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Abstract: In this paper, a deterministic mathematical model for transmission dynamics of Varicella Zoster Virus (VZV) 

with vaccination is formulated. The effective reproduction number is computed in order to measure the relative impact for 

individual or combined intervention for effective disease control. The effective reproductive number, �� is defined as the 

number of secondary cases that one infected individual will cause through the duration of the infectious period. The 

disease-free equilibrium is computed and proved to be locally asymptotically stable when �� < 1 and unstable when 

�� > 1 .It is proved that there exists at least one endemic equilibrium point for all �� > 1. In the absence of disease-

induced death, it is proved that the transcritical bifurcation at R� = 1 is supercritical (forward). Sensitivity analysis is 

performed on the basic reproduction number and it is noted that the most sensitive parameters are the probability of 

transmission of the disease from an infectious individual to a susceptible individual per contact, 	, per capita contact rate ,c, 

per capita birth rate, 
 and the progression rate from latent to infectious stage, �. Numerical simulations of the model show 

that, the combination of vaccination and treatment is the most effective way to combat the epidemiology of VZV in the 

community. 
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1. Introduction 

Chickenpox (also called varicella) is a disease caused by 

virus known as varicella -zoster virus (VZV) also known as 

human herpes virus 3 (HHV -3)[1]. In non-vaccinated 

populations, primary infections tend to occur at a younger 

age[2]. 

The main symptoms of chickenpox are fever, headache, 

stomach ache,itchy rash especially in the mouth, on chest, 

abdomen, back, face and upper arms and legs. The rash 

starts as small red spot, difficult breathing, malaise and 

anorexia. 

Chickenpox is widely transmitted from touching the 

fluids from chickenpox blister. The virus is spread either by 

direct contact with a person with active chickenpox or 

shingles, or by direct contact with clothes or other articles 

infected with vesicle fluid, saliva, nasal discharge , or by air 

borne spread of small droplets of infected mucous of fluid. 

There are different notions to the origin of the name of 

this disease. One is, once infected; the skin appeared as 

picked by chicken. Another is the rash resembles the seeds 

of Chick Peas. Most common explanation is that the 

disease is not that much dangerous compared to small pox 

so it is a ‘chicken’ version of pox.  

The occurrence of chickenpox is different in different 

geographical zones. In temperate countries chickenpox is 

usually a mild, self-limiting infection, affecting pre-school 

children [3], however, the incidence of chickenpox in these 

areas is increasing in adolescents and adults [4], which may 

in part be due to increased world travel and economic 

migration of susceptible individuals. In many tropical 

countries the epidemiology is different, with about 60% of 

adults being immune [5]. 

In the past, the varicella zoster virus affected virtually 

the entire population and had substantial morbidity and 

mortality associated with both primary varicella and herpes 

zoster reactivation. Since the varicella vaccine was first 

approved in 1995, there has been a significant decline in 

incidence, morbidity, and mortality caused by primary 

varicella. Breakthrough disease with the one-dose vaccine 

schedule led to the recommendation in 2006 that children 

receive a two-dose vaccine series. Older adults have also 

benefited from the development of the zoster vaccine. In 

2006, the Food and Drug Administration approved the 
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zoster vaccine, a higher concentration of the same live 

attenuated virus used in the primary varicella vaccine, for 

persons 60 years of age or older. It has the potential to help 

millions of people to avoid the pain associated with 

reactivation of the varicella zoster virus by reducing the 

incidence and severity of herpes zoster and postherpetic 

neuralgia. 

The treatment for a patient with chickenpox is: reducing 

itches and irritation by keeping the skin cool with light 

clothing and tepid baths or sponging. Calamine lotion 

applied to spots, or antihistamine tablets may also help. 

Paracetamol or ibuprofen can be taken if lesions are painful 

and will lose fever. 

The first vaccination was developed by Michiaki 

Takahash in 1974 derived from Oka strain. Some countries 

require the varicella vaccine for children before entering 

elementary school. Immunity derived from vaccine is not 

lifelong and subsequent vaccination is necessary usually 

after 5 years after initial vaccination. Chickenpox is 

characterized by long latent period (about two weeks), 

infectious period (one week) and permanent immunity after 

recovery. 

[6] were among the first to explore the relationship 

between varicella and zoster using mathematical models; 

they examined the impact of vaccination on long–term 

equilibrium incidence of these diseases, but ignored the 

short medium term. 

[7] examined the possible influence of zoster on the 

transmission dynamics of varicella, but did not investigate 

the impact of vaccination on the incidence of zoster (their 

model assumes a constant background force of infection of 

zoster which remains unchanged through time).Two 

possible dangers of an extensive varicella vaccination 

program are more varicella (chickenpox) cases in adults, 

when the complication rates are higher, and an increase in 

cases of zoster (shingles)[8]. 

Since almost all children become infected with VZV, the 

annual incidence of varicella is approximately equal to the 

birth rate. At least 90% of adults in the United States are 

immune to VZV, but rates of immunity to VZV in adults 

can be as low as 50% in tropical areas [9]. Following a 

varicella infection, VZV is established in a latent form in 

the dorsal root ganglia by an ascending infection along 

sensory nerves from the skin. This latent herpes virus 

becomes reactivated during the lifetimes of about 15% of 

those who had a primary varicella infection, causing zoster 

(commonly known as shingles), a painful vesicular rash 

appearing along one or two of the sensory root nerves. 

Reactivation correlates with diminished VZV cell-mediated 

immunity, so that zoster develops more frequently among 

people immunocompromised by age, disease, or therapy. 

Thus zoster occurs at all ages, but is more common among 

the elderly. Transmission of VZV from people with zoster 

can occur, but is much less likely than from people with 

primary varicella [9,10,11] 

Primary infection by varicella-zoster virus (VZV) causes 

the clinical syndrome ‘chickenpox’ (CP), mainly in 

childhood. An  effective commercial childhood CP vaccine 

has been available for nearly 20 years. It is recommended 

to be used in a two-dose schedule because experience with 

a single dose has led to frequent (milder) breakthrough 

infections [12]. After primary infection VZV remains latent 

in neural ganglia until reactivation. Herpes zoster (HZ), 

also called shingles, is caused by the symptomatic 

reactivation of VZV and this reactivation is assumed to be a 

consequence of a lower cellular immunity mainly in 

immunocompromised or older individuals [13, 14, 15]. 

[16] Developed a mathematical model on perspective on 

the impact of varricella immunization on Herpes zoster. 

Their model was a multi-country model of VZV 

transmission and reactivation, which they used to evaluate 

the possible impact of varicella vaccination on HZ (Herpes 

Zoster) epidemiology in Italy, Finland and UK. 

Despite large uncertainties their finding might provide 

explanations for ambiguous empirical evidences about 

increases of HZ in those cities where mass vaccination is 

ongoing. 

The proposed Multi-country perspective model shows, 

under different vaccination scenarios, that an increase in 

HZ incidence is not a certain fact ,but rather seems to 

depend on the presence or absence of factors promoting a 

strong boosting intensity and that may or may not ,be 

heavily affected by changes in varicella  circulation due to 

introduction of immunization programs. 

In this study we formulate a deterministic mathematical 

model for transmission dynamics of Varicella Zoster Virus 

(VZV).The model to be developed considers a total 

population to be non-constant and non-age structured. It 

should be clearly known that we are interested to 

investigate only primary Varicella even though we know 

from literature [9, 10, 11] that reactivation of VZV can lead 

to a disease called zoster which is less severe as compared 

to varicella (chickenpox) and mostly occurs in adulthood. 

The model will further take account of two dose vaccine 

coverage. Stability analysis, simulation, sensitivity analysis 

will be carried out in this paper. 

2. Model Formulation 

In this section we formulate a deterministic mathematical 

model for VZV which incorporates vaccination strategy. 

The total population is divided into the following 

epidemiological classes or subgroups: susceptible �, 

vaccinated V , Exposed E , infectious I , recovered R . 

Basically; we modify the SEIR model by adding a 

vaccination compartment which caters for immunization.  

Let us assume that the per capita birth rate π
 
is constant, 

the natural fatality rate µ  is time constant, there is no 

disease induced death, the members of the population mix 

homogenously (have the same interactions with one 

another to the same degree), and assume that on recovery, 

there is a permanent immunity of the rateη . Furthermore, 

assume that individuals can be infected through direct 

contact c , with an infectious individual. We let  β to
 
be the 
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probability that a susceptible individual becomes infected 

by one infectious individual. We also let

recruitment rate. 

The susceptible and vaccinated individuals are recruited 

by both birth and immigration. A proportion

recruits are vaccinated, the remaining 

vaccinated so they join the susceptible compartment. 

Proportions of newborns φ are vaccinated, and the 

remaining 1  φ−  newborns are not vaccinated and hence join 

the susceptible compartment. We consider that a proportion 

of the population of susceptible to receive a first dose 

vaccine at the rate 1
θ  , whereas the rest of it progress with 

the disease.  

The primary vaccine wanes at the rate 

time t. After the first vaccine has expired, a proportion 

1 f− of the vaccinated individuals at 

susceptible compartment at the rate α  

proportion f  receive a second dose at the rate

assumption is that the individuals who have attended the 

first and the second dose consecutively receive per

immunity; otherwise they become susceptible to the disease 

again. The susceptible individuals enter the exposed 

compartment at the rate λ  which is a force of infection. 

The exposed individuals are the ones who are infected b

not infectious. After some time the exposed become 

infectious, they move from exposed state to infectious at 

the rate δ  . An infected individual recover at rate

according to the nature of the disease; the recovered 

individuals are permanently immune.  

This description of dynamics of VZV can be summarized 

by compartmental diagram Figure 1 

Figure 1. A Compartmental diagram for the dynamics of Varicella Zoste

Virus (VZV) in a community with Immunization. 

Table 1. Parameters and their description.

Parameter Description 

α  The rate of waning of a vaccine

β  
Probability of one infected individual to become 

infectious 

δ  Progression rate from latent to infectious

φ  Proportions of newborns who are vaccinated.

ρ  Proportions of immigrants who are vaccinated.
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Parameters and their description. 

of a vaccine 

Probability of one infected individual to become 

Progression rate from latent to infectious 

Proportions of newborns who are vaccinated. 

Proportions of immigrants who are vaccinated. 

Parameter Description 

a  Arrival rate. 

c  Per capita contact rate

1θ  Fraction of individuals who receive a first dose 

vaccine 

2θ  Rate at which of individuals receiv

dose vaccine 
µ  Per capita natural 

π  Per capita birth rate

η  Recovery rate of treated infectious individuals

Λ  The recruitment rate of 

f  
A fraction of population who receive second dose 

vaccine 

2.1. The Model Equations 

From the assumptions and the dynamics between the 

compartments shown in the model compartments in 

Figure1, the impact of immunization

of VZV is modeled by following system of ordinary 

differential equations 

(1 ) (1 ) (1 ) ( )= − + − Λ + − − + +
dS

N f V S
dt

φ π ρ α λ µ θ

1 2

dV
N S f f V

dt
ρ φπ θ α θ µ= Λ + + − − + +

dE

dt
λ µ δ= − +

dI

dt
= − +

dR
I f R

dt
η θ µ= +

where λ  is the force of infection

The total population size is 

( ) ( ) ( ) ( ) ( ) ( )N t S t V t E t I t R t= + + + +

where, adding Equation of the 

dN

dt
= Λ + −

2.2. Dimensionless Transformation

For simplicity of analysis we normalized

can be done by scaling the population of each class by the 

total population.  

We transform follows 
V S E I

v s e i
N N N N

= = = =

and
R

r
N

=  in classes
,   ,  ,   and   V S E I R

Hence the normalized model system becomes,

Model with Vaccination 

 

 

Per capita contact rate 

Fraction of individuals who receive a first dose 

Rate at which of individuals receive a second 

 

Per capita natural mortality rate 

Per capita birth rate 

Recovery rate of treated infectious individuals 

The recruitment rate of susceptible population 

A fraction of population who receive second dose 

From the assumptions and the dynamics between the 

compartments shown in the model compartments in 

Figure1, the impact of immunization on the epidemiology 

of VZV is modeled by following system of ordinary 

(1 ) (1 ) (1 ) ( )= − + − Λ + − − + +N f V Sφ π ρ α λ µ θ      (1) 

1 2((1 ) )N S f f Vρ φπ θ α θ µ= Λ + + − − + +         (2) 

( )  s E
dt

λ µ δ= − +                       (3) 

( )
dI

E I
dt

δ η µ= − +                       (4) 

2v-       I f Rη θ µ= +                      (5) 

is the force of infection and is given by
cI

N

β
λ = .

 

( ) ( ) ( ) ( ) ( ) ( )N t S t V t E t I t R t= + + + +  

adding Equation of the system (1-5). We get  

( )Nπ µ= Λ + −  

Transformation 

For simplicity of analysis we normalized quantities. This 

can be done by scaling the population of each class by the 

, , ,
V S E I

v s e i
N N N N

= = = =  

,   ,  ,   and   V S E I R
.  

Hence the normalized model system becomes, 
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(1 ) (1 ) (1 ) ( )
1

ds
a f v a s

dt
φ π ρ α λ θ π= − + − + − − + + +        (6) 

1 2((1 ) )
dv

a s f f a
dt

φπ ρ θ α θ π= + + − − + + +            (7) 

( )
de

s a e
dt

λ δ π= − + +                           (8) 

 ( )
di

e a i
dt

δ η π= − + +                            (9) 

2 ( )
dr

i f v a r
dt

η θ π= + − +                     (10) 

Subject to the restriction that leads to studying the 

system (6-10) in the region T  where  

5{( , , , , ) : 0 ,0 ,0 ,0 ,0 , 1}T s v e i r R s v e i r s v e i r+= ∈ ≤ ≤ ≤ ≤ ≤ + + + + ≤  

The feasible region (where the model makes biological 

sense) can be shown to be positively invariant. 

3. Model Analysis 

The model system (6-10) is analyzed qualitatively to get 

insights into its dynamical features which give better 

understanding of the impact of immunization on the 

epidemiology of varicella zoster virus. 

3.1. Disease Free Equilibrium (DFE), P0 

The disease free equilibrium of the model system (6-10) is 

obtained by setting 0= = = = =dv ds de di dr

dt dt dt dt dt
 and 

0P  

of the model system (6-10) exists and is given by: 

*

0 0 0 0( , , , , ) ( *, *, 0, 0, *)P s v e i r s v r∗ ∗ ∗ ∗ =  

in case there is no disease; 0e i= =  the sum of susceptible 

and vaccinated populations is equal to total population. 

That is to say 0 0 0* * * 1s v r+ + =  

Consequently, system (6-10) is reduced to: 

1( ) (1 ) (1 ) (1 ) 0a s f v aλ θ π α φ π ρ− + + + + − + − + − =  

1 2((1 ) ) 0s f f a v aθ α θ π φπ ρ− − + + + + + =  

2 ( ) 0f v a rθ π− + =  

which implies: 

2
0

2 1

(1 ) ( ) ( )[(1 ) (1 ) ]
   *

( )(1 ) ( )( )

f a f a a
s

a f f a a

α π θ π φ π ρ
π α θ π θ π

− + + + + − + −=
+ − + + + + +     (11) 

1
0

1 2 2

( )( )
*

( ) ( )[(1 ) ]

+ + +
=

+ + + + − + + +
a a

v
f a a f f a

π θ φπ ρ
θ θ π π α θ π  

2 1

0

1 2 2

( )
*

( ) ( )[(1 ) ]

+ +
=

+ + + + − + + +
f a

r
f a a f f a

θ θ φπ ρ
θ θ π π α θ π  

Thus the Disease Free Equilibrium (DFE) point denoted by

0P  of the model system (6-10) exists and is given by: 

*

0 0 0 0( , , , , ) ( *, *, 0, 0, *)∗ ∗ ∗ ∗ =P s v e i r s v r  

3.2. The Basic Reproduction Number,R0  

[17] defined the basic reproduction number denoted by 

R0, as the average number of secondary infections caused 

by an infectious individual during his or her entire period of 

infectiousness. The basic reproduction number is an 

important non-dimensional quantity in epidemiology as it 

sets the threshold in the study of a disease both for 

predicting its outbreak and for evaluating its control 

strategies. Thus, whether a disease becomes persistent or 

dies out in a community depends on the value of the 

reproduction number, 
0R .  

Furthermore, stability of equilibria can be analyzed using 

R0. If R0<0 it means that every infectious individual will 

cause less than one secondary infection and hence the 

disease will die out and when R0 > 1, every infectious 

individual will cause more than one secondary infection 

and hence the disease will invade the population. A large 

number of R0 may indicate the possibility of a major 

epidemic. For the case of a model with a single infected 

class, 
0R  is simply the product of the infection rate and the 

mean duration of the infection. 

In more complicated epidemics we compute the basic 

reproduction number, R0 using the next generation operator 

approach by [18] 

From the system Equations (6-10) we define 
i
F  and 

i
V  

as 

( )
,

0 ( )
i i

cis a e

e a i

β δ π
δ η π

+ +   
= =   − + +   

F V  

We differentiate 
iF
 with respect to e  and i  to get  

0

0 0

cs
F

β 
=  
 

 

We differentiate 
iV  with respect to e  and i and get V  

( ) 0

( )

a
V

a

δ π
δ η π

+ + 
=  − + + 

 

We find the inverse of V  and get  

1

1
0

  
1

( )( )

a
V

a a a

δ π
δ

δ π η π η π

−

 
 + +
 =
 
 + + + + + +   
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1

1 0 0( ) ( )i i

j j

E E
FV

x x

−

−
   ∂ ∂=    ∂ ∂      

F V
 

01

0 0

1
0

0 *

10 0

( )( )

* *

   ( )( )

0 0

−

 
   + +
 =  
  
 + + + + + + 

 
 = + + + + + + 
  

cs a
V

a a a

cs cs

a a a

β δ π
δ

δ π η π η π
β δ β

δ π η π η π

    (12) 

The eigenvalues, λ  of equation (12) can be computed 

from the characteristic equation:  
1 0FV Iλ− − = .And we see that from our matrix that 

0
1

*

( )( )

cs

a a

β δλ
δ π η π

=
+ + + +

 

2
0λ =

 
Obviously, 

1λ is the dominant eigenvalue and becomes 

equal to 
eR  of the model. 

Therefore, if we substitute 
0 *s  from equation (11) into 

1λ  , we get effective reproduction number
 
denoted by Re in 

equation (13) below.
 

( )
2

1 2 2

{(1 ) ( ) ((1 ) )((1 ) (1 ) )}

{ ( ) ( )[(1 ) ]} ( )
e

c f a f f a a
R

f a a f f a a a

β δ α φπ ρ α θ π φ π ρ
θ θ π π α θ π δ π η π

− + + − + + + − + −
=

+ + + + − + + + + + + +                                (13) 

When there is no any control strategy, then 

1 2
0θ θ φ ρ= = = =  

and hence 0, 0,f α= =  so we get basic reproduction 

number  

( )0
( )

=
+ + + +

c
R

a a

β δ
δ π η π                (14)

 

3.3. Local Stability of the Disease-Free Equilibrium 

Here we investigate the local stability of the disease-free 

equilibrium point,  

*

0 0 0 0( , , , , ) ( *, *,0,0, *)P s v e i r s v r∗ ∗ ∗ ∗ = . 

Thus, we linearize model system (6-10) by computing its 

Jacobian matrix,	�� . The Jacobian matrix is computed by 

differentiating each equation in the system with respect to 

the state variables �, �, �, �, ℎ, �.  

1

1 2

2

(  ) (1 ) 0  0

((1 ) ) 0 0 0

 0 ( )  0

0 0 ( ) 0

0 0 ( )

E

ci a f cs

f f a

ci a cs

a

f a

J

β θ π α β
θ α θ π

β δ π β
δ η π

θ η π

− + + + − −
− − + + +

− + +

− + +
− +

 
 
 
 =
 
 
  

                        (15) 

at DFE 

1 0

1 2

0

2

0

( ) (1 ) 0 0

((1 ) ) 0 0 0

 ( ) 0 0 ( ) 0

0 0 ( ) 0

0 0 ( )

− + + − −

− − + + +

= − + +

− + +

− +

E

a f cs

f f a

Det J a cs

a

f a

θ π α β

θ α θ π

δ π β

δ η π

θ η π

                 (16) 

Then, the local stability of �� is determined by the trace 

method, based on the Jacobian matrix (16). The disease-

free equilibrium point, (�0) is locally asymptotically stable 

if trace 
0

( ) 0ETr J <  
and 

0
( ) 0EDet J >  otherwise it is 

unstable. 

So we get  

0 1 2( ) ( 5 5 (1 ) ) 0ETr J a f fθ π α θ η= − + + + − + + <  

0 1

0
2 1

( ) ( )( )( ){( )((1 )

) (1 )}[1 ]
( )( )

= + + + + + + + − +

+ + + − −
+ + + +

EDet J a a a a f

c s
f a f

a a

π η π δ π θ π α
β δθ π αθ

η π δ π
 

But 

0

( )( )
e

c s
R

a a

β δ
η π δ π

=
+ + + +  

So we get 

1 2 1
( )( )( )(1 ){( )((1 ) ) (1 )} 0+ + + + + − + + − + + + + − >

e
a a a R a f f a fπ η π δ π θ π α θ π αθ  
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provided 1eR <  

Since ( ) 0ETr J < and ( ) 0EDet J >  
Then a DFE is asymptotically stable otherwise it is 

unstable if 1eR > . 

Thus we have established the following lemma. 

Lemma 

The disease-free equilibrium P0 is locally stable if 

�� < 1  and unstable if �� > 1  .The quantity ��  is the 

effective basic reproduction number of the disease. It 

represents the average number of new infections produced 

by one infected individual introduced in a susceptible 

population. It is a useful quantity in the study of a disease 

as it sets the threshold for its establishment. If	�� < 1 then, 

the disease-free equilibrium is locally stable. 

3.4. Global Stability of Disease Free Equilibrium Point 

(DFE) 

In this section, we analyze the global stability of disease 

–free steady state. Here we use the method developed by 

[19]. Now we state two conditions which guarantee the 

global stability of the disease free state. We rewrite the 

model system (6-10) as  

( , ),
dX

F X Z
dt

=  

( , ), ( ,0) 0,= =dZ
G X Z G X

dt
                 (17) 

where 

 

( )X S=  
and ( , )Z E I= ,with X∈ℝ denotes the number 

of uninfected individuals and 2Z∈ℝ  denoting (its 

components) the number of infected individuals including 

latent and infectious. The disease-free equilibrium is now 

denoted by 0

0 ( ,0)Q X=  
The following conditions 

1
( )H and 

2
( )H

 

must be met to guarantee a local asymptotic stability: 

1
( )H for 0( ,0),

dX
F X

dt
=

0X is globally asymptotically stable 

(g.a.s), ( , ) ( , ),= −G X Z AZ G X Z

 

2( )H

 

where ( , ) 0≥G X Z

 

for 

( , )X Z ∈Ω                            (18)

 

 

Where 0( ,0)ZA D G X=  is an M -matrix (the off-diagonal 

elements of A

 

are non-negative) and Ω is the region where 

the model makes biological sense.Then the following 

lemma holds: 

Lemma 1 

The fixed point 0

0 ( ,0)Q X=
 

is globally asymptotic stable 

(g.a.s) equilibrium of system (6-10) provided that 1eR <  

(l.a.s) and that the assumptions 
1

( )H  and 
2

( )H  are satisfied. 

We state the following theorem: 

Theorem 1 

Suppose 1eR < . The disease free equilibrium 
0P  is 

globally asymptotically stable. 

Proof. 

The system equation (6-10) can be expressed in the form 

of equation (17) and thus we get  

( , )X s r= , ( , )Z e i= , 

( ) *

( )

a s
A

a

δ π β
δ η π

− + + 
=  − + + 

 

( )

( )

a s
G

a

δ π β
δ η π

− + + 
=  − + + 

 

We need to show that (H2) holds in the system 

equation(6-10).  

( , ) ( , ),= −G X Z AZ G X Z  

( , ) ( , ),⇒ = −G X Z AZ G X Z

 *^

*

*

( )  

( )

( )

( )

0 ( )

0 0

( )

0

 − + +  = −  − + +   

− + +  
  − + +  

 −  
=   

  

 −
=  
 

ea s
G

ia

a s e

a i

es s

i

s s i

δ π β
δ η π

δ π β
δ η π

β

β

 

since *s s≥  then 
� 0G ≥

 

therefore 
1( )H  and 

2( )H  are 

satisfied.

 

Hence the Disease free equilibrium point is 

globally asymptotically stable provided Re<1. 

3.5. Existence and Local Stability of Endemic 

Equilibrium (EE) Point

 In the presence of infection, that is * 0, * 0e i≠ ≠  the 

model system (6-10) has a non-trivial equilibrium point, 

P  called the endemic equilibrium point which is given 

by 

( *, *, *, *, *, *) 0P s v e i h r= ≠ , 

( *, *, *, *, *, *) 0s v e i h r >  . 

We solve for ( *, *, *, *, *, *) 0P s v e i h r= ≠ from system 

equation (6-10) we get  

1

2 2 1

( ) ( )( )
*

((1 ) ) [( )(1 ) ( )( )]

+ + + + +
=

− + + + + + − + + + + +
a a a

v
f f a a f f a a

φπ ρ λ π θ φπ ρ
α θ π λ π α θ π θ π  

*
*

( )

s
e

a

λ
δ π

=
+ +  

*
*

( )( )

s
i

a a

δλ
δ π η π

=
+ + + +

 

2
* *

*
( )

i f v
r

a

η θ
π

+=
+  

Since each of these variable is a function of force of 
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infection, we know i* in terms of force of infection is  

*
*

( )( )

s
i

a a

δλ
δ π η π

=
+ + + +  

where 

2

2 2 1

(1 ) ( ) ( )[(1 ) (1 ) ]
*

((1 ) ) [( )(1 ) ( )( )]

f a f a a
s

f f a a f f a a

α π θ π φ π ρ
α θ π λ π α θ π θ π

− + + + + − + −=
− + + + + + − + + + + +  

It can be noticed that we can express s* as  

1

2 3

*
k

s
k kλ

=
+

 

Where 

1 2
(1 ) ( ) ( )[(1 ) (1 ) ]k f a f a aα π θ π φ π ρ= − + + + + − + −  

2 2
((1 ) )k f f aα θ π= − + + +  

3 2 1
( )(1 ) ( )( )k a f f a aπ α θ π θ π= + − + + + + +

 

*
* .

( ) ( )

s
i

a a

δ λ
η π δ π

=
+ + + +

 
Therefore becomes  

1

2 3

* . .
( ) ( ) ( )

k
i

a a k k

δ λ
η π δ π λ

⇒ =
+ + + + +  

If we substitute the expressions for *i  from above, in 

the equation *ciλ β= , the endemic should  

1

2 3

* . .
( ) ( ) ( )

kc
ci

a a k k

β δ λβ λ
η π δ π λ

= =
+ + + + +  

1

2 3

. .
( ) ( ) ( )

kc

a a k k

β δ λ λ
η π δ π λ

=
+ + + + +  

Also  

4
( )( )

c
k

a a

β δ
η π δ π

=
+ + + +  

Let  

So we get  

2

2 3 1 4( ) 0k k k kλ λ+ − =  

which is a particular case of 

2* ( *) *( * * ) 0f A B Cλ λ λ λ λ= + + =              (19) 

with 

2 0A k= >  since 0 1f< < and all the remaining parameters 

are assumed to be positive. 

1 4
3 1 4 3

3

(1 )
k k

B k k k k
k

= − = −

 

0C =  

From 

1

2 3

k
s

k kλ
=

+  

At DFE 

1
0

3

0,
k

s
k

λ = =  

01 4
3 1 4 3 3

3

(1 ) (1 )
( )( )

c sk k
B k k k k k

k a a

β δ
η π δ π

= − = − = −
+ + + +  

recall that 

0

( )( )
e

c s
R

a a

β δ
η π δ π

=
+ + + +

 

therefore 

3 (1 ) 0eB k R= − >  only if 1eR <  

and 0C=  

The solutions of equation * 0λ = of equation (19) 

corresponds to the disease-free equilibrium point and 

( *) 0f λ =  
corresponds to a situation when the disease 

persists (endemic). 

If we examine the quadratic critically we note that A is 

always positive and B is positive if 1eR <  and negative if 

1eR > .From this result we state the following theorem 

which will be proved by using bifurcation diagram and 

Centre Manifold theorem. 

Theorem2 

The unique endemic equilibrium *E exists 

If 0, 0A B> <  and 
0 1R >  and is locally asymptotic 

stable otherwise it is unstable if
0

1R <  

3.6. Stability Analysis Using Bifurcation Analysis 

Endemic equilibrium points are steady state solutions 

where the disease persists in the population (all states 

variables are positive). We use general bifurcation theory to 

prove the existence of at least one endemic equilibrium 

point for all 
0 1R > [20]. When, 

0
1R > it is expected that the 

disease would be able to invade in the case of a backward 

bifurcation [21] 

The center manifold theory by [22] can be used to 

analyze the stability near the DFE and
0 1R > . 

Recall  

( )
2

1 2 2

{(1 ) ( ) [(1 ) ][(1 ) (1 ) ]}

{ ( ) ( )[(1 ) ]} ( )
e

c f a f f a a
R

f a a f f a a a

β δ α φπ ρ α θ π φ π ρ
θ θ π π α θ π δ π η π

− + + − + + + − + −=
+ + + + − + + + + + + +  

Let cψ β=  be a bifurcation parameter and 1
e

R =   

 be a bifurcation point ,then  
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( )
2

1 2 2

{(1 ) ( ) [(1 ) ][(1 ) (1 ) ]}
1

{ ( ) ( )[(1 ) ]} ( )

f a f f a a

f a a f f a a a

ψδ α φπ ρ α θ π φ π ρ
θ θ π π α θ π δ π η π

− + + − + + + − + −=
+ + + + − + + + + + + +  

and from it  

( )1 2 2

2

{ ( ) ( )[(1 ) ]} ( )

{(1 ) ( ) [(1 ) ][(1 ) (1 ) ]}

f a a f f a a a

f a f f a a

θ θ π π α θ π δ π η π
ψ

δ α φπ ρ α θ π φ π ρ
+ + + + − + + + + + + +

=
− + + − + + + − + −

 

Let 1 2 3 4 5, , , ,s x v x e x i x r x= = = = =  

Thus the model equation (6-10) becomes 

1
1 2 4 1 1

2
2 1 1 2 2

3
3 1 4 3

4
4 3 4

5
5 4 2 2 5

(1 ) (1 ) (1 ) ( )

((1 ) )

( )

 ( )

 ( )

dx
f a f x x a x

dt

dx
f a x f f a x

dt

dx
f x x a x

dt

dx
f x a x

dt

dx
f x f x a x

dt

π ρ α ψ θ π

π ρ θ α θ π

ψ δ π

δ η π

η θ π

= = − Φ + − + − − + + +

= = Φ + + − − + + +

= = − + +

= = − + +

= = + − +

 (20) 

 

And the jacobian matrix of system (20) at the 

equilibrium is given by  

0

1 1

1 2

( ) 1

2

( ) (1 ) 0 0

((1 ) ) 0 0 0

0 0 ( ) 0

0 0 ( ) 0

0 0 ( )

− + + − − 
 − − + + + 
 = − + +
 − + + 
 − + 

E

a f x

f f a

J a x

a

f a

θ π α ψ
θ α θ π

δ π ψ
δ η π

θ η π

 (21) 

From equation (21), it can be shown that the Jacobian 

matrix has right eigenvalues given by, 
1 2 3 4 5( , , , , )Tw w w w w w=

 

 

Where 

4 0w >
 

free 

1 1 2
1 4

1 1 2 2

[(1 ) ]

{ ( ) ( )[(1 ) ]}

x f f a
w w

f a a f f a

ψ θ α θ π
θ θ θ π π α θ π

− − + + +=
+ + + + − + + +  

1 1
2 4

1 2 2
( ) ( )[(1 ) ]

x
w w

f a a f f a

ψθ
θ θ π π α θ π

−=
+ + + + − + + +  

3 4

( )a
w w

η π
δ

+ +=  

2 1 1
5 4

1 2 2

1
{ }

( ) ( )((1 ) )

f x
w w

a f a a f f a

θ ψ θη
π θ θ π π α θ π

= −
+ + + + + − + + +  

Similarly, the left eigenvalues is given by 

1 2 3 4 5( , , , , )Tv v v v v v=  

where 

1v > 0 free 

1 1
2

1

( )a v
v

θ π
θ

+ +=  

1 1
3

1 ( )( )

x v
v

x a a

ψδ
ψδ η π δ π

=
− + + + +

 

5 0v =  

After computing the right and left eigenvalues, we have 

theorem (2.5) in [23] to establish the conditions for the 

existence of backward bifurcation by determining the sign 

of a and b as indicated in the theorem. 

3.7. Computation of a and b 

From the normalised model system (20) the associated 

non-zero partial derivatives of F at disease free equilibrium 

are given by 

2

1

1 4

f

x x
ψ∂ = −

∂ ∂
 

2

3

1 4

f

x x
ψ∂ =

∂ ∂
 

2

, , 1

22

31

1 1 4 3 1 4

1 4 1 4

1 1 4 3 1 4

2 2

2 1 1 4

1 3

1 1 2 2

(0,0)

[(1 ) ]
( )

{ ( ) ( )[(1 ) ]}

=

∂
=

∂

∂∂
= +

∂ ∂ ∂ ∂
= − +

− + + +
= −

+ + + + − + + +

∑
n

k

k i j

k i j i j

f
a v w w

x x

ff
v w w v w w

x x x x

v w w v w w

f f a x w
v v

f a a f f a

ψ ψ
α θ π θ ψ

θ θ θ π π α θ π

 

Thus a0 > 0 if v1 > v3

 2

, , 1

(0,0)n
k

k i

k i j i

f
b v w

x ψ=

∂=
∂ ∂∑

 
2

1
4

1

f
x

x ψ
∂ = −

∂ ∂  

2

3
4

1

f
x

x ψ
∂ =

∂ ∂  

22

31

1 1 3 1

1 1

2 1 1 4 4

1 3

1 1 2 2

[(1 ) ]
( )

{ ( ) ( )[(1 ) ]}

∂∂
= +

∂ ∂ ∂ ∂
− + + +

= −
+ + + + − + + +

ff
b v w v w

x x

f f a x x w
v v

f a a f f a

ψ ψ
α θ π ψ θ

θ θ θ π π α θ π

 

Thus  b< 0 if  v1< v3 

Then the following theorem must be satisfied. 

Theorem 3 

If 0 ,b<0.a >  when 0ψ < with 1,0ψ ≪ is unstable, 

there exists a locally asymptotically stable negative 

equilibrium, when 0 1ψ< ≪ , 0 is stable and a positive 

unstable equilibrium appears. 

Figure 2 illustrates a forward bifurcation of the force of 

infection *λ at equilibrium against the basic reproduction 

number 
0R  of the basic model (6-10). It is observed that as 

0R  increases to one, the disease also increases as a result of 
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lack of vaccination occurs when
0 1R < . When

0 1R = , the 

disease free equilibrium (DFE) and the endemic 

equilibrium point (EEP) co-exists this implies that the 

disease cannot be wiped out of the community due to a 

high endemic level. It is also observed that when 
0 1R > the 

disease continues to persist. Hence theorem 2 holds. 

 

Figure 2. Forward bifurcation at 
0 1R <   

3.8. Global Stability of Endemic Equilibrium Point 

Global stability of the EE is explored via the 

construction of a suitable Lyapunov function. Since the 

DFE is locally stable this will suggest local stability of the 

EE for the reverse condition as in [7], we only investigate 

the global stability of the endemic equilibrium. 

Theorem 4 

If
0 1R > , then the system has a unique EE point *P  

which is GAS in D . 

Proof.  

Consider the following function.  

1 2 3

4 5

( * ln ) ( * ln ) ( * ln )

( * ln ) ( * ln )

= − + − + −
+ − + −

V A s s s A v v v A e e e

A i i i A r r r
    (22) 

1 2 3

4 5

* * *
' (1 ) ' (1 ) ' (1 ) '

* *
(1 ) ' (1 ) '

= − + − + −

+ − + −

s v e
V A s A v A e

s v e

i r
A i A r

i r

      (23) 

If we substitute the expressions for ', ', ', ', ', 's v e i h r

from equation (6-10) 

We get  

1 1

2 1 2

3 4

5 2

*
' (1 )[(1 ) (1 ) (1 ) ( ) ]

*
(1 )[ ((1 ) ) ]

* *
(1 )[ ( ) ] (1 )[ ( ) ]

*
(1 )[ ( ) ]

= − − Φ + − + − − + + +

+ − Φ + + − − + + +

+ − − + + + − − + +

+ − + − +

s
V A a f v csi a s

s

v
A a s f f a v

v

e i
A csi a e A e a i

e i

r
A i f V a r

r

π ρ α β θ π

π ρ θ α θ π

β δ π δ η π

η θ π

 

1 1

1 2 2

2 1

3 4

2
5 2

*
' (1 )[ *( * ) (1 ) * (1 )

*
( )]  (1 )[((1 ) ) *

*
((1 ) ) (1 ]

* * * * *
(1 )[ ] (1 )[ ]

* *

( * *)*
(1 )[ ]

*

= − + + + − − + −

− + + + + − − + + +

− − + + + + −

+ − − + − −

++ − + −

s
V A s ci a f v f v

s

v
s ci a A f f a v

v

s
f f a v s

s

e cs i i e
A csi e A e i

e e i i

i f vr
A i f v r

r r

β θ π α α

β θ π α θ π

α θ π θ

β δβ δ

η θη θ

 

1 1

2 2

1 3

2

4 5 2

*
' (1 )[ ( * * ) ( )( * )

*
(1 )( *)]   (1 )[((1 ) )( * )

* * *
( *)] (1 )[ ]

*

( * *)* * *
(1 )[ ] (1 )[ ]

* *

= − − + + + −

+ − − + − − + + + −

+ − + − −

+
+ − − + − + −

s
V A c s i si a s s

s

v
f v v A f f a v v

v

e cs i
s s A csi e

e e

i f vi e r
A e i A i f v r

i i r r

β θ π

α α θ π

βθ β

η θδδ η θ

 

Further simplification yields 

2 2

1 1 2 2

1 1

2 1 3

4 5

5

* *
v' (1 ) ( ) (1 ) [(1 ) ]

* * *
(1 )(1 ) * *  (1 )(1 ) (1 )

* *

* * * * *
(1 )(1 ) (1 )(1 )

*

* * * *
(1 )(1 ) (1 )(1 )

* *

(1

= − − + + − − − + + +

+ − − + − − −

+ − − + − −

+ − − + − −

+ −

s v
A s a A v f f a

s v

s s s v
A i cs i A v f

s s i s v

v s e s i e
A s A csi

v s e sie

i e i r i r
A e A i

i ei r ir

r
A

θ π α θ π

β α

θ β

δ η

2

* *
)(1 )

*
− v r

f v
r vr

θ

 

Which can in same way be written a 

2 2

1 1 2

2

* *
' (1 ) ( ) (1 )  [(1 )

] ( , , , , )

= − − + + − − −

+ + + +

s v
v A s a A v f

s v

f a F s v e i r

θ π α

θ π
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where  

1 1

2 1 3

4 5

5 2

* * *
(1 )(1 ) * * (1 )(1 ) (1 )

* *

* * * * *
(1 )(1 ) (1 )(1 )

*

* * * *
(1 )(1 ) (1 )(1 )

* *

* *
(1 )(1 )

*

( , , , , ) − − + − − −

+ − − + − −

+ − − + − −

+ − −

= s s s v
A i cs i A v f

s s i s v

v s e s i e
A s A csi

v s e sie

i e i r i r
A e A i

i ei r ir

r v r
A f v

r vr

F s v e i r β α

θ β

δ η

θ

 

where F

 

is non-positive using a modified version of 

[24],[25]and[26].Thus, 0F ≤  for some , , , , 0.s v e i r > Hence 

0
dV

dt
≤  for all , , , ,s v e i r

 

and is zero when 

*, *, *,= = =s s v v e e *, *i i r r= = .  

Therefore,the largest compact invariant set in D  such 

that 0
dV

dt
=  is the singleton {� ∗}  which is the endemic 

equilibrium point. Invariant principle of [27] guarantee that 

� ∗  is globally asymptotically stable (GAS) is
0

D , the 

interior of D . Thus we have proved theorem 4. 

 

4. Simulation and Discussion  

The main objective of this study was to assess the impact 

of immunization strategies on the transmission dynamics of 

the disease. In order to support the analytical results, 

graphical representations showing the variations in 

parameters with respect to different state variables have 

been presented in this section.  

Since, most of the parameters were not readily available; 

it was found convenient to estimate them just for 

illustrations purposes on how the model would behave in 

different real situations. Table 2 shows the set of parameter 

values which were used in the simulation. 

Table 2. Parameters used in model simulations 

Parameter Value Source 

f  0.5 Estimated 

π  0.45/year  Estimated 

1θ  0.7/year Estimated 

2θ  0.8/year Estimated 

α
 

0.36/year Estimated 

ρ
 

0.7
  

Estimated 

η
 

0.6/year  Estimated 

δ
 

0.3/year  Estimated 

a
 

0.2/year  Estimated 

 

Figure 3. Susceptible population in an outbreak, varying the proportion of 

newborns vaccinated (phi=0.0, 0.5, 1)  

Figure 3 shows simulations with different proportions of 

the newborns vaccinated. As the outbreak occurs later, the 

vaccination campaign starts to produce effects, decreasing 

the total number of susceptible humans; such a decrease in 

susceptible humans will automatically render to a decrease 

of the sick humans and hence control the disease eruption.  

 

Figure 4. Infected population in an outbreak, varying the proportion of 

newborns vaccinated (phi=0.0, 0.5, 1)  

Figure 4 shows simulations with different proportions of 

the newborns vaccinated. As the outbreak occurs later, the 

vaccination campaign starts to produce effects, decreasing 

the total number of infected humans; such a decrease in 

sick humans will automatically render to eradication of the 

VZV from the community. Vaccination campaign centered 

in newborns is a best for the future of a country, but does 

not produce instantly results to fight the disease. To achieve 

immediate results, it is necessary to use random mass 

vaccination, which means that it is necessary to vaccine a 

significant part of the population. 
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Figure 5. Susceptible population in an outbreak, varying the proportion of 

susceptible vaccinated (theta1=0.0, 0.5,1)  

It can be seen from Figure 5 that, more increase in 

vaccination proportion of susceptible adults, tend to reduce 

the proportion of susceptible and as a result reduction in 

number of sick humans and hence chickenpox diminishes. 

 

Figure 6. Susceptible population in an outbreak, varying the dose two 

coverage (theta2=0.0, 0.5,1) . 

It can be seen from Figure 6 that the more increase in the 

coverage of dose two among the humans ,is the more the 

reduction in the proportion of susceptible but in a small 

amount this is due to the fact that susceptible humans are 

not directly related to individual who receive second dose , 

susceptible humans will receive dose two only if they had 

already received dose one otherwise they do not receive 

dose two such a condition is what made a slight decrease in 

susceptible population even when more individuals are 

vaccinated in dose two because such people might be 

newborns or recruits hence not or less affecting population 

of susceptible. So in general this practice has less but 

significant impact in reducing the disease. 

 

Figure 7. Recovered population in an outbreak, varying the proportion of 

newborns vaccinated (phi=0.0, 0.5, 1)  

It can be seen from Figure 7 that the number of 

recovered individuals increases with increase in the 

vaccination coverage of newborns, it can be seen that when 

no newborns are vaccinated there is increase in the 

recovered populations, this might be due to natural 

immunity of the sick ones, and a corresponding decline is 

perhaps due to loss of immunity which in fact wanes with 

time. In the Figure 7, with the graph colored green, it can 

be noted that with a 50% of newborns being vaccinated, 

there is a significant increase in the population of recovered 

humans. However as time increases we note a slight decline 

in the recovered humans, this agrees with our intuition that 

the first vaccine wanes with time this calls for the next 

boosting up vaccine coverage. The top most graph, colored 

blue of Figure 7 shows the maximum proportion of 

recovered humans, when the vaccination coverage is 

100% ,we see that the graph is increasing and retain almost 

constant after reaching the maximum point this suggest that 

when vaccination coverage is optimal then the disease can 

be eradicated from the community. 

5. Sensitivity Analysis 

Sensitivity analysis is used to determine how “sensitive” 

a model is to changes in the value of the parameters of the 

model and to changes in the structure of the model. 

Sensitivity analysis helps to build confidence in the model 

by studying the uncertainties that are often associated with 

parameters in models. Sensitivity indices allow us to 

measure the relative change in a state variable when a 

parameter changes. Sensitivity analysis is commonly used 

to determine the robustness of model predictions to 

parameter values (since there are usually errors in data 

collection and presumed parameter values). Thus we use it 

to discover parameters that have a high impact on R0 and 

should be targeted by intervention strategies. If the result is 

negative, then the relationship between the parameters and 

R0 is inversely proportional. In this case, we will take the 

modulus of the sensitivity index so that we can deduce the 

size of the effect of changing that parameter. On the other 

hand, a positive sensitivity index means an increase in the 
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value of a parameter.  

The explicit expression of R0 is given by the equation 14. 

Since R0 depends only on six parameters, we derive an 

analytical expression for its sensitivity to each parameter 

using the normalized forward sensitivity index as by [28] as 

follows:  

0 0

0

1R

c

R c

c R

∂= × = +
∂

Ύ  

0 0

0

1R R

R
β

β
β

∂= × = +
∂

Ύ  

0 0

0

 0.6842
R R

R
δ

δ
δ

∂= × = +
∂

Ύ  

The rest of sensitivity indices for all parameters used in 

equation (14) can be computed in the similar approach. 

Table 3 shows the sensitivity indices of R0 with respect to 

the six parameters.  

Table 3. Sensitivity indices of R0 with respect to each parameter 

Parameter Sensitivity Index 

c  +1 

β  +1  

 
δ  0.6842 

η
 

-0.4800 

a
 

-0.3344  

π
 

-0.7524  

From Table 3, we can obtain 0 0 1
R R

c β= = +Ύ Ύ , this means 

that an increase in c or β  will cause an increase of exactly 

the same proportion in R0. Similarly, a decrease in c or β  

will cause a decrease in R0, as they are directly 

proportional. We can also note that η or a or 0π <  hence 

these parameters are inversely proportional to R0. 

It can be seen that, the most sensitive parameters are c  

and β
 
followed by per followed by π  then δ  , then η  

and the least sensitive parameter is a .  

Therefore, to minimize VZV transmission in a 

population, this study recommends that, the combination of 

vaccination and treatment should be implemented. This is 

due to the fact that, vaccination reduces the likelihood of an 

individual to be infected, treatment of latently infected 

people reduces the progression rate to infectious stage and 

treatment of infectious people will stop them from 

transmitting the disease. 

6. Conclusion 

In this paper, we have formulated a deterministic 

mathematical model for transmission dynamics of VZV 

with vaccination. From the model we have derived the 

effective reproduction number from which we have 

deduced the basic reproduction number. The effective 

reproduction number computed has been used to measure 

the relative impact for individual or combined intervention 

for effective disease control. We have derived both the 

Disease Free Equilibrium (DFE) and the Endemic 

Equilibrium points (EE) and proved that the DFE is locally 

asymptotically stable (l.a.s) when 1
e

R <  and the EE point is 

Globally Asymptotically Stable (G.A.S). In the absence of 

disease-induced death, we prove that the transcritical 

bifurcation at 
0 1R = is supercritical (forward).  

We have performed sensitivity analysis on the basic 

reproduction number from which we have noted that the 

most sensitive parameters are the probability of 

transmission of the disease from an infectious individual to 

a susceptible individual per contact,
 
β , per capita contact 

rate ,c, per capita birth rate, π  and the progression rate 

from latent to infectious stage, δ . Numerical simulations of 

the model have shown that, the combination of vaccination 

and treatment is the most effective way to combat the 

epidemiology of VZV in the community. 
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