

The following corollary is immediate.

Corollary 2. Let G be a sc graph, if there exists no

no-mid vertex in G then there will be no no-end vertex in G.

Converse is also true.

To recognize sc brittle graphs, we have to find first a

vertex which is either a no-mid or no-end by using

algorithm-1

Algorithm 1: An Algorithm for no-mid and no-end vertices.

Input: A sc graph G.

Output: Vertex set of no-mid and no-end vertices.

Step-1: no-mid set = φ , no-end set = φ and Rv = φ ,

List all the induced P4’s of G.

Step-2: Select arbitrary vertex ‘u’ if it is not a middle

vertex of any P4 in G, then put the vertex ‘u’ in no-mid

set. Else if it is not a end-vertex of any P4 in G, then put

the vertex ‘u’ in no-mid set. Else Put the vertex ‘u’ in Rv

Step-3: If all the vertices scanned then Stop.

Else goto step-2

End.

*where Rv is the vertex set which are neither no-mid nor no-end.

Complexity Since all the P4’s are generated in O(n
2
m)

time [11] and there can be at most O(n
2
m) P4’s in G, so

step-1 can be done O(n
2
m) time. From step-3 to step-4, we

require one more iteration of size n, each of which requires

O(n
2
m) time. So overall time complexity is O(n

3
m).

After computing no-mid vertex set and no-end vertex set,

we are in a position to discuss algorithm for recognition of

sc brittle graphs. Algorithm-2, which recognizes whether a

given sc graph is sc brittle or not works as follows: first it

computes no-mid and no-end vertex set in step-1 by using

algorithm-1. Now if both the sets i.e. no-mid and no-end

vertex sets are empty then algorithm terminates and gives

output that the given sc graph is not sc brittle, otherwise

algorithm proceeds to the next step i.e. step-3. In this step,

it deletes vertex either from no-mid or no-end vertex set

(note that the choice of no-mid or no-end vertex to delete is

arbitrary since the deletion of a vertex cannot cause another

vertex to become the midpoint or endpoint of a P4). Then

the algorithm repeats the procedure from step-1 to step-3.

In this way if all the vertices are eliminated then

algorithm-2 decides that the given sc graph is sc brittle.

Algorithm-2 is as follows.

Algorithm 2: An Algorithm for recognition of sc brittle graph.

Input: A sc graph G.

Output: “G is sc brittle graph” or “G is not sc brittle

graph”.

Step-1: Compute the no-mid and no-end vertex set and

elimination order = φ

Step-2: If no-mid set = φ = no-end set, then return “G

is not sc brittle”.Stop.

Step-3: eliminate vertex ‘u’ either from no-mid set or

no-end set. Put ‘u’ in elimination order.

Step-5: update the graph and goto step-1.

Step-6: If all the vertices of G are eliminated in this way,

then “G is sc brittle” and print the vertices of the

elimination order. Else“G is not sc brittle”.

End.

Complexity. In algorithm-2, the bottleneck is step-1,

which requires O(n
3
m) time. All the other steps have lower

complexity. So the overall time complexity is O(n
3
m).

The following result justifies the claim of algorithm-2.

Theorem 3. Algorithm-2 checks whether an input sc

graphs is sc brittle or not correctly.

Proof. By the definition of brittle graphs, its each

induced subgraph contains either a no-mid or no-end vertex.

So we start with a sc graph G and look for no-mid or

no-end vertex, if found, remove that vertex (let it be u).

Now by definition of brittle graphs, G - u again contains

no-mid or no-end vertex, if found, remove that vertex again.

Clearly if all the vertices are removed in this manner, then

we are left with no vertex and the graph G is sc brittle. If

while deleting the vertices we found that there does not

exist any no-mid or no-end vertex in any subgraph of G,

then at that stage we decide that the graph is not sc brittle.

Hence the Theorem. □

To illustrate algorithm-2, we consider the following sc

graphs G1 shown in figure-1.

Let graph G1 be the input to algorithm-2. Step-1 of

algorithm-2 computes its no-mid set as {v3,v4} and no-end

set as {v7,v8}, by calculating all induced P4’s as [v1,v5,v2,v6],

[v1,v8,v6,v2], [v1,v8,v6,v3], [v2,v5,v1,v4], [v2,v5,v8,v4],

[v2,v6,v8,v4], [v2,v7,v1,v4], [v2,v7,v8,v4], [v3,v6,v2,v5],

[v3,v6,v8,v4], [v3,v6,v8,v5], [v3,v7,v1,v4], [v3,v7,v1,v5],

[v3,v7,v2,v5], [v3,v7,v8,v4], [v3,v7,v8,v5], [v4,v1,v7,v6] and

[v5,v1,v7,v6] using algorithm-1. Since both the no-mid and

no-end sets are not empty thus algorithm proceeds to step-3.

In step-3 any vertex from either no-mid or no-end vertex

set can be deleted, let it be v3. The graph is updated in

step-5 and then algorithm repeats the procedure. In this way

algorithm-2 successfully eliminates all the vertices of G1

88 Parvez Ali et al.: A Note on Self Complementary Brittle and Self Complementary Quasi Chordal Graphs

and produces output as G1 is a sc brittle graph. The overall

procedure of elimination of vertices from no-mid and

no-end set can be seen in figure-2, where a vertex which is

enclosed by dotted line is deleted vertex.

Figure 1. sc brittle graph on 8 vertices

Figure 2. Illustration of algorithm-2

3. Self-Complementary Quasi-Chordal

Graphs

The following Theorem was known to researchers and

referred in the literature but its proof had never been

published. Recently Gorgos et al. [04] proved the Theorem.

Theorem 4 [04]. For a graph G, the following conditions

are equivalent:

(i) G is quasi-chordal.

(ii) G does not contain a latticed subgraph as an induced

subgraph.

(iii) G admits a good order.

Where an order v1<v2<,…,<vn on a graph G is good if,

for any induced subgraph H of G, either the largest vertex of

(H, <) is simplicial or the smallest vertex of (H, <) is

co-simplicial and a graph with each vertex belonging to

some hole and some antihole is called latticed.

Recently, in [09] Hoàng et al. reported the following

result.

Theorem 5 [09]. If G is a weakly chordal graph such that

every pair of squares meets in a non-edge, then G is a

quasi-chordal graph.

Next we investigate the case when at least one pair of

squares meets in an edge and and obtain the following

Theorem 6. Let G be a sc graph, such that at least one pair

of squares meets in an edge then G contains one or more of

the following graphs as induced subgraphs.

Proof. Let G be sc graph, suppose there exists at least one

pair of squares which meets in an edge. Now whenever two

squares meet in an edge then the graph formed in this way

will always have six vertices only, however they may have

seven vertices but in this case the graph has no edge

common as shown in figure-3, so we do not consider this

graph ,

Now consider a six cycle graph with vertices v1, v2, v3, v4,

v5,v6 with edges v1v2, v2v3, v3v4, v4v5, v5v6, v6v1. We add an

edge between the vertices v2 and v5 as v2v5. This obtained

graph is shown in figure-4 as graph D1. The graph D1 has

clearly two squares as {v1,v2,v5,v6}, {v2,v3,v4,v5} and they

meet on edge v2v5.

If we add edges on graph D1 one by one between the

non-adjacent pair of vertices then we get following graphs

D2, D3, D4, D5, D6, D7, D8 and D9 as follows;

The graphs D2 and D3 as shown in figure-5 are obtained

by just adding a single edge on graph D1 between the

vertices v1,v4 and v1,v3 respectively.

The graphs D4, D5 and D6 as shown in figure-6 are

obtained by adding edges on D1 as (v1,v4), (v3,v6) for D4,

edges (v1,v4), (v1,v3) for D5 and edges (v1,v3), (v4,v6) for D6.

Similarly graphs D7, D8 and D9 as shown in figure-7, can

be obtained from D1 by adding the edges as follows;

(v1,v4), (v1,v3), (v3,v6) for D7, (v1,v4), (v1,v3) (v4,v6) for D8

and (v1,v4), (v1,v3), (v3,v6), (v4,v6) for D9.

Clearly graphs D1 to D9 are the only possible graphs on

six vertices such that two squares meet in an edge. Hence

the Theorem.

We note that the graph D3 given in figure-5(b) contains

an induced cycle C5: v1, v3, v4, v5, v6 and v1 and the graph D6

is the complement of induced cycle C6 as given in

figure-6(c). This observation shows that both the graphs D3

and D6 are not weakly chordal, so we have the following

result.

 Applied and Computational Mathematics 2013; 2(3): 86-91 89

Figure 3. Pair of squares meeting at vertex

Figure 4. Pair of squares meeting at edge

Figure 5. Graphs obtained from D1 (Fig-4) by adding an edge

Figure 6. Graphs obtained from D1 by adding two edges

Figure 7. Graphs obtained from D1 by adding three edges

Corollary 7. Let G be a sc weakly chordal graph such that

at least one pair of squares meet in an edge then G does not

contain the following graphs as induced subgraphs.

Many graph classes are defined or characterized in terms

of an elimination scheme. For example chordal graphs are

defined as having no induced cycles of length greater than

3. They are characterized as those graphs which have an

elimination scheme with the property that neighbors of vi

induce a clique. Trees can be characterized as those graphs

such that every eliminated vertex (except for vn) has degree

1 in the remaining graph. Similarly for quasi-chordal graph

there also exists an elimination scheme, which is ensured

by the following result given by Voloshin [14].

Theorem 8 [14]. Let G be a graph on n vertices. Then G

is quasi-chordal if and only if each of its induced subgraph

contains a simplicial or co-simplicial vertex.

Based on the above result, recognition of quasi-chordal

was first studied by Voloshin in [14] and he proposed an

O(n
4
) time algorithm. Later Spinrad [13] proposed an

O(n
2.77

) time algorithm. Hoàng [08] also independently

proposed an O(nm) time algorithm. Much recently Gorgos

et al. [04] also proposed an O(nm) time algorithm for

recognizing quasi-chordal graphs.

Quasi-chordal graph may admit many different

elimination schemes i.e. if it has eliminated scheme only on

the basis of simplicial vertices then the graph is chordal and

if the eliminated vertices are only co-simplicial then the

graph is co-chordal. Now if the vertices of quasi-chordal

graphs are eliminated by first removing simplicial and then

co-simplicial vertices then the graph is called semi-chordal.

The following lemma shows the connection between the

simplicial vertices and no-mid vertices as well as

co-simplicial vertices and no-end vertices.

Lemma 9. Every simplicial vertex is no-mid vertex and

every co-simplicial vertex is no-end vertex. Converse need

not to be true.

Proof. Since simplicial vertex cannot be middle vertex of

any induced P3 and every induced P4 always contains two,

P3 as a induced subgraphs. This implies that the middle

vertices of both P3 are always mid vertices of P4, therefore

simplicial vertices cannot be middle vertex of any P4.

Hence they are always no-mid vertex. Now suppose x is

any end vertex of an induced P4 then the non-neighbors of x

will never form stable set as one of its non-neighbors is an

end-vertex and the other is mid-vertex, therefore end

vertices of any P4 cannot be co-simplicial. Hence

co-simplicial vertex is always no-end vertex.

Now for converse consider a chordless cycle of length 4

(i.e. C4), then each vertex of this chordless C4 is no-mid but

not simplicial. Similarly in the complement of this C4(i.e.

2K2) , every vertex is no-end but not co-simplicial.

Hence the result.

The following result shows the relation between

simplicial and co-simplicial vertices in sc graphs.

Theorem 10. Let G be a sc graph, if there exists any

simplicial vertex in G then there also exists a

co-simplicial vertex, converse is also true.

Proof. Let G be a sc graph, suppose a vertex v be a

simplicial in G, then by definition of simplicial vertex, all

the neighborhood vertices of v are adjacent to each other.

Now, in the complement of the G, same vertex v and

 v4

 v3

90 Parvez Ali et al.: A Note on Self Complementary Brittle and Self Complementary Quasi Chordal Graphs

adjacent vertices make an independent set of vertices i.e. v

becomes co-simplicial in G . Since G and G are

isomorphic, thus in G, there also exist a co-simplicial

vertex. The same argument also holds for the converse. □

The following corollary is immediate from the above

Theorem.

Corollary 11. Let G be a sc graph, if there exist no

simplicial vertex in G then there exist no co-simplicial

vertex, converse is also true.

For recognizing whether a sc graph is quasi-chordal

graph, we use a different method as compare to algorithms

discussed in [13], [04]. The basic difference between the

algorithms in [13], [04] and the one given here is that we

find the simplicial and co-simplicial vertices within the set

of no-mid and no-end vertices while the other algorithms

find simplicial and co-simplicial vertices in whole graph.

So to decide whether a vertex is simplicial or co-simplicial

or not first we present an algorithm-3 which is also used as

subroutine in algorithm-4. The algorithm-3 is as follows.

Algorithm 3: An Algorithm for recognizing simplicial and co-simplicial

vertices.

Input: A graph G and a vertex ‘u’.

Output: Return either simplicial or co-simplicial vertex.

Step-1: Compute neighborhood of ‘u’ i.e. N(u).

Step-2: If N(u)induces a complete subgraph of G, then

return “ ‘u’ is a simplicial vertex” Stopelse compute its

non-neighbors)(uN ′

If)(uN ′ induces a stable set of G, then return “‘u’ is

co-simplicial vertex” Stop.

Else

return “‘u’ is neither simplicial nor co-simplicial ”.

End.

Complexity. The time complexity of the algorithm-3 is

O(n
2
) by [09].

The algorithm-4 as given here mainly depends on finding

no-mid and no-end vertex set in the input graph G. As soon

as it computes no-mid and no-end vertex set, algorithm

goes for the search of simplicial and co-simplicial vertices

within the set of no-mid and no-end vertices. If no-mid and

no-end vertex sets do not contain any simplicial and

co-simplicial vertices respectively then at the initial stage

of algorithm it is possible to get the output i.e. the input

graph is not quasi-chordal.

Algorithm 4: Algorithm for recognizing sc quasi-chordal graph.

Input: A sc graph G.

Output: “G is sc quasi-chordal graph” or “G is not sc

quasi-chordal graph”.

Step-1: Compute set of no-mid, no-end, Rv (using

algorithm-1)and elimination order = φ

Step-2: If all the vertices of no-mid and no-end set are

simplicial and co-simplicial respectively and no-mid ∪
no-end = vertex set of graph, then print “ G is sc

quasi-chordal graph” and print “vertex set of G” Stop.

Else if no-mid and no-end set contains no simplicial and

no co-simplicial vertices respectively, then print “G is

not sc quasi-chordal graph” Stop.

Step-3: select either a simplicial vertex from no-mid

set or co-simplicial vertex from no-end set (let this

vertex be u) remove vertex ‘u’ and put ‘u’ in elimination

order.

Step-4: update the graph and goto step-1.

Step-5: If all the vertices are eliminated in this way then

print “G is sc quasi-chordal graph” and print

“elimination order set”

Else print “G is not sc quasi-chordal graph”

End.

Complexity. Algorithm-4 first uses algorithm-1 in step-1,

which has time complexity O(n
3
m). All the other steps

require lesser time. Hence the overall time complexity is

O(n
3
m).

The correctness of algorithm-4 is as follows.

Theorem 12. Algorithm-4 checks whether an input sc

graphs is quasi-chordal or not correctly.

Proof. Simplicial vertices are no-mid vertices and

co-simplicial vertices are no-end vertices. So while

running the algorithm-4, when we compute set of no-mid

and no-end vertices simplicial vertex always lies in

no-mid and co-simplicial vertex lies in no-end set. Now

from the statements (iii) and (i) of Theorem-4, it is clear

that if we eliminate all the vertices in such a way then

the resulting graph is always a quasi-chordal. Hence the

Theorem.

To illustrate algorithm 4 we consider the sc graphs G1

and G2 on 9 vertices as shown in figure-8(a) and figure-8(b)

respectively.

Let the sc graph G1 as shown in figure-8(a) be input to

the algorithm-4. Step-1 finds no-mid set, no-end set and Rv

as follows. no-mid = {v3,v4}, no-end = {v7,v8}, Rv =

{v1,v2,v5,v6,v9}, this is done by using algorithm-3. Now

step-2 of algorithm-4 finds that vertices v3, v4 from no-mid

set and vertices v7, v8 from no-end set. These are simplicial

and co-simplicial vertices respectively (this is done by

using algorithm-3). Although all the vertices of no-mid and

no-end sets are simplicial and co-simplicial respectively,

but no-mid ∪no-end ≠ vertex set of graphs i.e. {v3,v4}

∪ {v7,v8} ≠ {v1,v2,v3,v4,v5,v6,v7,v8v9} therefore

algorithm-4 proceeds to step-3. In this step let vertex v3 be

eliminated first. Then step-4 updates the graph and repeats

the process again. Eventually algorithm-4 successfully

eliminates all the vertices of G1 one by one and produces

the elimination order set = {v3,v4,v7,v1,v8,v6,v5,v2,v9}.

Thus algorithm-4 decides that the input graph G1 is sc

quasi-chordal graph. The overall procedure of elimination

of vertices can be seen in figure-9.

 Applied and Computational Mathematics 2013; 2(3): 86-91 91

Figure 8a. sc quasi-chordal graph on 9 vertices; Figure 8b. sc graph on 9

vertices but not quasi chordal

In the similar fashion It can be decided that Graph G2 in

figure-8(b) is not quasi chordal graph.

Figure 9. Illustration of algorithm-4

4. Catalogue Compilation

Using algorithm-2 and algorithm-4 we compile the

catalogue of sc brittle graphs and sc quasi-chordal graphs

with at most 17 vertices from the available catalogue of sc

graphs with at most 17 vertices.

Table 1. catalogue of sc brittle and sc quasi chordal graphs

Vertices(n) 4 5 8 9 12 13 16 17

Sc Graphs 1 2 10 36 720 5600 703760 11220000

Sc quasi chordal

Graphs
1 1 5 5 62 62 2406 2406

Sc brittle graphs 1 1 6 6 82 82 5912 5912

References

[1] V. Chvátal, Perfect graph seminar, McGill university,
Montreal, (1983).

[2] E.M. Eschen, J.L. Johnson, J.P. Spinrad and R. Sritharan,
Recognition of some perfectly orderable graph classes,
Discrete Applied Mathematics, 128 (2003) 335-373.

[3] M.C. Golumbic, Algorithmic Graph Theory and Perfect
Graphs, Academic Press, New York, (1980).

[4] I. Gorgos, C.T. Hoang and V. Voloshin, A note on
quasi-triangulated graphs, SIAM Journal of Discrete
Mathematics, 20 (2006) 597-602.

[5] C.T. Hoàng and B.A. Reed, Some classes of perfectly
orderable graphs, J. Graph Theory, 13 (1989) 445-463.

[6] C.T. Hoàng and N. Khouzam, On brittle graphs, J. Graph
Theory, 12 (1988) 391-404

[7] C.T. Hoàng and N.V.R. Mahadev, A note on perfect orders,
Discrete Mathematics, 74 (1989) 77-84.

[8] C.T. Hoàng, Recognizing quasi-triangulated graphs in O(nm)
time, Manuscript, (unpublished).

[9] C.T. Hoàng, S. Hougardy, F, Maffray and N.V.R. Mahadev,
On simplicial and Co-simplicial vertices in graphs, Discrete
Applied Mathematics, 138 (2004) 117-132.

[10] J.L. Ramirez and B.A. Reed, Perfect graphs, John Wiley and
Sons, (2000).

[11] A.A. Schaffer, Recognizing brittle graphs: remarks on a
paper of Hoang and Khouzam, Discrete Applied
Mathematics, 31 (1991) 29-35.

[12] J.P. Spinrad and J. Johnson, Brittle and Bipolarizable graph
recognition, Vanderbilt Uni. Comp. Sci. Deptt., Technical
Report (1998).

[13] J.P. Spinrad, Recognizing quasi-triangulated graphs, Disc.
App. Math., 138 (2004) 203-213.

[14] V.I. Voloshin, Quasi-triangulated graphs recognition
program, Algorithms and programs, P006124, Moscow,
Russian, 1983 (in Russian).

[15] V.I. Voloshin, Quasi-triangulated graphs, Preprint, 5569-81,
Kishinev state university, Kishinev, Moldova, 1981(in
Russian).

[16] J. Yellen and J Gross, Graph Theory and its Applications,
CRC Press (USA), 1999.

