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Abstract: During the analysis of statistical data, one of the most important steps is the estimation of the considered 

parameters model. The most common estimation methods are the maximum likelihood and the least squares. When the data are 

considered normal, there is equivalence between the two methods, so there is no privilege for one or the other method. 

However, if the data are not Gaussian, this equivalence is no longer valid. Also, if the normal equations are not linear, we make 

use of iterative methods (Newton-Raphson algorithm, Fisher, etc ...). In this work, we consider a particular case where the data 

are not normal and solving equations are not linear and that it leads to the equivalence of the maximum likelihood method at 

least squares but modified. At the end of the work, we concluded by referring to the application of this modified method for 

solving the equations of Liang and Zeger. 
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1. Introduction 

The frequency of the grouped data in biology, 

epidemiology and the problems of health in general is at the 

origin of the increasing interest of the biostatisticians for the 

methods of statistical analysis which are adapted specifically 

to the correlated data. The choice of a statistical model 

among a family of models and an analysis method among so 

others, is not an easy task. This choice depends on the 

applicability, the aim, the structure of the sample or the 

degree of dependence inside the individual groups. For the 

statistical data analysis, the most frequently used models are 

those of regression. The linear regression, whose objective is 

the study of the relation between a variable response 

(explained variable) and one or more explanatory variables, 

is based on the linear models (LM). In order to explain 

variability between the various individuals, random effects 

were introduced into the explanatory part of the traditional 

linear models. That gives rise to the linear mixed models 

(LMM) or random effects models, (sometimes, noted L2M 

by certain authors). 

The adequate model to analyze longitudinal data as well as 

repeated measurements, balanced and especially unbalanced, 

is the mixed linear model. This case, in which the outcomes 

are approximately jointly normal, has been studied by many 

authors (Harville1977; Laird and Ware1982; Jennrich and 

Schluchter 1986; Lindstrom and Bates 1988; Chi and Reinsel 

1989; Diggle et al. 1994; Foulley et al.2000; Littell et al.2000; 

Park et al. 2001; Park and Lee 2002). A book treating these 

models is that of Verbeke and Molenberghs 2000. The 

problems of calculation are partly solved with the 

introduction and the implementation of the PROC MIXED 

procedure from the SAS system, Littell et al.1996 or by 

BMDP5V (Dixon 1988); Pinheiro and Bates (2000); Galecki 

and Burzykowski;… In this first approach, the data are 

supposed to follow a normal distribution and the used 

method of estimate, is the maximum likelihood. However, 

when the data are not normally distributed, it is preferable to 

use other models and other methods of estimate. A recent 

method introduced by Liang and Zeger 1986, consists of 

using the marginal distributions of the data at each moment; 

the data are not supposed to follow a gaussian distribution 

but rather a law belonging to the exponential families. The 

method of resolution is based on solving equations known as 

generalized estimating equations (GEE). The implementation 

of this method is in the GENMOD procedure of the SAS 

system, Littell et al.1996. Several works has been done 

thereafter in this field. One can quote those of Zhao and 
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Prentice 1990; Prentice and Zhao 1991; Fitzmaurice and 

Laird 1993; Park 1993; Crowder 1995; Crowder 2001; 

McCulloch and Searle; Jiang; Stroup... In this paper, we are 

interested, on the one hand, in the estimate of the mixed 

linear model parameters; on the other hand, in the resolution 

of the generalized estimating equations. In section2, we 

consider a mixed linear model. In section 3, we introduce the 

generalized estimating equations and their method of 

resolution. We conclude, in section 4, by showing the 

relationship between the maximum likelihood method in the 

generalized linear models framework and the resolution of 

the generalized estimating equations method named as the 

iteratively reweighted least squares (IRLS). 

2. Model 

Let us consider the mixed linear model: 

y� 	= 	 X�α	 + 	Z�b� 	+ 	e�                        (1) 

Where y� are observations on the ith individual? α: vector 

of unknown population parameters, of dimension (p×1). X�: a 

design matrix linking α to y�, known, of dimension (n�×p) 

with n�	the individual number of observations. b�: unknown 

random vector of the individuals effects, of dimension (k×1). Z� : a design matrix linking y�  to b� , known, of dimension 

(n�×k). The errors: are independent variables. These models 

are often called two-stage random-effects models with the 

stages as follows: 

Stage1: For each individual unit y� =X�α+Z�b�+e�, i=1,…,m. 

The variables e�	are independent and follows N(0,�
). Here �
 is an (n� × n�) positive-definite covariance matrix; α and b� are considered fixed. In this stage, we are interested in the 

intra-individuals variation ('within individual variation') and 

which is formulated by �
. 
Stage2: The b�  are supposed independent and follow 

N(0,D). Here D is a (k×k) positive-definite covariance matrix; 

the α parameters are fixed. In this stage, we are interested in 

the inter-individuals variation ('between individual variation') 

and which is formulated by D. 

The y�	are independent and follow N(X�α, Z�DZ��+�
). To 

simplify calculations, we can take �
 =σ²I (homoscedastic 

models), I is the n� × n� identity matrix. In our case, let us 

consider the general case by taking �
 	and D unspecified (but 

diagonal), generated by an unknown parameter θ, of 

dimension (q×1), parameter such as: �
 	=	�
(θ) and D = D(θ). 

A generalization of this mixed linear model was done by 

Jones and Boadi-Boateng 1991, where �
  is not necessarily 

diagonal; e�	is composed of an autoregressive component and 

a measurement error. In this paper, we are much more 

interested in the fixed effects estimate, by using the 

maximum likelihood or the restricted maximum likelihood 

for the mixed linear models and the resolution of the 

generalized estimating equations whose solution is an 

estimate of the fixed effects; consequently we do neither 

insist on the random effects nor on the parameter generating 

the variance-covariance matrix of the considered model. 

 

2.1. Estimate of the Model Parameters 

2.1.1. Estimation of α and �� by Assuming that the Variance 

is known 

The estimate of α is defined by the equality 

�� =	(	∑ �
�
 �
��	�
 	)��(∑ �
�
 �
��	�
�
)              (2) 

Where 

���( 
) = �
=Z�DZ��+�
, ! = 1, … ,$                (3) 

The estimate of α is that maximizing the likelihood based 

on the marginal distributions of the data and it is with a 

minimum variance. The estimate of b�  is given by: %&'  = 

()
��
��(�
 −	�
��) . It is not the maximum likelihood 

estimate; but the empirical Bayes one's, given by: %&' = E 

( b� /  
 , ��, +) . Since ��  and %&' 	 are linear functions for �
 , 

expressions of their standard errors can be easily calculated 

and are given by : ���(��) = (	∑ �
�
 �
��	�
 	)�� 

���,%&'- = 	()
�.�
�� − �
�� /�
(	0�
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2.1.2. Estimation of α and ��	Assuming that the Variance is 

Unknown 

We estimate the variance or the parameter θ who generates 

it. There are two estimates for θ. The maximum likelihood 

(ML) estimate, noted by +2 and the restricted maximum 

likelihood (REML) estimate, noted by +3425 . To calculate 

these two estimates, we apply the EM algorithm (Dempster 

et al.1977; Dempster et al.1981). 

Likelihood function: The log-likelihood noted by λ of the 

data  �, … ,  6 is: 

7 = 	Cst − ;12=0>?@



|�
| − ;12=0( 
 − X�α	 − 	Z�b�)�



�
��	( 
 − X�α	 −	Z�b�) 

Where |Vi| is the Vi determinant; cst represents a constant. 

Restricted likelihood function: It is well-known that the 

maximum likelihood estimates of the variance components 

are biased. Indeed, in the estimate of the maximum 

likelihood we do not take into account that the fixed effect α 

is also estimated. The method introduced by Patterson and 

Thompson 1971, consists of modifying the likelihood in a 

restricted likelihood which takes into account the estimate of 

the fixed effect and which gives unbiased estimates of the 

variance components. The logarithm noted by 73  of the 

restricted likelihood of the data  � , … ,  6 is: 

73 = Cst − B�CD∑ >?@
 |�
| − B�CD∑ ( 
 − X�α	 − 	Z�b�)�
 �
��	( 
 −
X�α	 − 	Z�b�) 	− B�CD∑ >?@
 E�
��
��	�
E  

3. Marginal Models. Generalized 

Estimating Equations 

3.1. Introduction 

The first and the most traditional approach, is based on the 

maximum likelihood function but it proved to be insufficient 
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because it leads to asymptotically biased estimators when the 

variance-covariance matrix is not completely specified. An 

improvement can be considered by using the restricted 

likelihood function. However, these two methods are based 

on knowledge of the distributions which are frequently 

normal (or belonging to the exponential families). Therefore, 

this maximum likelihood approach is applied when the data 

are approximately normal. The second approach that we will 

consider is applied for normal or not normal data, but it is 

often applied for the second case. This more recent 

methodology based on the generalized linear models (GLM), 

Mc Cullagh and Nelder1989, and on the estimate of quasi-

likelihood (QL) developed by Wedderburn 1974, was a great 

alternative and which leads thereafter to the generalized 

estimating equations (GEE) developed by Liang and Zeger 

1986. Many works were published thereafter in this context, 

which is that of the marginal model. We can quote, for 

example, Liang and Zeger 1986; Zeger, Liang and Albert 

1988; Zhao and Prentice 1990; Prentice and Zhao 1991; 

Fitzmaurice and Laird 1993; Park 1993; Crowder 1995; 

Crowder 2001; among others. 

3.2. Longitudinal Data Analysis Using the GLM 

3.2.1. Definition of a Generalized Linear Model 

Let us consider  �, … ,  F  independent random variables, 

such as:  
=G
+H
. A generalized linear model is defined by: a) 

a distribution law of the H
. b) A matrix X of dimension (N×t), 

of explanatory variables; this defines a linear predictor η=Xβ. 

c) a link function g, invertible such as g(µ)=Xβ. 

3.2.2. Model 

In this part, we propose another extension of the GLM to 

analyze longitudinal data; these data are not supposed to 

follow a gaussian probability distribution but we suppose at 

each moment only one form of the marginal distribution 

(Liang and Zeger 1986). Let us consider  
I: outcomes vector 

of the ith individual at the moment t, of dimension (p×1); 

t=1...,J
; i=1...,K. K
I  : covariates vector, of dimension (p×1). 

 
 = ( 
� ,  
C , … ,  
LM)� : outcomes vector, of dimension 

(J
 × 1)  and �
 = (�
 , �
 , … , �
LM)� : matrix of the 

covariates values, of dimension (J
 × N) for the ith subject. 

Let us suppose that the marginal density of  
I  is given by: 

O( 
I; +
I;∅) = RKNSTU 
I ///+
I − /%(+
I)V//�(∅)V + /W( 
 ; ∅)1 (4) 

Where 	+
I = ℎ(Y
I) , 	Y
I = K
IZ  and a; b; c known 

functions. The h function is monotonic and differentiable. 

With this formulation, we have (Mc Cullagh et Nelder 1989): [( 
I) = %\(+
I); Var( 
I) = %\\(+
I)/^ 

Where primes in b′ and b′′ denotes first and second 

differentiation with respect to θ from the function b, which is 

supposed to be known. ^ is a scale parameter. 

3.2.3. Generalized Estimating Equations 

Let us consider 	� = _

`
a�(�)_


`
a�(^) . The �(�)  matrix 

which is of dimension (n×n), is called working correlation 

matrix. We suppose that the data are balanced	(J
 = J). The 

generalized estimating equations are given by: 

∑ (
��
��b

 = 0	                                   (5) 

Where, (
 = d.%\ /(+
I /)1/dZ	 =  _
Δ
�
 , where _
 =d!�@(%\\(+
I)), matrix of dimension (nxn); b
 =  
 -a’(+
I) . 
The β estimate, noted by Zfg is the solution of equation (5). 

3.3. Maximum Likelihood for GLM 

Let us suppose that the marginal density of  
I is given by:  

O( 
 ; +
;∅) = RKNSTU 
 ///+
 − /%(+
)V//�(∅)V + /W( 
 ; ∅)1 
The log-likelihood h
  is given by: h
(+
 , ∅;  
) = STU 
 ///+
 −/%(+
)V//�(∅)V + /W( 
 ; ∅)1 
For N observations, we have: L(β)=∑ h

 .  

ih
iZj =
 
 − G
���( 
) 	

iG
iY
 K
j  
The likelihood equations are then given by: 

0  
 − G
���( 
)
 	iG
iY
 K
j; k = 1,… , l 
These likelihood equations, which are equivalent to the 

GEE equations of Liang and Zeger 1986, are nonlinear 

according to β. Their resolution to find the β estimator, noted 

by Zf , requires iterative method, which will be discussed 

below. The algorithm that we will use is the Fisher Scoring 

algorithm and thus, the rate of convergence of β to 	Z'  , 

depends on the information matrix. We know that for a 

generalized linear model, we have:  

[ m iCh
iβniopq = −[ mih
iβn
qmih
iopq = 

−[ r sM�tM
uvw(sM) 	xtMxyM K
z sM�tM

uvw(sM) 	xtMxyM
/K
j{/=− |Mp|Mn

uvw(sM) (xtMxyM)C 

Thus: [ m xa5(})
x~nx�pq = −∑ |Mp|Mn

uvw(sM) (xtMxyM)C, k = 1, … , l
  

The information matrix, whose elements are: m xa5(})
x~nx�pq , is 

noted and given by : Inf=X′WX, where W is the diagonal 

matrix, of which elements according to the main diagonal, 

are :�
 = �
uvw(sM) (xtMxyM)C 

3.3.1. Algorithm of Resolution 

We recall that the Newton-Raphson algorithm is given by:  

β��� = β� − (H�)��. �� 

The H elements are:	 xa5(})x~nx�p. Those of q are: 
x5(})
x�p  

The Fisher scoring algorithm is: 

β��� = β� + (Inf�)��. ��	                      (6) 

From where: 
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Inf�β��� = Inf�β� + ��                         (7) 

Where the Inf� elements, are given by: [(−	 xa5(})x~nx�p) , 

evaluated at β� . The right part of the equation (7) is the 

vector whose elements are given by: 

∑ r∑ |Mp|Mn
uvw(sM) (xtMxyM)C /βj�{
 /j +∑ (sM�tM�)

uvw(sM)
 K
z xtM
xyM. 

Thus β� + �� = �′���� , where �� 	 is the vector whose 

elements are: �� = ∑ K
jβj�j + ( 
 − G
�) xyM�xtM�  = Y
� + ( 
 −
G
�) xyM�xtM�	 . The equation (7) becomes (	�\���)β��� =
	�′���� . These equations are the normal equations in the 

weighted least squares method to fit a linear model, with �� 

like dependent variable; X, the model matrix and the 

matrices ��  are the weights. The solutions of these 

equations are given by: β��� = (	�\���)�� ( �′����) . The z vector is a 

linearized form of the link function at µ, evaluated at y and is 

given by: @( 
) ≅ @(G
) + (  
 − G
)@\(G
) = Y
 +( 
 − G
) xyMxtM = �
 .  The variable z has ith element 

approximated by �
�for the kth cycle of the iterative scheme. 

At this cycle, we make a regression of ��	on X with weights ��  to obtain a new estimate β��� . This estimate yields a 

new linear predictor value and which is given by η��� = � β���and a new value for the dependent variable, ���� for the 

next cycle. The maximum likelihood estimate is the limit of β�as k→∞. we remark that the estimator of the generalized 

linear model is equivalent at that of weighted least square but 

modified since the weight change at each cycle of the process, 

this last method is called iterative reweighted least squares 

(IRLS). To begin the iterative process, we take y as initial 

value of the µ estimate. So we have the initial estimate of the 

weight matrix W and then, the initial estimator of β. 

4. Conclusion 

We outlined the maximum likelihood method applied to a 

mixed linear model. Thereafter, we introduced the 

generalized linear models (GLM) as well as the generalized 

estimating equations (GEE). We showed, on the one hand, 

that the maximum likelihood equations for the GLM are the 

same as that of Liang and Zeger (the GEE equations). On the 

other hand, we showed the existing relationship between the 

maximum likelihood for the GLM and the GEE resolution 

method which is the iteratively reweighted least squares ones 

(IRLS). 
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