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Abstract: This paper introduces basic concepts describing a hierarchical algebraic structure called multisorted tree algebra. 
This structure is constructed by placing multisorted algebra at the bottom of a hierarchy and placing at other intermediate 
nodes the aggregation of algebras placed at their immediate subordinate nodes. These constructions are different from the one 
of subalgebras, homomorphic images and product algebras used to characterize varieties in universal algebra theory. The 
resulting hierarchical algebraic structures cannot be easily classified in common universal algebra varieties. The aggregation 
method and the fundamental properties of the aggregated algebras have been presented with an illustrative example. 
Multisorted tree algebras spans multisorted algebra concepts and can be used as modelling framework for building hierarchical 
abstract data types for information processing in organizations. 
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1. Introduction 
There are two main approaches to the study of universal 

algebra as mentioned in [1]. The first approach looks for the 
constructions on algebras which produce new algebras of the 
same type. Here, the three main constructions available for 
producing new algebras from given ones are: the construction 
of subalgebras, homomorphic images and product algebras. 
Classes of algebras which are closed to such constructions 
are called varieties [2]. Secondly, to the study of abstract 
algebras involves the study of terms and identities. Here, the 
objective is to define or classify algebras according to the set 
of identities or axioms they satisfy [3]. A more general 
approach to study algebraic structures and structural thinking 
is the category theoretical one as in [4].  

Many new algebraic concepts or theories have been 
proposed in universal algebra literature according to the 
specificities of their application areas. One can cite for 
instance, application areas such as multisorted algebras (also 
called many sorted algebras) [5], hidden algebra [6, 7], 
ordered sorted algebra [8]. But other algebraic concepts have 
also been introduced with quite a different description of 
their structures as the coalgebras [9]. The objectives of these 
proposals classified under algebraic engineering research 
have generally been to build algebraic structures for 
modeling specific computational problems in various 
scientific domains or to account for the realities of modern 

software [10].  
However, some complex algebraic computation systems 

cannot be easily modeled and studied by these various 
proposed algebraic structures. An example of such complex 
algebraic structures is the hierarchical computations of data. 
In such systems as shown in Figure 1, algebraic computations 
are done at the bottom nodes of a hierarchical system and the 
results are aggregated and used as inputs for algebraic 
computations at the highest nodes of the hierarchy till the top. 
A specific case of such systems is studied by [11]. 

Among some of the difficulties to study such algebraic 
structures is the fact that they cannot simply be described as 
structures consisting of one or more sets of objects with one 
or more operations on the objects [1, 12]. Hence, strictly 
speaking they are not universal algebra according to the 
definition even though they are constructed from them. Input 
data are given at the bottom nodes to generate a term with a 
hierarchical shape of outputs data that can be studied per 
levels, per path or in different ways. Also, the hierarchy 
studied is different from a diagram in the category of 
universal algebras with the same signature and cannot be 
easily described by classic universal algebras. 

Therefore, there is a need to describe a framework for the 
study of such hierarchical algebraic structures constructed by 
aggregating multisorted universal algebras terms. 
Furthermore, many information systems processing in 
decision making systems of hierarchical organizations are 
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configured in with a structure similar to their hierarchy [13, 
14]. Therefore, the availability of a hierarchical algebraic 
framework will not only expand the algebraic structures 
types but also contribute to giving an appropriate modeling 
framework for studying hierarchical computations. 

The purpose of this paper is to introduce the basic concepts 
of multisorted tree algebra and present an example of such 
structures. We also discuss the used of this framework for 
modeling problems with hierarchical computational 
structures. 

In section 2, we have reminded of the main concepts of 
multisorted algebra. The concepts of aggregations of 
manysorted algebras and fundamentals investigations are 
presented in section 3. In section 4, we introduce multisorted 
tree algebra concepts with the restriction on the same 
signature for algebra on the node of the hierarchy and with 
the construction of algebra in nodes that are different form 
the leaves by aggregation of algebras in the leaves. As an 
illustrative example, a matrix-based multisorted tree algebra 
is presented. In section 5, we discuss about some 
mathematical properties of multisorted tree algebras and their 
questioning in the theoretical framework of universal 
algebras. Section 6 presents the conclusion and perspectives. 

2. Basic Concepts of Classical Algebraic 
Specification Theory  

This section has two subsections. In the first Section we 
describe the concepts of signature, Algebra and 
homomorphism. In the second the concepts of term, equation 
and specification are presented 

2.1. Signature, Algebra, Homomorphism 

The concepts of the signature of a many sorted algebra as 
well as the one of many sorted algebra introduced in this 
section are similar to the definition used by Goguen in [6, 
15]. 

Definition 2.1. (�-sorted set) Let � be a nonempty set, 
whose elements are called sorts, and �-sorted set � is a 
family of sets{��, s ∈ S}. 

Definition 2.2. (�-sorted signature) Let � be a nonempty 
set, with elements called sorts. 
• An � -sorted signature∑  is an (�∗ × �) -sorted set {� (�, �) ∈ �∗ × ��,� }. 
• The elements of ∑�,� are called operation symbols of 

arity �, and rank(�, �); in particular,� ∈ ∑[],� ,s is a 
constant symbol of sort s. 

• ∑is ground signature iff ∑[],� ∩ ∑ = ∅	[],��  whenever � ≠ s′. 
By convention,|∑| = ⋃ ∑ ,�,��,�  and ∑′ ⊂ 	∑  means ∑�	�,� ⊂	∑�,� for each�, �. Similarly, union is defined 

by(∑′ ∪	∑)�,�=∑�	�,� 	∪ ∑�,�. A common special case is 
union with a ground signature! , for which we use the 
notation∑(!) = ∑ ∪ !. 

Definition 2.3. (∑-algebra) Let ∑ be a �-sorted signature. 

A ∑-algebra � is an S-sorted set � with an interpretation 
of ∑ in	�, which is a family of arrows"�#…�%,�: ∑�#…�%,� →[��#…�%,� → ��] for each rank (�(…�) , �) ∈ (�∗ × �), which 
interpret the operation symbols in∑ as actual operations on � . For constant symbols, the interpretation is given 
by"[],�: ∑[],� → ��usually we write just σ for "�#…�%,�(σ)but if 
we need to make the dependance on �and the rank(�, �) 
explicit, we may writeσ�,�+ . The set ��is called the carrier 
of� of sort	�. 

Definition 2.4. (∑-algebra over commutative semigroups) 
Let ∑ be an�-sorted signature. Let(,,∗) = {(,�,∗�)}�∈- be 
an�-sorted signature family of commutative semigroups. A ∑-algebra over (,,∗)is a ∑-algebra � such that �� ⊆ ,�for 
each � ∈ �. 

Definition 2.5. (∑ -subalgebra) Let ∑  be an � -sorted 
signature and �  be a ∑ -algebra. A ∑ -algebra /  is a 
subalgebra of � when the following conditions are satisfied. 
• /� ⊆ ��for each � ∈ �; 
• For each σ ∈ ∑(�,�)with(�, �) ∈ (�∗ × �), the graph of σ�,�0 is include in the graph ofσ�,�+ . 

Definition 2.6. (∑ -homomorphism) Let �  and /  be ∑ -algebras. A ∑ -homomorphismℎ is an � -sorted arrow 
notedℎ:	� → / such that: ℎ�(σ+(2(, … , 2))) = σ0(ℎ�(�(), … , ℎ�(�))), 
for eachσ ∈ ∑(�#…�%,�)  and23 ∈ ��4  for " = 1,… , 6 , and ℎ�(7+) = 70 for each constant symbol7 ∈ ∑[],�. 
2.2. Term, Equation and Specification 

Definition 2.7. (∑-terms) Let ∑ be an �-sorted signature. 
• The �-sorted set8∑ of ∑-terms is the smallest set of 

lists of symbols that contains the constants,∑[],� ⊆ 8∑�, 
and such that givenσ ∈ ∑(�#…�%,�)  and93 ∈ 8∑ �4 , then σ(9(, … , 9)) ∈ 8∑,�. 

• We view 8∑as a ∑-algebra by interpretingσ ∈ ∑([],�) 
as just �, andσ ∈ ∑(�#…�%,�) as the operation sending 
the n-uplet(9(, … , 9))  to the list σ(9(, … , 9)) . Then 8∑is called the ∑-term algebra. 

Theorem 2.1. (Initiality)Given a signature ∑  with no 
overloaded constants and a ∑-algebra M, there is a unique ∑-homomorphism	8∑ → :. 

Definition 2.8.(∑-equations) A ∑-equation consists of a 
ground signature ! of variable symbols (disjoints from ∑) 
plus two ∑(X)-termsof the same sort� ∈ �.We may write 
such an equation abstractly in the form(∀!)9 = 9′  and 
concretely in the form(∀=, >, ?)9 = 9′ when @ = {=, >, ?} 
and the sorts of x, y and z can be inferred from their uses in 9	and in 9’. 

Definition 2.9. A specification is a pair (∑, ,), consisting 
of a signature ∑ and a set , of ∑-equations. 

Remark 2.1. The ∑-term algebra8∑serves as a standard 
model for a specification B = (∑, ∅) . Given ∑  and a 
ground signature !  disjoint from ∑ , we can form the ∑(!)-algebra 	8∑(C)and then view it as a ∑-algebra by 
forgetting the names of the new constants in !; lets denote 
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this ∑-algebra by 	8∑(!).. 
Proposition 2.1. Let A be a ∑ -algebra and an 

interpretation 2:	! → �,  there is a unique ∑-homomorphism2D:	8∑(!) → �extending 2 , in the sense 
that2D�(=) = 2�(=) for each= ∈ !�and� ∈ �. 

Definition 2.10.(satisfaction, variety) 
• A ∑-algebra � satisfies a ∑-equation(∀!)9 = 9′iff for 

every 2: ! → �we have2(9) = 2(9�)  in � , written � ⊨∑ (∀!)9 = 9′ 
• A ∑-algebra � satisfies a set , of ∑-equations iff it 

satisfies each one, written � ⊨∑ ,. We may also say 
that �	 is a B -algebra, and write � ⊨ B where B = (∑, ,). 

• The class of all algebras that satisfy P is called variety 
defined by B. 

Theorem 2.2.Given a specification B = (∑, ,),any two 
initial B-algebra are∑-isomorphic. 

Definition 2.11. The abstract data type (abbreviated ADT) 
defined by a specification B  is the class of all initial B-algebras. 

3. Multisorted Algebras Aggregations 
In this section we introduce a new concept of universal 

algebras aggregation. By so doing, we first introduce the 
concept of aggregation operator which is an operator that 
generate a new algebra supports from the supports of a 
family of algebras. We then show that when this aggregation 
operator is compatible with all operations from a universal 
algebra signature, it generated another universal algebra that 
satisfies the common properties of the aggregated universal 
algebras. The first section describes the aggregation operators. 
Our restriction is on the aggregation of universal algebra with 
the same signature. The second section focus on the 
mathematical properties of aggregated universal algebras. 

3.1. Aggregation Operators, Aggregation of Algebras and 
Homomorphisms 

Definition 3.1. (F-Aggregation operator) Let < ,,∗> be 
a commutative semigroup. Let 6  be an integer and ,) 
denote the cartesian product of , defined by 6-uplets of 
elements in ,. Let,I = ⋃ ,)I)J( . Let � be a set of sorts 
and � = �(…�) ∈ �∗. Let ∑ be an �-sorted signature. Let K��# , … , ��%Lbe a family of sorted sets and �� = ��# × …×��%.

 

A function F: ,I → ,is called an aggregator on ,. 
• A ∗-aggregator on < ,,∗> in an aggregatorF: ,I →,  such that for (=(, … , =M) ∈ ,M ,,,

F(=(, … , =M) ==( ∗ … ∗ =M . 
• An (�,∗) -aggregator is an aggregatorF: ��I → �� 

defined by a family of ∗ -aggregatorsKF�4: ��4I →��4}(N3N) such that for each operation symbol� ∈ ∑�,� 
of arity (�, �)	 where � = �(…�M , the following 
equation is satisfied:  

For eachO , 1 ≤ " ≤ Q , for each R23ST(N3N) ∈ ��4) , F� U�+ VR2(STSW , … , �+ VR2)STSWX =�+RF�#[(23()3], … , F�Y[(23M)3]T 
For a finite 6-uplet ! = (=(, =Z, … , =)) ∈ ,)we denote 

the aggregationF(!)of !byF3J(3J)=3. 
In the literature, the symbol [  generally denotes the 

aggregation operator for the addition operator of finite or 
infinite elements. The union operator ∪is an aggregation 
operator that constructs the union of a family of sets.  

Definition 3.2.(Aggregation of ∑ -algebras over 
commutative semigroups) Let � = {�3}(N3N)be a family of ∑-algebras where each �3 is a ∑-algebra over commutative 
semigroups,3 , 1 ≤ " ≤ 6 . LetF\  be a ∑ -aggregator. The 
aggregation of ∑-algebras in {�3}(N3N)by F\is the �-sorted 

family of sets noted F\(�)� = ]F� V�+^R23STW , _`a	2bb	� ∈∑�,�, � = �(…�) ∈ �∗, 23S ∈ ��S , 1 ≤ " ≤ 6, 1 ≤ O ≤ Qc. 
Theorem 3.1. (Aggregation of ∑ -algebras) Let � ={�3}(N3N) be a family of ∑ -algebras where each�3  is a ∑ -algebra over commutative semigroups ,3 , 1 ≤ " ≤ 6Ei, 

Let F\be a∑-aggregator. The aggregation of ∑-algebras 
in{�3}(N3N) by F\is a∑-algebra. 

Proof. 
The aggregator of �  with F\ is the ∑ -algebra F\(�)defined as follows: 

• For each sort� ∈ � corresponds the support set  

• F\(�)� = ]F� V�+^R23STW , _`a	2bb	� ∈ ∑�,�, � =�(…�) ∈ �∗, 23S ∈ ��S, 1 ≤ " ≤ 6, 1 ≤ O ≤ Qc. 
• For each symbol � ∈ ∑�,�,  where � =�(…�) corresponds the operation �de(+): F\(�)�# ×…× F\(�)�Y → F\(�)� 
• such that: �de(+)RF�#[(23()3], … , F�Y[(23M)3]T =Ffg�+#R(2(S)ST, … , �+%R(2)S)STh 

Definition 3.3. (Aggregation of ∑-homomorphisms) Let ℎ = {ℎ3 : �3 → /3 , 1 ≤ " ≤ 6} be a family of ∑ -homomorphisms of ∑ -algebras over commutative 
semigroups. Let F\be ∑ -aggregator. The aggregation of ∑-homomorphisms in{ℎ3: �3 → /3 , 1 ≤ " ≤ 6} by F\ is the 
function defined as follows: 

For each  FfR�+4(23S)T ∈ F\(�), F\(ℎ)�RF�(�+(23S))T ≔ F�(�0(ℎ�(23S))) 
Theorem 3.2.(Aggregation of ∑ -homomorphisms). Let ℎ = {ℎ3 : �3 → /3 , 1 ≤ " ≤ 6} be a family of ∑ -homomorphisms and let	F\ be a∑ -aggregator. The 

aggregation of ∑-homomorphisms in {ℎ3: �3 → /3 , 1 ≤ " ≤6} by 	F\is a ∑-homomorphism. 
Proof: 
Let � = {�3 , 1 ≤ " ≤ 6}  and 	/ = {/3 , 1 ≤ " ≤ 6}  The 

aggregation of {ℎ3: �3 → /3 , 1 ≤ " ≤ 6} with 	F\ is the ∑ -homomorphism	F\(ℎ):		F\(�) → 	F\(/)  defined as 
follows: 
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For each FfR�+4(23S)T ∈ F\(�), we have 

F\(ℎ)�RF�(�+(23S))T ≔ F�(�0(ℎ�(23S))) 
To prove that the property of homomorphism is satisfied, 

let  σ ∈ ∑�#…�%,� 
let the terms2( = F�#(j+k(2(3)) ∈ 	F\(�)�# ,…, and 2) = F�%(j+%(2)3)) ∈ 	F\(�)�% We have the following equations: F\(ℎ)(�	de(+)(F�#Rj+((2(3)T), … , F�%Rj+)(2)3)T)) = F\(ℎ)(F�#(�	de(+)Rj+((2(3)T), … , F�%Rj+)(2)3)T)) 
becauseFis a ∑-aggregator. = FfR�	de(0)(ℎ�#Rj+((2(3)T, … , ℎ�%Rj+)(2)3)T)T 
by the definition of F\(ℎ) = �	de(0)(F�#(ℎ�#Rj+((2(3)T, … , F�% Vℎ�%(j+)(2)3)W)) 
by de definition of F 

= �	de(0)(F�#(	j0(Rℎ�((2(3)T, … , F�% Vj0)(ℎ�%((2)3)W)) 
becauseℎ�4are homomorphisms 

= �	de(0)(F∑(ℎ)-#(F�#(j0((2(3), … , F\(ℎ)�Y(F�%Rj0)(2)3)T)) 
by the definition ofF\(ℎ). 
3.2. Some Properties of Aggregation of Algebras 

Theorem 3.3. Let(∀!)9 = 9′  be a ∑ -equation. Let � = {�3 , 1 ≤ " ≤ 6}be a family of ∑-algebras such that for 
each1 ≤ " ≤ 6� ⊨∑ (∀!)9 = 9′ThenF\(�) ⊨ (∀!)9 = 9′. 

Proof. 
LetΘ\ an aggregator operator. We assume that the sort of t  and t′  is s ∈ S  Let af: Xf →	Θ\({Ap}(NpNq)  be an 

interpretation of variables from XfinΘ({Apf}(NpNq) There is a 
family of interpretationsapf: Xf →	Apf  such that ais(x) =Θ\({apf(x)}(NpNq) 

Proposition 2.1.implies that for each ", 1 ≤ " ≤ 6there is 
an unique homomorphism2D3�: 8∑(!)� →	�pf  expanding 
aisi.e. such that for= ∈ !, 2D3�(=) = 23�(=) Also, there is a 
unique homomorphism2D3�: 8∑(!)� →	�pf 2D3�: 8∑(!)� →	F({�3�}(N3N)) expanding2�. To verify the 
satisfaction of equation(∀!)9 = 9′ we have: 2D3�(9) = F\({23�(9)}(N3N)) 

=F\({23�(9′)}(N3N)) because �3 ⊨∑ (∀!)9 = 9′ = 2D3�(9′) 
Hence, F\R{�3}(N3N) ⊨∑ (∀!)9 = 9′T 
Corollary 3.1.A ∑ -aggregation of ∑ -algebras from a 

variety defined by is a ∑ -algebra of the same 
variety. 

4. Multisorted Tree Algebra 
We propose in this section the foundational concepts of 

multisorted tree algebra as construction of hierarchy 
structured algebras by placing universal algebras of the same 
signature at each leave of the bottom, and by completing the 
other nodes till the top by aggregation of universal algebras 
of their direct subordinate nodes. This section has three 
subsections. The first presents the concept of valued rooted 
tree. The second introduces the concept of multisorted tree 
algebra as a valued rooted tree of algebras, and the third is 
about basic concepts of algebraic specification in the 
framework of multisorted tree algebra. 

4.1. (u, ∆)-Valued Rooted Tree 

The concept of rooted trees defined below is used to 
describe hierarchical structure of some organization. The root 
is the highest authority and the leaves are the executives. 

4.1.1. Tree, Rooted Tree, Subtree 
1. A tree∆= (∆w, ∆() is a connected undirected graph with 

no simple circuits. The set ∆wis the set of nodes or 
vertices, and the set∆⊆ ∆w × ∆( is the set of edges or 
arcs. 

2. A rooted tree noted< ∆, x > is a tree ∆in which a node 
R has been designated as the root and every edge is 
directed away from the root. 

3. Let ∆be a tree, if A is a node in ∆wother than the root, 
the parent or the direct hierarchical superior of A is the 
unique node B in ∆wsuch that there is a directed edge 
from B to A. when B is the parent of A, then A is called 
a child or a direct subordinate of B. 

4. Let ∆be a tree and � ∈ ∆wa node of ∆. The ancestors 
or the hierarchical superiors of A are the nodes in the 
path from the root to A, excluding A. the descendants or 
the subordinates of a node A are those nodes that have 
A as an ancestor. 

5. A node of a tree ∆ is called leaf, or ground node or 
operating agent or unit if it has on children. Nodes that 
have children are called intermediate management 
agent. 

6. Let � be a node in a tree ∆, the subtree ∆+of ∆ is a 
rooted tree with � as its root is the subgraph of the tree 
consisting of � and all its descendants in ∆. 

4.1.2. Tree Levels and Height 
1. Let A be a node of a rooted tree<	∆, x >, the positive 

integer b+ is the level of �  if it is representing the 
number of edges of the unique path from the root x	9`	�. The level of the root of ∆ is equal to zero. The 
height of a rooted tree ∆ is the maximum of the levels 
of its nodes. 

2. Let � be a node of a tree ∆, let l be an integer such 
that b+ 	≤ 	b, the set of nodes of ∆	of level l that are 
children of � is denoted by ∆+y . 

),( P∑
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3. The width m of a tree ∆ is the integer corresponding to 
the number of leaves in ∆. 

4. Let Q and ℎ be two integers, an (ℎ,Q)-rooted tree <	∆, x	 > is a rooted tree with m leaves and for which 
the level of each leaf is ℎ . Each integer b , with 0	 ≤ 	b	 ≤ 	ℎ is called a hierarchical level of ∆. 

5. Let ∆ be an (ℎ,Q)-rooted tree, let l be an integer, 0	 ≤ 	b	 ≤ 	ℎ and let � be a node of ∆. We denote by ∆ythe set of nodes at the hierarchical level b. We denote 
by ∆{ the set of ground nodes of ∆. We denote by ∆+{the ground nodes of ∆ that are subordinate of �. 
 

Proposition 4.1. Let < ∆, R >  be an (h,m) − rooted	tree, let	q	be	two	integers	and	A	be	a	node	of	∆ 
• For each integer l such that 0 ≤ b < ℎ, K∆+�L+∈∆�  is a 

partition of ∆h 
• For each integers b  and q such that 0 ≤ b < �	 ≤ℎ, K∆+�L+∈∆� is a partition of ∆q. 

Definition 4.1. (Valued rooted tree) Let � be a set of values. 
An (ℎ,Q) -rooted tree is a triplet < ∆, �, _ >  where <∆, x > is an (ℎ,Q)rooted tree and _:	∆w�� a valuation of 
nodes of ∆. 

Definition 4.2. (Ɵ-extension, extensible operation on tree) 
Let <∆,R> be an (h, m)-rooted graph. Let < ,,∗> be a 
commutative semigroup for which the associated aggregation 
operator symbol is Ɵ. Let _:	∆{ 	→ ,  be a function. The 
function _�:	∆w→ E is a Ɵ-extension to ∆w of the function _	defined on ∆{ when it is defined as follows: 
• For each � ∈ ∆{, _�(�) = _(�); 
• For each � ∈ ∆w	��7ℎ	9ℎ29	� ∉ 	Δ{; 	_�(�) =	Ɵ({f(S)}-∈∆k�) 

The function	_ is called a Ɵ-extensible operation from ∆{ 
to ∆w 

Definition 4.3.((Ɵ, ∆) − valued	rooted	tree) Let < ,,∗> 
be a communitative semigroup with Ɵ  the associated 
aggregation operator symbol. �	(Ɵ, ∆) −valued	rooted	tree is a triplet < ∆, x, _ >  where <∆, x > is an (h,m)-rooted tree and _:	∆{→ ,	 is a Ɵ-extensible function from ∆{ to ∆w . 

4.2. (�, Ɵ, �)-Multisorted Tree Signature, Algebra and 
Homomorphism 

Definition 4.4.((Σ, Ɵ, Δ) -multisorted tree signature) Let < ∆, x >  be a rooted tree. A (Δ, �) -multisorted tree 
signature is a Δw -indexed family of S-multisorted 
signatures{Σ�}�∈△�. When Σ� = Σ for all >�Δw and Ɵ is a [-aggregator, the (∆, �)-multisorted tree signature is called a (Σ, Ɵ, Δ)-multisorted tree signature and denotedΣ ,Ɵ. 

Definition 4.5. ((Σ, Θ, Δ) − Q�b9"�`a9¡¢	9a¡¡	2b£¡¤a2) 
Let < ,,∗> be a commutative semigroup with Ɵ as the 
associated aggregation operator symbol. Let ��¤(< ,,∗>) 
be the class of commutative sub-semigroup of < ,,∗>. Let [ be a signature and �b£¥(Σ) be the class of [-algebras 
with carriers in ��¤(< ,,∗>). Let < ¦, x > be a rooted 
tree. A (Σ, Ɵ, Δ) -multisorted tree algebra �  is a tuple < [, F, ¦, x, _ >such that < ¦, x, _ > is a Ɵ-valued rooted 

tree with _:	Δ{ →	�b£¥(Σ) a Ɵ-extensible function from Δ{ 
to ∆w and such that it Ɵ-extension_�is defined as follows: 
• For each ! ∈ ∆{, _�(!) = _(!); 
• For each ! ∈ ∆w	��7ℎ	9ℎ29	! ∉ 	Δ{; 	_�(!) =	Ɵ({f(S)}-∈∆§� ) , is the Σ-algebra obtained by Ɵ-aggregation of the [-algebras from all subordinated 

leaves of !. 
Definition 4.6.((Σ, Θ, Δ)-multisorted tree homomorphism) 
Let � and / be two ((Σ, Θ, Δ)-multisorted tree algebras, 

a ((Σ, Θ, Δ) -multisorted tree homomorphismℎ: � → /  Let < ,,∗>  be a commutative semigroup with Ɵ  as the 
associated aggregation operator symbol. Let ��¤(< ,,∗>) 
be the class of commutative sub-semigroup of < ,,∗>. Let [ be a signature, �b£¥(Σ) be the class of [-algebras with 
carriers in ��¤(< ,,∗>)  and let ¨`Q¥(Σ)  the class of [ -homomophism between elements of �b£¥(Σ) . Let < ¦, x >  be a rooted tree. A (Σ, Θ, Δ) − Q�b9"�`a9¡¢	9a¡¡	ℎ`Q`Q`a©ℎ"�Q  is a tuple < [, F, ¦, x, ª >  such that < ¦, x, _ >  is a Ɵ -valued 
rooted tree with ª:	Δ{ → ¨`Q¥(Σ) a Ɵ-extensible function 
from Δ{  to ∆w and such that it Ɵ-extension	_	is defined as 
follows: 
• For each ! ∈ ∆{, ª(!) = ª(!) ∶ _(!) → �(!)  is a [-homomorphism on ̈ `Q¥(Σ); 

For each ! ∈ ∆w	��7ℎ	9ℎ29	! ∉ 	Δ{; 	ª(!):	Ɵ V{f(S)}-∈∆§�W →ƟV{g(S)}-∈∆§�W , is the [ -homomorphism obtained by Ɵ -aggregation of the [ -homomorphisms from all 
subordinated leaves of !.  

Hence, ª(!)� ¬�+ VƟRK2(,(,...,2M,(LT, . . . , ƟRK2(,), . . . , 2M,)LTW­ =Ɵ{�0R2(,(	,. . . , 2(,)T, . . . , �0R2M,(	,. . . , 2M,)T	} 
4.3. (�, u, �)-Multisorted Tree Terms, Equations, 

Specification 

Definition 4.7.((Σ, Θ, Δ) − Q�b9"�`a9¡¢	9a¡¡	9¡aQ�) Let � =< Σ, Θ, Δ, x, _ >  be a multisorted tree algebra. The (Σ, Θ, Δ) − �¡9 of multisorted ground tree terms is the valued 
rooted tree 8\,®,   defined by the tuple < Σ, Θ, Δ, x, _, 9 > 
such that < Δ, x, _ >  is a Ɵ -valued rooted tree with 9:	Δ{ → 8̄  a Ɵ-extensible function from Δ{ to ∆w and such 
that it Ɵ-extension _� is defined as follows: 
• _�(!) = 8̄ 	_`a	! ∈ Δ{ , 
• _�(!) = Ɵ{_(�), � ∈ ΔC{ }	_`a	! ∉ Δ{. 8\,®,  is the (Σ, Θ, Δ) − Q�b9"�`a9¡¢	9a¡¡	`_	9ℎ¡	9¡aQ�. 

Theorem 4.1. (Initiality) Given a multisorted signature Σ 
with no overloaded constants and a (Σ, Θ, Δ)-multisorted tree 
algebra � , there is a unique (Σ, Θ, Δ) -multisorted tree 
homomorphismea 8\,®,  → �. 

Definition 4.8.((Σ, Θ, Δ)-multisorted tree specification) 
Let < [, F, ¦ > be a multisorted tree signature. 

• A < Σ, Θ, Δ > −9a¡¡	¡��29"`6  consist of a ground < Σ, Θ, Δ > -tree signature X of variable symbols 
(disjoints from Σ) plus two < Σ(X), Θ, Δ >-tree terms 
of the same (∆,S)-sort. We many write such as equation 
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abstractly in the form (∀!)9 = 9�. 
• A < Σ, Θ, Δ >-specification is a pair (< Σ, Θ, Δ > ,E) 

consisting of a < Σ, Θ, Δ >-tree signature and a set of < Σ, Θ, Δ >-equations. 
Proposition 4.2. Given < [, F, ¦ >-tree algebra � and an 

interpretation a : ! → � , there is a unique (Σ, Θ, Δ)-homomorphism 2 ∶ 	 8\,®, 	(!) → � extending a in 
the sense that 2�(=) = 2�(=) for each = ∈ !�	26¢	� ∈ �. 

Definition 4.9.((Σ, Θ, Δ)-multisorted tree variety) 
• A < [, F, ¦ > −9a¡¡	2b£¡¤a2�  satisfies a <[, F, ¦ > −9a¡¡	¡��29"`6(∀!)	9 = 9�  iff for every : ! → �  , we have 2(9) = 2(9�)  in � , written � ⊨\,®,  (∀!)	9 = 9�. 
• A < [, F, ¦ > −9a¡¡	2b£¡¤a2�  satisfies a set E of 

equations iff it satisfies each one, written � ⊨\,®,  ,. 
We also say that � is a < [, F, ¦, , >-tree algebra. 
The class of < [, F, ¦, , >-tree algebras is called a 
variety defined by < [, F, ¦, , >. 

Definition 4.10. ((Σ, Θ, Δ) − 8a¡¡	�¤�9a279	°292	8>©¡) The tree abstract 
data type (abbreviated TADT) defined by a specification B =< [, F, ¦, , > is the class of initial P-algebras. 

4.4. Matrix-Based Multisorted Tree Algebra 

This section presents an example of multisorted tree 
algebra main components. The sorts are the various types of (6	 × 	©)-matrix. The signature operations are the operations 
on matrix defined below. We limit our description to the 
signature and the aggregation operator. The construction of 
matrix based multisorted algebras can be done for any 
hierarchy by following the description above. 

Definition 4.11. (Matrix and vectors over set) Let , be a 
non-empty set and 6, ©  two positive integers. An (6 ×©)-matrix A over ,, also called a matrix of type (,, 6, ©), is 
a function �: {1, . . . , 6} 	× {1, . . . , ©} → ,,(", O) ⟼ 23S  

We write � = (23S)(N3N),(NSN² and the elements 23S  are 
called the components of A. 
• When 6 = 1 , the matrix � = (2((, . . . , 2(²)  simply 

denoted by � = (2(, . . . , 2²) is a ©-horizontal vector. 

• When © = 1  then � = ³2((⋮2)(µ simply denoted by 

� = ³2(⋮2)µis a 6-vertical vector. 

• When 6 = © = 1, then � is an element 2	`_	,. 
• When the context is clearly defined, the matrix � is 

denoted by (23S) and the set of all 6	 × ©-matrix over , is denoted by ℳ(,, 6, ©). 
Definition 4.12. (Matrix and vectors operators) Let (,, +,×) be a field and 6, © be two positive integers. Let � = (23S) and / = (¤3S) be two matrices of ℳ(,, 6, ©), ¸ = (�S) an horizontal vector in ℳ(,, 1, ©) and � = (¹3) 

a vertical vector in ℳ(,, 6, 1). The following operators are 

defined: 
1. The sum of matrix operator noted +  is a function 

defined as follow :  +∶ 	ℳ(,, 6, ©) ×ℳ(,, 6, ©) → 	ℳ(,, 6, ©),(R23ST, R¤3ST) ⟼ (23S + ¤3S)  

2. The rows sum of matrix operator noted +ºº» is a function 
defined as follows :  +ºº»∶ 	ℳ(,, 6, ©) → 	ℳ(,, 6, 1),

R23ST ⟼ ¼ΣSJ(SJ²2(S⋮ΣSJ(SJ²2)S½
 

3. The column sum of matrix operator noted ↓ + is a 
function defined as follows :  ↓ +∶ 	ℳ(,, 6, ©) → 	ℳ(,, 1, ©),R23ST ⟼ RΣ3J(3J)23(	, . . . , Σ3J(3J)23²T 

4. The parallel product of two matrix operator noted ×¿ is 
a function known as Hadamard product and defined as 
follows : ×¿∶ 	ℳ(,, 6, ©) ×ℳ(,, 6, ©) → 	ℳ(,, 6, ©),(R23ST, R¤3ST) ⟼ (23S × ¤3S)  

5. The horizontal product of matrix and vector operator 
noted ×ºº» is a function defined as follows :  ×ºº»∶ 	ℳ(,, 6, ©) ×ℳ(,, 6, 1) → 	ℳ(,, 6, ©),(R23ST, (�3)) ⟼ (23S × �3)  

6. The vertical product of matrix and vector operator noted ↓× is a function defined as follows: ↓×∶ 	ℳ(,, 6, ©) ×ℳ(,, 1, ©) → 	ℳ(,, 6, ©),(R23ST, R¹ST) ⟼ (23S × ¹S)  

7. The total sum of a matrix or vector operator noted ⊕ is 
a function defined as follows: ⊕∶ 	ℳ(,, 6, ©) → 	ℳ(,, 1,1),R23ST ⟼ ∑3J(3J)∑SJ(SJ²23S  

8. The total product of a matrix or vector operator noted ⊗ 
is a function defined as follows: ⊗∶ 	ℳ(,, 6, ©) → 	ℳ(,, 1,1),R23ST ⟼ Π3J(3J)ΠSJ(SJ²23S  

One may notice that the operator ⊕ is the composition of 
the two operators Ã→and ↓ + defined above. 

Remark 4.1. 1.The set {⊕	;	⊗	; 	+ºº»	; 	↓ +	;	×ºº»	;	×¿	; 	+	; 	↓×	} 
is a signature of matrix-based multisorted algebra. 

2. The addition of matrix is a Σ-aggregator 
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5. Multisorted Tree Algebras in 
Universal Algebra Theory 

When the hierarchy ∆ of a (Ɵ, Ʃ, ∆)-multisorted algebra is 
not reduced to single node, then it Structure is different with 
the one of any Σ -universal algebra. Comparing the both 
algebraic structures is as comparing a wall structure with a 
block used to build that wall. The (Ɵ, Ʃ, ∆) -multisorted 
algebra structure is composed of Ʃ -algebras networked on a 
tree. The computations are handled by a network of Ʃ-algebras that is built by operation from Ʃ that are combined 
by Ʃ aggregations. While in universal algebra the resulting 
computations are expressed by Ʃ-terms, in multisorted tree 
algebras they are expressed as a tree of terms at each nodes of 
the hierarchy. Some of these terms are gradually generated 
from terms at the bottom of the hierarchy. Some similarities 
can be made with computations systems in the literature as 
grid computing. Base on their structure as graph of Ʃ-algebras, 
one may have the intention to consider multisorted tree 
algebras as a graphs in the category of Ʃ-algebra [16, 17]. A 
graph in ∁(Σ)  has as modes Ʃ -algebras and as edges Ʃ-homomorphisms. Even though some of those graphs may 
have a shape of tree, they are not multisorted tree algebras 
becaused the concept of homomorphism is not contained in 
the definition of multisorted tree algebra. 

 

Figure 1. Example of multisorted tree algebra structure. 

Multisorted tree algebras are specific algebraic structures 
constructed by gluing universal algebras through an 
aggregation operation to account for realities as the bottom up 
data computations and processing flow to generate different 
data at each nodes of a hierarchy. In È"£�a¡	1, the leaves 
contains Ʃ-algebra with supports noted as �, /, É, °, ,, and 
the intermediate level contains the aggregated Ʃ-algebras with 
supports noted as Ɵ[	�, /, É] and Ɵ[	E, F]. In this example, a 
list of five terms at the bottom of the hierarchy will generate 
three terms classified as triangle nodes with the first two at the 
basis. One can notice that aggregation operators may be used 
to construct more complex algebraic structures that don’t 
necessary have the shape of a balanced tree. Multisorted tree 
algebra therefore offers a mathematical framework for 
investigating such constructions and their engineering. 
However, the features and properties of these new 
mathematical objects need to be studied in detail. 

Elsewhere, the foundation of algebraic specification rely on 
the fact that an Abstract 

Data Types is modeled by universal algebra. Therefore, the 
introduction of multisorted tree algebra induces by analogy 

the introduction of Tree Abstract Data Type that could be 
useful for studying classes programming language in software 
engineering. 

6. Conclusions and Perspectives 
In this paper we have introduced a hierarchical algebraic 

structure called multisorted tree algebra. A brief description of 
results in multisorted algebra has been given in the first 
section. Then the concept of aggregation operator has been 
presented as an operator that generatesa Σ-algebra from 
different other Σ-algebras. It has also been shown that 
aggregation operators generate a Σ-homomorphism form a 
given family of Σ-homomorphisms between the aggregated 
Σ-algebras. Next, multisorted tree algebra has been 
constructed by placing multisorted algebra at the bottom of a 
hierarchy, and by placing at other nodes the aggregation of 
multisorted algebra placed at their immediate subordinate’s 
nodes. Furthermore, an analysis about the features and the 
place of multisorted tree algebra in the universal algebra 
theory has been briefly discussed. Among the perspectives 
generated by this paper, investigations on mathematical 
features and approaches to the study of multisorted tree 
algebra are necessary. One of the major reasons to engage in 
these further studies is the fact that they represent a hierarchy 
of algebraic structures that cannot be classified in classic 
varieties of universal algebra theory and also, they are not 
graphs of categories of universal algebras of given signature. 
The multisorted tree algebra concept may also be expanded by 
investigating aggregations of universal algebras of different 
signatures, or the construction of aggregations on a graph that 
are not trees. Among the application perspectives, multisorted 
tree algebra seems to give to computer scientists a different 
abstract data type described as a hierarchy of data types. It’s 
not pretentious to think that this new concepts could also give 
an approach to assemble abstract data type architectures and 
therefore expand results where classic universal algebras has 
contributed in theoretical computer science domains including 
for example Ë-calculus [18], type theory [19], data structures 
[20] and algebraic specification [21, 7]. 

Elsewhere, bottom up data processing in hierarchical 
organizations are characterized by computations of data at 
each node of the hierarchy with fact that upper nodes generally 
compute aggregate data from their direct subordinate nodes. 
An information system that manages such computations can 
therefore be modeled by a multisorted tree algebra. If each 
node is modeled as a data type because of the computations 
implemented at it level, then the whole system is therefore 
considered as a hierarchy of data types. Hence, multisorted 
tree algebras also account for the modeling of such 
hierarchical computations and information systems [13]. 
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