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Abstract: This paper introduces basic concepts describingrarchical algebraic structure called multisortesk algebra.
This structure is constructed by placing multisdrédgebra at the bottom of a hierarchy and plaeihgther intermediate

nodes the aggregation of algebras placed at timenediate su

bordinate nodes. These constructiondiffeeent from the one

of subalgebras, homomorphic images and productedgeused to characterize varieties in universg¢tab theory. The
resulting hierarchical algebraic structures carr®easily classified in common universal algebnaetias. The aggregation
method and the fundamental properties of the aggeegalgebras have been presented with an illisraxample.
Multisorted tree algebras spans multisorted algebreepts and can be used as modelling framewotbuitding hierarchical

abstract data types for information processingrganizations.
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1. Introduction

There are two main approaches to the study of usale
algebra as mentioned in [1]. The first approactk$ofor the
constructions on algebras which produce new algebfr¢ghe
same type. Here, the three main constructions ablailfor
producing new algebras from given ones are: thstcaction
of subalgebras, homomorphic images and producbedge
Classes of algebras which are closed to such cmtistins
are called varieties [2]. Secondly, to the studyabbtract
algebras involves the study of terms and identititere, the
objective is to define or classify algebras acamgdo the set
of identities or axioms they satisfy [3]. A more ngeal
approach to study algebraic structures and straicthinking
is the category theoretical one as in [4].

Many new algebraic concepts or theories have be
proposed in universal algebra literature accordiagthe
specificities of their application areas. One cate dor
instance, application areas such as multisorteebadg (also
called many sorted algebras) [5], hidden algebra 71k
ordered sorted algebra [8]. But other algebraiccepts have
also been introduced with quite a different degimnp of
their structures as the coalgebras [9]. The objestof these
proposals classified under algebraic engineeringeareh
have generally been to build algebraic structures f
modeling specific computational problems in variou
scientific domains or to account for the realitefsmodern

software [10].

However, some complex algebraic computation systems
cannot be easily modeled and studied by these wario
proposed algebraic structures. An example of sachptex
algebraic structures is the hierarchical computatiof data.

In such systems as shown in Figure 1, algebraigpotations
are done at the bottom nodes of a hierarchicaésysind the
results are aggregated and used as inputs for raigeb
computations at the highest nodes of the hieratittthe top.
A specific case of such systems is studied by [11].

Among some of the difficulties to study such algabr
structures is the fact that they cannot simply bscdbed as
structures consisting of one or more sets of objedth one
or more operations on the objects [1, 12]. Hentegtly
speaking they are not universal algebra accordinghe
&efinition even though they are constructed froenthinput
data are given at the bottom nodes to generatemawith a
hierarchical shape of outputs data that can beiestuger
levels, per path or in different ways. Also, thesrhrchy
studied is different from a diagram in the categafy
universal algebras with the same signature and atabe
easily described by classic universal algebras.

Therefore, there is a need to describe a framev¥arkhe
study of such hierarchical algebraic structuresstrocted by
aggregating  multisorted universal algebras terms.
JFurthermore, many information systems processing in
decision making systems of hierarchical organizetiare
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configured in with a structure similar to their friechy [13, A Y-algebraA is an S-sorted sed with an interpretation
14]. Therefore, the availability of a hierarchicalgebraic of Y in4, which is a family of arrows, s <Y, s.s =
framework will not only expand the algebraic stures [ASi-SnS — A.] for each rank(s; ...s,,s) € (§* X ), which
types but also contribute to giving an appropriatedeling interpret the operation symbolsyjnas actual operations on
framework for studying hierarchical computations. A . For constant symbols, the interpretation is given
The purpose of this paper is to introduce the besicepts  byips: ¥ s = Asusually we write just for i, s, s(o)but if
of multisorted tree algebra and present an exampkuch we need to make the dependance Azmd the rankw, s)
structures. We also discuss the used of this fraomledor  explicit, we may writes ;. The setAis called the carrier
modeling problems with hierarchical computationalbf4 of sorts.
structures. Definition 2.4. §-algebra over commutative semigroups)
In section 2, we have reminded of the main concepts Let ¥ be ais-sorted signature. LEE,*) = {(E,*s)}ses DE
multisorted algebra. The concepts of aggregatioris @ns-sorted signature family of commutative semigroufss.
manysorted algebras and fundamentals investigatames Y-algebra over(E,«)is a Y-algebrad such that4, € E for
presented in section 3. In section 4, we introducdtisorted eachs € S.
tree algebra concepts with the restriction on tlaenes Definition 2.5. (-subalgebra) Lety be an S-sorted
signature for algebra on the node of the hierammy with signature andA be a Y -algebra. AY -algebraB is a
the construction of algebra in nodes that are wiffe form subalgebra ofA when the following conditions are satisfied.
the leaves by aggregation of algebras in the lea&ssan « B, € A.for eachs € S;
illustrative example, a matrix-based multisorteeetalgebra «  For eacho € ¥, 5 With(w, s) € (§* x S), the graph of
is presented. In section 5, we discuss about some ob is include in the graph of) ;.
mathematical properties of multisorted tree algelarad their Definition 2.6. (5 -homomorphism) Let4 and B be

questioning in the theoretical framework of uniars Z-a|gebras_ Az-homomorphisnmis an S-sorted arrow
algebras. Section 6 presents the conclusion ap@etives. notech: 4 —» B such that:

2. Basic Concepts of Classical Algebraic 1o (a1 s ) = 05 (hs51), - 50
Specification Theory for eacho € Y5, s, anda; € A, for i=1,..,n, and
hg(cs) = cp for each constant symto€ Y ;.
This section has two subsections. In the first iBacive . o
describe the concepts of signature, Algebra ang? T€m, Equation and Specification
homomorphism. In the second the concepts of teguation

Ltk Definition 2.7.(3-terms) Let Y. be anS-sorted signature.
and specification are presented

¢ The S-sorted sdfy of }y-terms is the smallest set of

2.1. Signature, Algebra, Homomorphism lists of symbols that contains the constadiys, < Ty,
. and such that givene ¥, .5 and; € Ty, then
The concepts of the signature of a many sortecbedgas T

. _ G(tl, ey tn) € st
well as the one of many sorted algebra introducedhis

. . o : We view Tyas a) -algebra by interpretinge
section are similar to the definition used by Goygir [6, . z 2-alg y Pretinge Xq,s)
15]. as justo, ant € Y5, 5, 5) as the operation sending

Definition 2.1. §-sorted set) LetS be a nonempty set, the n-uplett,, ..., t,) to the list o(ty, ..., t,). Then

whose elements are called sorts, @hdorted setd is a Tyis called the}-term algebra. _

family of set§A,, s € S}. Theorem 2.1. (Initiality)Given a signaturg with no
Definition 2.2. 6-sorted signature) Le§ be a nonempty overloaded colnstants and)aalgebra M, there is a unique

set, with elements called sorts. Y.-homomorphisnfy, - M.

« An S-sorted signaturf is an (S*x S)-sorted set Definiti_on 2.8.Q—equati9ns) AZ—equation .c.onsists of a
(3 (ws) €S xS} ground signaturex of variable symbols (disjoints frorx)
wss’ ' plus two Y (X)-termsof the same serE S.We may write
*  The elements of,, ; are called operation symbols of such an equation abstractly in the faww)t =t and
arity w, and rankw, s); in particularg € ¥, ,sisa concretely in the forfwx,y,z)t =t when W = {x,y,z}
constant symbol of sort s. and the sorts of x, y and z can be inferred froairthses in

. is ground signature iffy NYn., =@ whenever tandint.
qut g, J lhs s Definition 2.9. A specification is a paif}, E), consisting

. , of a signature), and a sett of Y -equations.
By convention,|y| = , and means
y 12| UW'SZW:S : 2 cX . Remark 2.1. They-term algebrésserves as a standard
Yws C Xws for eaclw,s. Similarly, union is defined

del f ificati = . Gi d
by(X'U Yws=2ws UXws. A common special case is model for a_specification? = (3, 0) ven 3, and a

) e d s ¢ hich H ground signaturex disjoint from Y, we can form the
union with a ground signatukg for which we use the Y (X)-algebra Tyxyand then view it as &;-algebra by
notatiop(X) = Yy U X.

Definition 2.3. §-algebra) Lety' be aS-sorted signature. forgetting the names of the new constantstinlets denote
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this Y-algebra by Ty (X) .

Proposition 2.1. Let A be a3 -algebra and an
interpretation a:X — A4, there is a unique
¥.-homomorphisni: Ty (X) — Aextending a, in the sense
thaidg, (x) = a,(x) for eaclr € X;ands € S.

Definition 2.10.(satisfaction, variety)

« A Y-algebraA satisfies a)-equatiorfvX)t = t'iff for
every a:X - Awe havex(t) = a(t’) in A, written
Ary (VX)t =t

e A Y-algebraA satisfies a sef of Y -equations iff it
satisfies each one, writteA Fy E. We may also say
that A is a P -algebra, and writeA = P where
P=_GE).

e The class of all algebras that satisfy P is calledety
defined by P.

Theorem 2.2.Given a specificatioh = (3}, E),any two
initial P-algebra arg-isomorphic.

Definition 2.11. The abstract data type (abbredad®T)
defined by a specificatiorP is the class of all initial
P-algebras.

3. Multisorted AlgebrasAggregations

In this section we introduce a new concept of ursiae
algebras aggregation. By so doing, we first inteeldhe
concept of aggregation operator which is an operttat

generate a new algebra supports from the suppdrta o

family of algebras. We then show that when thisraggtion
operator is compatible with all operations from raversal
algebra signature, it generated another univetgabea that
satisfies the common properties of the aggregatidersal
algebras. The first section describes the aggm@yaterators.
Our restriction is on the aggregation of univeedgkbra with

the same signature. The second section focus on the

mathematical properties of aggregated universaiombs.

3.1. Aggregation Operators, Aggregation of Algebras and
Homomorphisms

Definition 3.1. @-Aggregation operator) Lek E,x> be
a commutative semigroup. Let be an integer and™
denote the cartesian product Bf defined byn-uplets of
elements inE. LetE® = Uy, E™. Let S be a set of sorts
andw =s; ...s, € S*. Let ) be anS-sorted signature. Let
{4s,, ..., A5, Jbe a family of sorted sets ant}, = A, X ... x
A

Sn
A function 0: E® - Eis called an aggregator of.

* A x-aggregator orx E,x> in an aggregater: E~ —
E such that for(xq,..,x,) €EE™ O(xq, .., Xp) =

X1 ¥ o ¥ Xy

e An (w,x) -aggregator is an aggregatrdy, — A,
defined by a family of * -aggregators{@si:Ag"i’ -
Ag h<isn SUch that for each operation symbd .,
of arity (w,s) where w=s; ...s,, , the following
equation is satisfied:
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For eachj,1<i<m, for each (a;)

O [GA ((alj)],), vy Oy ((anj)]_)] =
04 (@sl [(ai1)il, -, @sm [(aim)i])

For a finite n-uplet X = (x,x,, ..., x,) € E"we denote
the aggregatiop(X)of Xby@!=ix;.

In the literature, the symboE generally denotes the
aggregation operator for the addition operator ipitef or
infinite elements. The union operatdris an aggregation
operator that constructs the union of a familyeigs

Definition  3.2.(Aggregation of Y -algebras over
commutative semigroups) Let = {4;},<;<,be a family of
Y.-algebras where each;is a Y -algebra over commutative
semigroupg;, 1 < i <n. Letdy; be a} -aggregator. The
aggregation ofy-algebras in{A4;},.;<,by 6sis the S-sorted

family of sets noteddy(4), = {05 (UAS(aij)),for allo €

1<isn

YwsW =5 .5 €5,a4;;€A;,1<i<nl<j< m}.

Theorem 3.1. (Aggregation of -algebras) LetA =
{A;}1<icn e a family of ¥ -algebras where eadh is a
Y -algebra over commutative semigroufg 1 < i < nEi,
Let Ozbe & -aggregator. The aggregation §f-algebras
iN{A;}1<i<n DY Oyis & -algebra.

Proof.

The aggregator ofA with 0y is
Oz (A)defined as follows:
 For each soste S corresponds the support set

05(4), = {6, (04,(a;))). for all o € 5w =
S1 S €570, €A1 i<n1<j<m}.
e For each symbol c €},,,, where w=

S1 - S, corresponds the operationg,4): O3 (A4)s, X
X 05 (A)s,, = Ox(A)s

such that:  ggya)(Os, [(@i1)il, ) Os,, [(@im)i]) =
6s[os, ((ay));), -+ 04, ((@n);)]

Definition 3.3. (Aggregation off-homomorphisms) Let
h={h:A;>B,1<i<n} be a family of
Y. -homomorphisms of ) -algebras over commutative
semigroups. Let@sbe Y -aggregator. The aggregation of
Y.-homomorphisms ifh;: A; - B;,1 < i < n} by 60yis the
function defined as follows:

For each

the Y -algebra

05(0a,(a;))) € 05(A),
05 (h)5(05(04(a;))) = O5(a5(hs(a;j)))

Theorem 3.2.(Aggregation 0o} -homomorphisms). Let
h={h;:A; > B;,1<i<n} Dbe a family of
Y. -homomorphisms and le®s be a) -aggregator. The
aggregation ofy-homomorphisms infh;:4; » B;,1 <i <
n} by @sis a ¥-homomorphism.

Proof:

Let A={Al,1SlSn} and B ={Bi'1 SlSn} The
aggregation of {h;:4; - B;,1 <i <n} with 65 is the
Y. -homomorphism @5 (h): 05(A) - @5(B) defined as
follows:
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For each®(a,,(a;))) € 05(4), we have

O5(h)s(0s(0a(a;)))) = O5(05(hs(a;)))

To prove that the property of homomorphism is fiatis
let

o€ Zsl...sn,s

let the termsa; = 0y (v4,(a1)) € O3(4)s, ..., and

anp = an(yAn (an)) € O5 (A)sn
We have the following equations:

Os(h) (o 0x(4) (951 (VA1 (au‘))), ey @sn (VAn (ani))))

= 0s(h) (951 (o 05(4) (VA1 (au)))' ey @sn (VAn (ani))))

becauseis a Y -aggregator.
= @s (0-62 (B) (h51 (yAl (ali)): ey hsn (yAn (ani))))

by the definition of @5 (h)

= Gy (s) (05, (s, (Ya1(@10)), - Os,, (s, (Van (@) )))
by de definition of @

= Opy(B) (051( VB1 (hsl (‘111')): CA (VBn (hsn((ani))))

becausk,,are homomorphisms
= Ooy(B) (QZ (h)51 (051 (yBl (ali): ey 02 (h)sm (an (an (ant))))
by the definition 0fy (h).
3.2. Some Properties of Aggregation of Algebras

Theorem 3.3. LefvX)t =t be a Y -equation. Let

A ={A4;,1<i<n}be a family of}-algebras such that for 4

eachl <i <nd ky (VX)t = t'Therg;(4) E (VX)t =t'.
Proof.

variety defined by (X,P) is ay -algebra of the same
variety.

4. Multisorted Tree Algebra

We propose in this section the foundational corseft
multisorted tree algebra as construction of hidnarc
structured algebras by placing universal algebfaeeosame
signature at each leave of the bottom, and by cetingl the
other nodes till the top by aggregation of univeegebras
of their direct subordinate nodes. This section Hage
subsections. The first presents the concept ofedalooted
tree. The second introduces the concept of multdotree
algebra as a valued rooted tree of algebras, andhthd is
about basic concepts of algebraic specification tlie
framework of multisorted tree algebra.

4.1. (0,A)-Valued Rooted Tree

The concept of rooted trees defined below is used t
describe hierarchical structure of some organirafitne root
is the highest authority and the leaves are thewgixes.

4.1.1. Tree, Rooted Tree, Subtree

1. AtreeA= (A, 4A;) is a connected undirected graph with
no simple circuits. The sei,is the set of nodes or
vertices, and the s&€ A, X A, is the set of edges or
arcs.

2. Arooted tree noted A,R > is a treeAin which a node
R has been designated as the root and every edge is
directed away from the root.

3. Let Abe a tree, if A is a node injother than the root,

the parent or the direct hierarchical superior o Ahe

unique node B iMAysuch that there is a directed edge

from B to A. when B is the parent of A, then A Hled

a child or a direct subordinate of B.

Let Abe a tree andi € A,a node ofA. The ancestors

or the hierarchical superiors of A are the nodeshin

path from the root to A, excluding A. the descenidam

Letoy an aggregator operator. We assume that the sort of e subordinates of a node A are those nodes &t h

t and t' isseS LetagX;— 0:({A}icicn) be an
interpretation of variables from{ in®@({A;s}1<i<n) Thereis a
family of interpretations;s: X, - Ajs such thatais(x) =
0z ({ais(®)}1<i<n)

Proposition 2.1.implies that for eaghl < i < nthere is
an uniqgue homomorphisti: Ty (X); = Ajs  expanding
aisi.e. such that fare X,a;;(x) = a;;(x) Also, there is a
unique homomorphis@;: Ty, (X)s = Ais

dis: Ty (X)s & 0({Ais}i<i<n) expanding,. To verify the
satisfaction of equatidqiyX)t = t' we have:

a;s(t) = Oz({ais () }1<i<n)
=0y ({a;s(t)}1<i<n) becaused; Fy (VX)t =1t'
= dis(t,)

Hence, 05 ({A;}1<icn Fy (VX)E=1t")
Corollary 3.1.A Y -aggregation ofY -algebras from a

A as an ancestor.

5. A node of a treeA is called leaf, or ground node or
operating agent or unit if it has on children. Nedleat
have children are called intermediate management
agent.

6. Let A be a node in a treq, the subtreep,of A is a
rooted tree withA as its root is the subgraph of the tree
consisting ofA and all its descendants if.

4.1.2. Tree Levelsand Height

1. Let A be a node of a rooted treeA, R >, the positive
integer l,is the level ofA if it is representing the
number of edges of the unique path from the root
R to A. The level of the root ofA is equal to zero. The
height of a rooted tred is the maximum of the levels
of its nodes.

2. Let A be a node of a trea, let | be an integer such
that [, < [, the set of nodes o of level | that are

children of A is denoted byA}.
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3. The width m of a tree\ is the integer corresponding to tree with f: A, - Algz(Z) a 6-extensible function from,
the number of leaves i to A, and such that ib-extensiorfis defined as follows:
4. Let m and h be two integers, aith,m)-rooted tree «  For eachX € A", f(X) = f(X);
< AR > is arooted tree with m leaves and for whichy  Fqr each X € A, suchthat X ¢ A" f(X) =
the level of each leaf isi. Each integerl, with O0({f(S)}...xn) , is the X-algebra obtained by
0 < < his called a hierarchical level af. 0-a reS;AtiXon of th&-algebras from all subordinated
5. Let A be an(h,m)-rooted tree, let | be an integer, Iea\?egs ogle 9
<l< e : . .
Ol— L < h and letA be a node_oﬁ. We denote by Definition 4.6((Z, ©, A)-multisorted tree homomorphism)
A'the set of nodes at the hierarchical leteWe denote .
h Let A and B be two ((Z, ©, A)-multisorted tree algebras,
by A'the set of ground nodes &. We denote by I d h hi L
Athe ground nodes oA that are subordinate of a ((%,6,4)-multisorte tree homomorp Igm-A — B Let
A ' < Ex> be a commutative semigroup wit® as the
Proposition 4.1. Let <AR> be an (hm)— associated aggregation operator symbol. $&b(< E,*>)

rooted tree, let q be two integers and A be a node of A

For each integer | such that< [ <h {A7} . is a

partition of A"

For each integerd and g such thal <l<gq <

h, {83} ., is @ partition ofA°.
Definition 4.1. (Valued rooted tree) L&t be a set of values.
An (h,m) -rooted tree is a triplek A, S, f > where <
AR > is an(h,m)rooted tree ang: A,>V a valuation of
nodes ofA.

Definition 4.2. @-extension, extensible operation on tree)

Let <A,R> be an (h, m)-rooted graph. LetE,x>be a
commutative semigroup for which the associated egggion
operator symbol i. Let f: A" > E be a function. The
function f: A,— E is a ©-extension toA, of the function
f defined onA" when it is defined as follows:

For eachA € A", f(A) = f(A);

For each A€ A suchthat A¢ A" f(A) =

O({f($)}sen)
The functionf is called a9-extensible operation from”
to A

Definition 4.3((6,A) — valued rooted tree) Let < E,*>
be a communitative semigroup witlh the associated
aggregation operator symbol. A(6,A) —
valued rooted tree is a triplet <AR,f> where <
A,R>is an (h,m)-rooted tree andf:A">FE is a
@-extensible function from\" to A, .

4.2. (Z,06,A)-Multisorted Tree Signature, Algebra and
Homomorphism

Definition 4.4((Z, 6,A)-multisorted tree signature) Let
<AR> be a rooted tree. A(A,S) -multisorted tree
signature is a A, -indexed
signatureSZ"}YEAo. When z¥ = 3 for all yeA, and 6 is a
X-aggregator, thgA, S)-multisorted tree signature is called a
(=, 6, A)-multisorted tree signature and denaiggl.

Definition 4.5. ((Z, 0,A) — multisorted tree algebra)
Let < E,+> be a commutative semigroup with as the
associated aggregation operator symbol. $b(< E,*>)
be the class of commutative sub-semigroup<of,*>. Let
X be a signature andlg.(Z) be the class of-algebras
with carriers inSub(< E,=x>). Let < 4,R > be a rooted
tree. A (%,06,A)-multisorted tree algebrad is a tuple
< X,0,A,R, f >such that< A,R, f > is a ©-valued rooted

family of S-multisorted °

be the class of commutative sub-semigroup<of,«>. Let
X be a signaturedlg;(X) be the class of-algebras with
carriers in Sub(< E,»>) and let Homg(Z) the class of
X -homomophism between elements daflg;(Z) . Let
< AR > be a rooted tree. A
(Z,0,A) — multisorted tree homomorphism is a tuple
<2X,0,A4,R,a> such that<A4,R f> is a 6 -valued
rooted tree witha: A, - Homg(Z) a 6-extensible function
from A, to A, and such that iB-extensiorf is defined as
follows:

For eachX e Ah,a(X) =a(X): f(X) > q(X) is a

X-homomorphism orHomg (X);
For

X € Ay suchthat X ¢ A"; a(X): 0

each
(¢)¥gepn) -
e({g(S)}SeAﬁ), is the X -homomorphism obtained by

© -aggregation of the X -homomorphisms from all
subordinated leaves of.
Hence,

s (04 (0({ars, @i} 8((arn, - ama}))) =

6{oy (aL1 e alrn), ...,0p (am,1 e amrn) }

4.3. (Z,0,A4)-Multisorted Tree Terms, Equations,
Specification

Definition 4.7((Z, ©,A) — multisorted tree terms) Let
A=<Z%0,AR,f> be a mulisorted tree algebra. The
(Z,0,A) — set of multisorted ground tree terms is the valued
rooted treeTyg, defined by the tuple< %,0,AR, f,t >
such that < AR,f > is a ©-valued rooted tree with
t: A, - Ty a B-extensible function from, to A, and such
that it ©-extensionf is defined as follows:

fX) =T; for X € Ay,
fX) =06{f(A),A€ AL} for X ¢ A,.
Ts o4 isthe (Z,0,A) — multisorted tree of the terms.
Theorem 4.1. (Initiality) Given a multisorted siguae X
with no overloaded constants and’® ©, A)-multisorted tree
algebra A, there is a unique(Z, ®,A) -multisorted tree
homomorphismedy g — A.
Definition 4.8((Z, ©, A)-multisorted tree specification)
Let < ¥,0,4 > be a multisorted tree signature.
A <Z,0,A > —tree equation consist of a ground
<%0,A> -tree signature X of variable symbols
(disjoints fromZx) plus two < £(X), 0,A >-tree terms
of the sameA,S)-sort. We many write such as equation



300

abstractly in the form(vX)t = t'.
« A <Z0,A >-specification is a pair<Z,0,A>,E) 1
consisting of a< Z,0,A >-tree signature and a set of
< %, 0,A >-equations.
Proposition 4.2. Giver< X, 0,4 >-tree algebrad and an
interpretaton a :X->A , there is a unique
(%, 0,A)-homomorphisma : Tyga (X) = A extending a in
the sense that, (x) = a,(x) for eachx € X, and s € S.
Definition 4.9.(Z, 0, A)-multisorted tree variety)

. A <X,0,4>—treealgebraAd satisfies a <
X,0,4 > —tree equation(VX) t =t' iff for every
:X—>A , we havea(t)=a(t’) in A, written

A '=E,®,A (VX) t=t'.
e A <X 0,4>—treealgebrad satisfies a set E of
equations iff it satisfies each one, writtédniEyg 4 E.
We also say thatd is a < X,0,4,E >-tree algebra.
The class of< X,0,4,E >-tree algebras is called a
variety defined by< ¥,0,4,E >.
Definition 4.10.
((Z,0,A) — Tree Abstract Data Type) The tree abstract
data type (abbreviated TADT) defined by a spedifca ,
P =< X,0,A,E > is the class of initial P-algebras.

4.4. Matrix-Based Multisorted Tree Algebra

This section presents an example of multisortea tre
algebra main components. The sorts are the vatiympes of
(n X p)-matrix. The signature operations are the operzattiorl5
on matrix defined below. We limit our descriptioa the '
signature and the aggregation operator. The cartigtrnuof
matrix based multisorted algebras can be done for a
hierarchy by following the description above.

Definition 4.11. (Matrix and vectors over set) LEt be a
non-empty set anch,p two positive integers. An(n X 6.
p)-matrix A over E, also called a matrix of typ€E,n, p), is
a function

A:{1,...,n} x{1,...,p} > E,
L)) — a;

_ 7.

We write A = (a;j)1<i<n1<j<p @nd the elementg;; are

called the components of A.
* When n=1, the matrix A = (ay4,...,a;p) Simply
denoted byA = (ay,...,a,) is ap-horizontal vector.

aq1
* When p=1 then Az( :

an1

)simply denoted by 8.

a;
A= ( : )is a n-vertical vector.
an
*  Whenn=p=1,thenA is an element of E.
e When the context is clearly defined, the matdxis
denoted by(a;;) and the set of ath X p-matrix over
E is denoted byM (E,n,p).
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defined:

The sum of matrix operator notedl is a function
defined as follow :

+: M(E,n,p) X M(E,n,p) > M(E,n,p),
((aij)' (bij)) — (a;; + b;;)

The rows sum of matrix operator noted is a function
defined as follows :

*: M(E,n,p) > M(E,n1),

The column sum of matrix operator noteéd- is a
function defined as follows :

L+: M(E,n,p) > M(E,1,p),
(@) = (ZiZtan ..., Zittay)
The parallel product of two matrix operator notedis

a function known as Hadamard product and defined as
follows :

X: M(E,n,p) X M(E,n,p) > M(E,np),
((ai;), (b)) = (ay % by)
The horizontal product of matrix and vector operato
noted X is a function defined as follows :
X: M(E,n,p) x M(E,n,1) - M(E,n,p),
((aij)' (w;)) — (ay; X w;)

The vertical product of matrix and vector operatoted
Ix is a function defined as follows:

Ix: M(E,n,p) x M(E,1,p) > M(E,n,p),
((aij), (1)) = (ai; x v))

The total sum of a matrix or vector operator nogdis
a function defined as follows:

é: M(E,n,p) > M(E, 1,1),
(aij) — Yist ;:faij

The total product of a matrix or vector operatotenio®
is a function defined as follows:

®: M(E,n,p) > M(E,1,1),

(aij) = Hfz?njj:faij

One may notice that the operat@y is the composition of
the two operators:and 1 + defined above.
Remark 4.1. 1.The s¢th; ®; +; L +;X; X; +; Ix}

Definition 4.12. (Matrix and vectors operators) Letis g signature of matrix-based multisorted algebra.

(E,+,x) be a field andn,p be two positive integers. Let
A = (a;;) and B = (b;;) be two matrices ofM (E,n,p),
U = (u;) an horizontal vector il (E,1,p) andV = (v;)
a vertical vector inM (E, n,1). The following operators are

2. The addition of matrix is &-aggregator
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5. Multisorted TreeAlgebrasin
Universal Algebra Theory

When the hierarchy of a (6, 2, A)-multisorted algebra is
not reduced to single node, then it Structure fi@idint with
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the introduction of Tree Abstract Data Type thatildobe
useful for studying classes programming languageftware
engineering.

6. Conclusions and Per spectives

the one of anyx-universal algebra. Comparing the both

algebraic structures is as comparing a wall strectith a
block used to build that wall. Theo,x,A) -multisorted

In this paper we have introduced a hierarchica¢lagic
structure called multisorted tree algebra. A bdiescription of

algebra structure is composedDfalgebras networked on a 'esults in multisorted algebra has been given i fifst
tree. The computations are handled by a network &€ction. Then the concept of aggregation operaasrteen

X-algebras that is built by operation frdrthat are combined
by = aggregations. While in universal algebra the tesyl
computations are expressed Pyerms, in multisorted tree
algebras they are expressed as a tree of ternastanedes of
the hierarchy. Some of these terms are gradualheng¢ed
from terms at the bottom of the hierarchy. Someilanities
can be made with computations systems in the litezaas
grid computing. Base on their structure as grapb-afgebras,
one may have the intention to consider multisortezk
algebras as a graphs in the categorg-afgebra[16,17]. A

presented as an operator that generatesdgebra from

different other X-algebras. It has also been shown that

aggregation operators generat&-aomomorphism form a

given family of ¥-homomorphisms between the aggregated
tree algebra has been

Y-algebras. Next, multisorted
constructed by placing multisorted algebra at thidmn of a
hierarchy, and by placing at other nodes the agdi@y of
multisorted algebra placed at their immediate sdinate’s
nodes. Furthermore, an analysis about the feammdsthe
place of multisorted tree algebra in the univeralgebra

graph in C(X) has as modeg -algebras and as edgestheory has been briefly discussed. Among the petisgs
2-homomorphisms. Even though some of those graphs mgenerated by this paper, investigations on matheatat

have a shape of tree, they are not multisorted dfgebras
becaused the concept of homomorphism is not cadaim
the definition of multisorted tree algebra.

¥ 6[6(,B), 8(C,D,E)]

c 5:D

Figure 1. Example of multisorted tree algebra structure.

I 6(AB)

3iE

Multisorted tree algebras are specific algebraiacstires

features and approaches to the study of multisotted
algebra are necessary. One of the major reasogisgage in
these further studies is the fact that they remtessédnierarchy
of algebraic structures that cannot be classifiecclassic
varieties of universal algebra theory and alsoy tage not
graphs of categories of universal algebras of gaignature.
The multisorted tree algebra concept may also pareded by
investigating aggregations of universal algebraglitiérent
signatures, or the construction of aggregationa graph that
are not trees. Among the application perspectivestisorted
tree algebra seems to give to computer scientislifferent
abstract data type described as a hierarchy oftgipés. It's
not pretentious to think that this new conceptdaalso give
an approach to assemble abstract data type arnch#ecand
therefore expand results where classic univerggbahs has

constructed by gluing universal algebras through afontributed in theoretical computer science domiicisiding

aggregation operation to account for realitiehadibttom up
data computations and processing flow to generifiereht

data at each nodes of a hierarchy.Fligure 1, the leaves
containsx-algebra with supports noted 4sB,C,D,E, and

the intermediate level contains the aggregateddgebras with
supports noted a8[ 4, B, C] and 6[ E, F]. In this example, a
list of five terms at the bottom of the hierarchill \generate
three terms classified as triangle nodes withitise tivo at the
basis. One can notice that aggregation operatoysomaised
to construct more complex algebraic structures that't

necessary have the shape of a balanced tree. bitétistree

algebra therefore offers a mathematical framewook ftree algebras also account for the modeling of such

investigating such constructions and their enginger
However,
mathematical objects need to be studied in detail.
Elsewhere, the foundation of algebraic specificatily on
the fact that an Abstract
Data Types is modeled by universal algebra. Thezetbe
introduction of multisorted tree algebra inducesamalogy

for exampleA-calculus [18], type theory [19], data structures
[20] and algebraic specification [21, 7].

Elsewhere, bottom up data processing in hierarthica

organizations are characterized by computationsladd at
each node of the hierarchy with fact that upperesaknerally
compute aggregate data from their direct subordinades.
An information system that manages such computstaam
therefore be modeled by a multisorted tree algelfraach
node is modeled as a data type because of the ¢ations
implemented at it level, then the whole systemhirefore
considered as a hierarchy of data types. Hencetismuéed

hierarchical computations and information systeh®.|

the features and properties of these new
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