

Applied and Computational Mathematics
2014; 3(6): 295-302
Published online December 16, 2014 (http://www.sciencepublishinggroup.com/j/acm)
doi: 10.11648/j.acm.20140306.12
ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online)

Multisorted tree algebra

Erick Patrick Zobo, Marcel Fouda Ndjodo

Department of Computer Sciences and Education Technologies (DITE), University of Yaounde I Yaounde, Cameroon

Email address:
epzobo@dite-ens.cm (E. P. Zobo), marcel.fouda@dite-ens.cm (N. M. Fouda)

To cite this article:
Erick Patrick Zobo, Marcel Fouda Ndjodo. Multisorted Tree Algebra. Applied and Computational Mathematics.
Vol. 3, No. 6, 2014, pp. 295-302. doi: 10.11648/j.acm.20140306.12

Abstract: This paper introduces basic concepts describing a hierarchical algebraic structure called multisorted tree algebra.
This structure is constructed by placing multisorted algebra at the bottom of a hierarchy and placing at other intermediate
nodes the aggregation of algebras placed at their immediate subordinate nodes. These constructions are different from the one
of subalgebras, homomorphic images and product algebras used to characterize varieties in universal algebra theory. The
resulting hierarchical algebraic structures cannot be easily classified in common universal algebra varieties. The aggregation
method and the fundamental properties of the aggregated algebras have been presented with an illustrative example.
Multisorted tree algebras spans multisorted algebra concepts and can be used as modelling framework for building hierarchical
abstract data types for information processing in organizations.

Keywords: Multisorted Algebra, Hierarchy, Aggregation, Abstract Data Type

1. Introduction
There are two main approaches to the study of universal

algebra as mentioned in [1]. The first approach looks for the
constructions on algebras which produce new algebras of the
same type. Here, the three main constructions available for
producing new algebras from given ones are: the construction
of subalgebras, homomorphic images and product algebras.
Classes of algebras which are closed to such constructions
are called varieties [2]. Secondly, to the study of abstract
algebras involves the study of terms and identities. Here, the
objective is to define or classify algebras according to the set
of identities or axioms they satisfy [3]. A more general
approach to study algebraic structures and structural thinking
is the category theoretical one as in [4].

Many new algebraic concepts or theories have been
proposed in universal algebra literature according to the
specificities of their application areas. One can cite for
instance, application areas such as multisorted algebras (also
called many sorted algebras) [5], hidden algebra [6, 7],
ordered sorted algebra [8]. But other algebraic concepts have
also been introduced with quite a different description of
their structures as the coalgebras [9]. The objectives of these
proposals classified under algebraic engineering research
have generally been to build algebraic structures for
modeling specific computational problems in various
scientific domains or to account for the realities of modern

software [10].
However, some complex algebraic computation systems

cannot be easily modeled and studied by these various
proposed algebraic structures. An example of such complex
algebraic structures is the hierarchical computations of data.
In such systems as shown in Figure 1, algebraic computations
are done at the bottom nodes of a hierarchical system and the
results are aggregated and used as inputs for algebraic
computations at the highest nodes of the hierarchy till the top.
A specific case of such systems is studied by [11].

Among some of the difficulties to study such algebraic
structures is the fact that they cannot simply be described as
structures consisting of one or more sets of objects with one
or more operations on the objects [1, 12]. Hence, strictly
speaking they are not universal algebra according to the
definition even though they are constructed from them. Input
data are given at the bottom nodes to generate a term with a
hierarchical shape of outputs data that can be studied per
levels, per path or in different ways. Also, the hierarchy
studied is different from a diagram in the category of
universal algebras with the same signature and cannot be
easily described by classic universal algebras.

Therefore, there is a need to describe a framework for the
study of such hierarchical algebraic structures constructed by
aggregating multisorted universal algebras terms.
Furthermore, many information systems processing in
decision making systems of hierarchical organizations are

296 Erick Patrick Zobo and Marcel Fouda Ndjodo: Multisorted Tree Algebra

configured in with a structure similar to their hierarchy [13,
14]. Therefore, the availability of a hierarchical algebraic
framework will not only expand the algebraic structures
types but also contribute to giving an appropriate modeling
framework for studying hierarchical computations.

The purpose of this paper is to introduce the basic concepts
of multisorted tree algebra and present an example of such
structures. We also discuss the used of this framework for
modeling problems with hierarchical computational
structures.

In section 2, we have reminded of the main concepts of
multisorted algebra. The concepts of aggregations of
manysorted algebras and fundamentals investigations are
presented in section 3. In section 4, we introduce multisorted
tree algebra concepts with the restriction on the same
signature for algebra on the node of the hierarchy and with
the construction of algebra in nodes that are different form
the leaves by aggregation of algebras in the leaves. As an
illustrative example, a matrix-based multisorted tree algebra
is presented. In section 5, we discuss about some
mathematical properties of multisorted tree algebras and their
questioning in the theoretical framework of universal
algebras. Section 6 presents the conclusion and perspectives.

2. Basic Concepts of Classical Algebraic
Specification Theory

This section has two subsections. In the first Section we
describe the concepts of signature, Algebra and
homomorphism. In the second the concepts of term, equation
and specification are presented

2.1. Signature, Algebra, Homomorphism

The concepts of the signature of a many sorted algebra as
well as the one of many sorted algebra introduced in this
section are similar to the definition used by Goguen in [6,
15].

Definition 2.1. (�-sorted set) Let � be a nonempty set,
whose elements are called sorts, and �-sorted set � is a
family of sets{��, s ∈ S}.

Definition 2.2. (�-sorted signature) Let � be a nonempty
set, with elements called sorts.
• An � -sorted signature∑ is an (�∗ × �) -sorted set {� (�, �) ∈ �∗ × ��,� }.
• The elements of ∑�,� are called operation symbols of

arity �, and rank(�, �); in particular,� ∈ ∑[],� ,s is a
constant symbol of sort s.

• ∑is ground signature iff ∑[],� ∩ ∑ = ∅	[],�� whenever � ≠ s′.
By convention,|∑| = ⋃ ∑ ,�,��,� and ∑′ ⊂ 	∑ means ∑�	�,� ⊂	∑�,� for each�, �. Similarly, union is defined

by(∑′ ∪	∑)�,�=∑�	�,� 	∪ ∑�,�. A common special case is
union with a ground signature! , for which we use the
notation∑(!) = ∑ ∪ !.

Definition 2.3. (∑-algebra) Let ∑ be a �-sorted signature.

A ∑-algebra � is an S-sorted set � with an interpretation
of ∑ in	�, which is a family of arrows"�#…�%,�: ∑�#…�%,� →[��#…�%,� → ��] for each rank (�(…�) , �) ∈ (�∗ × �), which
interpret the operation symbols in∑ as actual operations on � . For constant symbols, the interpretation is given
by"[],�: ∑[],� → ��usually we write just σ for "�#…�%,�(σ)but if
we need to make the dependance on �and the rank(�, �)
explicit, we may writeσ�,�+ . The set ��is called the carrier
of� of sort	�.

Definition 2.4. (∑-algebra over commutative semigroups)
Let ∑ be an�-sorted signature. Let(,,∗) = {(,�,∗�)}�∈- be
an�-sorted signature family of commutative semigroups. A ∑-algebra over (,,∗)is a ∑-algebra � such that �� ⊆ ,�for
each � ∈ �.

Definition 2.5. (∑ -subalgebra) Let ∑ be an � -sorted
signature and � be a ∑ -algebra. A ∑ -algebra / is a
subalgebra of � when the following conditions are satisfied.
• /� ⊆ ��for each � ∈ �;
• For each σ ∈ ∑(�,�)with(�, �) ∈ (�∗ × �), the graph of σ�,�0 is include in the graph ofσ�,�+ .

Definition 2.6. (∑ -homomorphism) Let � and / be ∑ -algebras. A ∑ -homomorphismℎ is an � -sorted arrow
notedℎ:	� → / such that: ℎ�(σ+(2(, … , 2))) = σ0(ℎ�(�(), … , ℎ�(�))),
for eachσ ∈ ∑(�#…�%,�) and23 ∈ ��4 for " = 1,… , 6 , and ℎ�(7+) = 70 for each constant symbol7 ∈ ∑[],�.
2.2. Term, Equation and Specification

Definition 2.7. (∑-terms) Let ∑ be an �-sorted signature.
• The �-sorted set8∑ of ∑-terms is the smallest set of

lists of symbols that contains the constants,∑[],� ⊆ 8∑�,
and such that givenσ ∈ ∑(�#…�%,�) and93 ∈ 8∑ �4 , then σ(9(, … , 9)) ∈ 8∑,�.

• We view 8∑as a ∑-algebra by interpretingσ ∈ ∑([],�)
as just �, andσ ∈ ∑(�#…�%,�) as the operation sending
the n-uplet(9(, … , 9)) to the list σ(9(, … , 9)) . Then 8∑is called the ∑-term algebra.

Theorem 2.1. (Initiality)Given a signature ∑ with no
overloaded constants and a ∑-algebra M, there is a unique ∑-homomorphism	8∑ → :.

Definition 2.8.(∑-equations) A ∑-equation consists of a
ground signature ! of variable symbols (disjoints from ∑)
plus two ∑(X)-termsof the same sort� ∈ �.We may write
such an equation abstractly in the form(∀!)9 = 9′ and
concretely in the form(∀=, >, ?)9 = 9′ when @ = {=, >, ?}
and the sorts of x, y and z can be inferred from their uses in 9	and in 9’.

Definition 2.9. A specification is a pair (∑, ,), consisting
of a signature ∑ and a set , of ∑-equations.

Remark 2.1. The ∑-term algebra8∑serves as a standard
model for a specification B = (∑, ∅) . Given ∑ and a
ground signature ! disjoint from ∑ , we can form the ∑(!)-algebra 	8∑(C)and then view it as a ∑-algebra by
forgetting the names of the new constants in !; lets denote

 Applied and Computational Mathematics 2014; 3(6): 295-302 297

this ∑-algebra by 	8∑(!)..
Proposition 2.1. Let A be a ∑ -algebra and an

interpretation 2:	! → �, there is a unique ∑-homomorphism2D:	8∑(!) → �extending 2 , in the sense
that2D�(=) = 2�(=) for each= ∈ !�and� ∈ �.

Definition 2.10.(satisfaction, variety)
• A ∑-algebra � satisfies a ∑-equation(∀!)9 = 9′iff for

every 2: ! → �we have2(9) = 2(9�) in � , written � ⊨∑ (∀!)9 = 9′
• A ∑-algebra � satisfies a set , of ∑-equations iff it

satisfies each one, written � ⊨∑ ,. We may also say
that �	 is a B -algebra, and write � ⊨ B where B = (∑, ,).

• The class of all algebras that satisfy P is called variety
defined by B.

Theorem 2.2.Given a specification B = (∑, ,),any two
initial B-algebra are∑-isomorphic.

Definition 2.11. The abstract data type (abbreviated ADT)
defined by a specification B is the class of all initial B-algebras.

3. Multisorted Algebras Aggregations
In this section we introduce a new concept of universal

algebras aggregation. By so doing, we first introduce the
concept of aggregation operator which is an operator that
generate a new algebra supports from the supports of a
family of algebras. We then show that when this aggregation
operator is compatible with all operations from a universal
algebra signature, it generated another universal algebra that
satisfies the common properties of the aggregated universal
algebras. The first section describes the aggregation operators.
Our restriction is on the aggregation of universal algebra with
the same signature. The second section focus on the
mathematical properties of aggregated universal algebras.

3.1. Aggregation Operators, Aggregation of Algebras and
Homomorphisms

Definition 3.1. (F-Aggregation operator) Let < ,,∗> be
a commutative semigroup. Let 6 be an integer and ,)
denote the cartesian product of , defined by 6-uplets of
elements in ,. Let,I = ⋃ ,)I)J(. Let � be a set of sorts
and � = �(…�) ∈ �∗. Let ∑ be an �-sorted signature. Let K��# , … , ��%Lbe a family of sorted sets and �� = ��# × …×��%.

A function F: ,I → ,is called an aggregator on ,.
• A ∗-aggregator on < ,,∗> in an aggregatorF: ,I →, such that for (=(, … , =M) ∈ ,M ,,,

F(=(, … , =M) ==(∗ … ∗ =M .
• An (�,∗) -aggregator is an aggregatorF: ��I → ��

defined by a family of ∗ -aggregatorsKF�4: ��4I →��4}(N3N) such that for each operation symbol� ∈ ∑�,�
of arity (�, �)	 where � = �(…�M , the following
equation is satisfied:

For eachO , 1 ≤ " ≤ Q , for each R23ST(N3N) ∈ ��4) , F� U�+ VR2(STSW , … , �+ VR2)STSWX =�+RF�#[(23()3], … , F�Y[(23M)3]T
For a finite 6-uplet ! = (=(, =Z, … , =)) ∈ ,)we denote

the aggregationF(!)of !byF3J(3J)=3.
In the literature, the symbol [generally denotes the

aggregation operator for the addition operator of finite or
infinite elements. The union operator ∪is an aggregation
operator that constructs the union of a family of sets.

Definition 3.2.(Aggregation of ∑ -algebras over
commutative semigroups) Let � = {�3}(N3N)be a family of ∑-algebras where each �3 is a ∑-algebra over commutative
semigroups,3 , 1 ≤ " ≤ 6 . LetF\ be a ∑ -aggregator. The
aggregation of ∑-algebras in {�3}(N3N)by F\is the �-sorted

family of sets noted F\(�)� =]F� V�+^R23STW , _`a	2bb	� ∈∑�,�, � = �(…�) ∈ �∗, 23S ∈ ��S , 1 ≤ " ≤ 6, 1 ≤ O ≤ Qc.
Theorem 3.1. (Aggregation of ∑ -algebras) Let � ={�3}(N3N) be a family of ∑ -algebras where each�3 is a ∑ -algebra over commutative semigroups ,3 , 1 ≤ " ≤ 6Ei,

Let F\be a∑-aggregator. The aggregation of ∑-algebras
in{�3}(N3N) by F\is a∑-algebra.

Proof.
The aggregator of � with F\ is the ∑ -algebra F\(�)defined as follows:

• For each sort� ∈ � corresponds the support set

• F\(�)� =]F� V�+^R23STW , _`a	2bb	� ∈ ∑�,�, � =�(…�) ∈ �∗, 23S ∈ ��S, 1 ≤ " ≤ 6, 1 ≤ O ≤ Qc.
• For each symbol � ∈ ∑�,�, where � =�(…�) corresponds the operation �de(+): F\(�)�# ×…× F\(�)�Y → F\(�)�
• such that: �de(+)RF�#[(23()3], … , F�Y[(23M)3]T =Ffg�+#R(2(S)ST, … , �+%R(2)S)STh

Definition 3.3. (Aggregation of ∑-homomorphisms) Let ℎ = {ℎ3 : �3 → /3 , 1 ≤ " ≤ 6} be a family of ∑ -homomorphisms of ∑ -algebras over commutative
semigroups. Let F\be ∑ -aggregator. The aggregation of ∑-homomorphisms in{ℎ3: �3 → /3 , 1 ≤ " ≤ 6} by F\ is the
function defined as follows:

For each FfR�+4(23S)T ∈ F\(�), F\(ℎ)�RF�(�+(23S))T ≔ F�(�0(ℎ�(23S)))
Theorem 3.2.(Aggregation of ∑ -homomorphisms). Let ℎ = {ℎ3 : �3 → /3 , 1 ≤ " ≤ 6} be a family of ∑ -homomorphisms and let	F\ be a∑ -aggregator. The

aggregation of ∑-homomorphisms in {ℎ3: �3 → /3 , 1 ≤ " ≤6} by 	F\is a ∑-homomorphism.
Proof:
Let � = {�3 , 1 ≤ " ≤ 6} and 	/ = {/3 , 1 ≤ " ≤ 6} The

aggregation of {ℎ3: �3 → /3 , 1 ≤ " ≤ 6} with 	F\ is the ∑ -homomorphism	F\(ℎ):		F\(�) → 	F\(/) defined as
follows:

298 Erick Patrick Zobo and Marcel Fouda Ndjodo: Multisorted Tree Algebra

For each FfR�+4(23S)T ∈ F\(�), we have

F\(ℎ)�RF�(�+(23S))T ≔ F�(�0(ℎ�(23S)))
To prove that the property of homomorphism is satisfied,

let σ ∈ ∑�#…�%,�
let the terms2(= F�#(j+k(2(3)) ∈ 	F\(�)�# ,…, and 2) = F�%(j+%(2)3)) ∈ 	F\(�)�% We have the following equations: F\(ℎ)(�	de(+)(F�#Rj+((2(3)T), … , F�%Rj+)(2)3)T)) = F\(ℎ)(F�#(�	de(+)Rj+((2(3)T), … , F�%Rj+)(2)3)T))
becauseFis a ∑-aggregator. = FfR�	de(0)(ℎ�#Rj+((2(3)T, … , ℎ�%Rj+)(2)3)T)T
by the definition of F\(ℎ) = �	de(0)(F�#(ℎ�#Rj+((2(3)T, … , F�% Vℎ�%(j+)(2)3)W))
by de definition of F

= �	de(0)(F�#(j0(Rℎ�((2(3)T, … , F�% Vj0)(ℎ�%((2)3)W))
becauseℎ�4are homomorphisms

= �	de(0)(F∑(ℎ)-#(F�#(j0((2(3), … , F\(ℎ)�Y(F�%Rj0)(2)3)T))
by the definition ofF\(ℎ).
3.2. Some Properties of Aggregation of Algebras

Theorem 3.3. Let(∀!)9 = 9′ be a ∑ -equation. Let � = {�3 , 1 ≤ " ≤ 6}be a family of ∑-algebras such that for
each1 ≤ " ≤ 6� ⊨∑ (∀!)9 = 9′ThenF\(�) ⊨ (∀!)9 = 9′.

Proof.
LetΘ\ an aggregator operator. We assume that the sort of t and t′ is s ∈ S Let af: Xf →	Θ\({Ap}(NpNq) be an

interpretation of variables from XfinΘ({Apf}(NpNq) There is a
family of interpretationsapf: Xf →	Apf such that ais(x) =Θ\({apf(x)}(NpNq)

Proposition 2.1.implies that for each ", 1 ≤ " ≤ 6there is
an unique homomorphism2D3�: 8∑(!)� →	�pf expanding
aisi.e. such that for= ∈ !, 2D3�(=) = 23�(=) Also, there is a
unique homomorphism2D3�: 8∑(!)� →	�pf 2D3�: 8∑(!)� →	F({�3�}(N3N)) expanding2�. To verify the
satisfaction of equation(∀!)9 = 9′ we have: 2D3�(9) = F\({23�(9)}(N3N))

=F\({23�(9′)}(N3N)) because �3 ⊨∑ (∀!)9 = 9′ = 2D3�(9′)
Hence, F\R{�3}(N3N) ⊨∑ (∀!)9 = 9′T
Corollary 3.1.A ∑ -aggregation of ∑ -algebras from a

variety defined by is a ∑ -algebra of the same
variety.

4. Multisorted Tree Algebra
We propose in this section the foundational concepts of

multisorted tree algebra as construction of hierarchy
structured algebras by placing universal algebras of the same
signature at each leave of the bottom, and by completing the
other nodes till the top by aggregation of universal algebras
of their direct subordinate nodes. This section has three
subsections. The first presents the concept of valued rooted
tree. The second introduces the concept of multisorted tree
algebra as a valued rooted tree of algebras, and the third is
about basic concepts of algebraic specification in the
framework of multisorted tree algebra.

4.1. (u, ∆)-Valued Rooted Tree

The concept of rooted trees defined below is used to
describe hierarchical structure of some organization. The root
is the highest authority and the leaves are the executives.

4.1.1. Tree, Rooted Tree, Subtree
1. A tree∆= (∆w, ∆() is a connected undirected graph with

no simple circuits. The set ∆wis the set of nodes or
vertices, and the set∆⊆ ∆w × ∆(is the set of edges or
arcs.

2. A rooted tree noted< ∆, x > is a tree ∆in which a node
R has been designated as the root and every edge is
directed away from the root.

3. Let ∆be a tree, if A is a node in ∆wother than the root,
the parent or the direct hierarchical superior of A is the
unique node B in ∆wsuch that there is a directed edge
from B to A. when B is the parent of A, then A is called
a child or a direct subordinate of B.

4. Let ∆be a tree and � ∈ ∆wa node of ∆. The ancestors
or the hierarchical superiors of A are the nodes in the
path from the root to A, excluding A. the descendants or
the subordinates of a node A are those nodes that have
A as an ancestor.

5. A node of a tree ∆ is called leaf, or ground node or
operating agent or unit if it has on children. Nodes that
have children are called intermediate management
agent.

6. Let � be a node in a tree ∆, the subtree ∆+of ∆ is a
rooted tree with � as its root is the subgraph of the tree
consisting of � and all its descendants in ∆.

4.1.2. Tree Levels and Height
1. Let A be a node of a rooted tree<	∆, x >, the positive

integer b+ is the level of � if it is representing the
number of edges of the unique path from the root x	9`	�. The level of the root of ∆ is equal to zero. The
height of a rooted tree ∆ is the maximum of the levels
of its nodes.

2. Let � be a node of a tree ∆, let l be an integer such
that b+ 	≤ 	b, the set of nodes of ∆	of level l that are
children of � is denoted by ∆+y .

),(P∑

 Applied and Computational Mathematics 2014; 3(6): 295-302 299

3. The width m of a tree ∆ is the integer corresponding to
the number of leaves in ∆.

4. Let Q and ℎ be two integers, an (ℎ,Q)-rooted tree <	∆, x	 > is a rooted tree with m leaves and for which
the level of each leaf is ℎ . Each integer b , with 0	 ≤ 	b	 ≤ 	ℎ is called a hierarchical level of ∆.

5. Let ∆ be an (ℎ,Q)-rooted tree, let l be an integer, 0	 ≤ 	b	 ≤ 	ℎ and let � be a node of ∆. We denote by ∆ythe set of nodes at the hierarchical level b. We denote
by ∆{ the set of ground nodes of ∆. We denote by ∆+{the ground nodes of ∆ that are subordinate of �.

Proposition 4.1. Let < ∆, R > be an (h,m) − rooted	tree, let	q	be	two	integers	and	A	be	a	node	of	∆
• For each integer l such that 0 ≤ b < ℎ, K∆+�L+∈∆� is a

partition of ∆h
• For each integers b and q such that 0 ≤ b < �	 ≤ℎ, K∆+�L+∈∆� is a partition of ∆q.

Definition 4.1. (Valued rooted tree) Let � be a set of values.
An (ℎ,Q) -rooted tree is a triplet < ∆, �, _ > where <∆, x > is an (ℎ,Q)rooted tree and _:	∆w�� a valuation of
nodes of ∆.

Definition 4.2. (Ɵ-extension, extensible operation on tree)
Let <∆,R> be an (h, m)-rooted graph. Let < ,,∗> be a
commutative semigroup for which the associated aggregation
operator symbol is Ɵ. Let _:	∆{ 	→ , be a function. The
function _�:	∆w→ E is a Ɵ-extension to ∆w of the function _	defined on ∆{ when it is defined as follows:
• For each � ∈ ∆{, _�(�) = _(�);
• For each � ∈ ∆w	��7ℎ	9ℎ29	� ∉ 	Δ{; 	_�(�) =	Ɵ({f(S)}-∈∆k�)

The function	_ is called a Ɵ-extensible operation from ∆{
to ∆w

Definition 4.3.((Ɵ, ∆) − valued	rooted	tree) Let < ,,∗>
be a communitative semigroup with Ɵ the associated
aggregation operator symbol. �	(Ɵ, ∆) −valued	rooted	tree is a triplet < ∆, x, _ > where <∆, x > is an (h,m)-rooted tree and _:	∆{→ ,	 is a Ɵ-extensible function from ∆{ to ∆w .

4.2. (�, Ɵ, �)-Multisorted Tree Signature, Algebra and
Homomorphism

Definition 4.4.((Σ, Ɵ, Δ) -multisorted tree signature) Let < ∆, x > be a rooted tree. A (Δ, �) -multisorted tree
signature is a Δw -indexed family of S-multisorted
signatures{Σ�}�∈△�. When Σ� = Σ for all >�Δw and Ɵ is a [-aggregator, the (∆, �)-multisorted tree signature is called a (Σ, Ɵ, Δ)-multisorted tree signature and denotedΣ ,Ɵ.

Definition 4.5. ((Σ, Θ, Δ) − Q�b9"�`a9¡¢	9a¡¡	2b£¡¤a2)
Let < ,,∗> be a commutative semigroup with Ɵ as the
associated aggregation operator symbol. Let ��¤(< ,,∗>)
be the class of commutative sub-semigroup of < ,,∗>. Let [be a signature and �b£¥(Σ) be the class of [-algebras
with carriers in ��¤(< ,,∗>). Let < ¦, x > be a rooted
tree. A (Σ, Ɵ, Δ) -multisorted tree algebra � is a tuple < [, F, ¦, x, _ >such that < ¦, x, _ > is a Ɵ-valued rooted

tree with _:	Δ{ →	�b£¥(Σ) a Ɵ-extensible function from Δ{
to ∆w and such that it Ɵ-extension_�is defined as follows:
• For each ! ∈ ∆{, _�(!) = _(!);
• For each ! ∈ ∆w	��7ℎ	9ℎ29	! ∉ 	Δ{; 	_�(!) =	Ɵ({f(S)}-∈∆§�) , is the Σ-algebra obtained by Ɵ-aggregation of the [-algebras from all subordinated

leaves of !.
Definition 4.6.((Σ, Θ, Δ)-multisorted tree homomorphism)
Let � and / be two ((Σ, Θ, Δ)-multisorted tree algebras,

a ((Σ, Θ, Δ) -multisorted tree homomorphismℎ: � → / Let < ,,∗> be a commutative semigroup with Ɵ as the
associated aggregation operator symbol. Let ��¤(< ,,∗>)
be the class of commutative sub-semigroup of < ,,∗>. Let [be a signature, �b£¥(Σ) be the class of [-algebras with
carriers in ��¤(< ,,∗>) and let ¨`Q¥(Σ) the class of [-homomophism between elements of �b£¥(Σ) . Let < ¦, x > be a rooted tree. A (Σ, Θ, Δ) − Q�b9"�`a9¡¢	9a¡¡	ℎ`Q`Q`a©ℎ"�Q is a tuple < [, F, ¦, x, ª > such that < ¦, x, _ > is a Ɵ -valued
rooted tree with ª:	Δ{ → ¨`Q¥(Σ) a Ɵ-extensible function
from Δ{ to ∆w and such that it Ɵ-extension	_	is defined as
follows:
• For each ! ∈ ∆{, ª(!) = ª(!) ∶ _(!) → �(!) is a [-homomorphism on ̈ `Q¥(Σ);

For each ! ∈ ∆w	��7ℎ	9ℎ29	! ∉ 	Δ{; 	ª(!):	Ɵ V{f(S)}-∈∆§�W →ƟV{g(S)}-∈∆§�W , is the [-homomorphism obtained by Ɵ -aggregation of the [-homomorphisms from all
subordinated leaves of !.

Hence, ª(!)� ¬�+ VƟRK2(,(,...,2M,(LT, . . . , ƟRK2(,), . . . , 2M,)LTW­ =Ɵ{�0R2(,(,. . . , 2(,)T, . . . , �0R2M,(,. . . , 2M,)T	}
4.3. (�, u, �)-Multisorted Tree Terms, Equations,

Specification

Definition 4.7.((Σ, Θ, Δ) − Q�b9"�`a9¡¢	9a¡¡	9¡aQ�) Let � =< Σ, Θ, Δ, x, _ > be a multisorted tree algebra. The (Σ, Θ, Δ) − �¡9 of multisorted ground tree terms is the valued
rooted tree 8\,®, defined by the tuple < Σ, Θ, Δ, x, _, 9 >
such that < Δ, x, _ > is a Ɵ -valued rooted tree with 9:	Δ{ → 8̄ a Ɵ-extensible function from Δ{ to ∆w and such
that it Ɵ-extension _� is defined as follows:
• _�(!) = 8̄ 	_`a	! ∈ Δ{ ,
• _�(!) = Ɵ{_(�), � ∈ ΔC{ }	_`a	! ∉ Δ{. 8\,®, is the (Σ, Θ, Δ) − Q�b9"�`a9¡¢	9a¡¡	`_	9ℎ¡	9¡aQ�.

Theorem 4.1. (Initiality) Given a multisorted signature Σ
with no overloaded constants and a (Σ, Θ, Δ)-multisorted tree
algebra � , there is a unique (Σ, Θ, Δ) -multisorted tree
homomorphismea 8\,®, → �.

Definition 4.8.((Σ, Θ, Δ)-multisorted tree specification)
Let < [, F, ¦ > be a multisorted tree signature.

• A < Σ, Θ, Δ > −9a¡¡	¡��29"`6 consist of a ground < Σ, Θ, Δ > -tree signature X of variable symbols
(disjoints from Σ) plus two < Σ(X), Θ, Δ >-tree terms
of the same (∆,S)-sort. We many write such as equation

300 Erick Patrick Zobo and Marcel Fouda Ndjodo: Multisorted Tree Algebra

abstractly in the form (∀!)9 = 9�.
• A < Σ, Θ, Δ >-specification is a pair (< Σ, Θ, Δ > ,E)

consisting of a < Σ, Θ, Δ >-tree signature and a set of < Σ, Θ, Δ >-equations.
Proposition 4.2. Given < [, F, ¦ >-tree algebra � and an

interpretation a : ! → � , there is a unique (Σ, Θ, Δ)-homomorphism 2 ∶ 	 8\,®, 	(!) → � extending a in
the sense that 2�(=) = 2�(=) for each = ∈ !�	26¢	� ∈ �.

Definition 4.9.((Σ, Θ, Δ)-multisorted tree variety)
• A < [, F, ¦ > −9a¡¡	2b£¡¤a2� satisfies a <[, F, ¦ > −9a¡¡	¡��29"`6(∀!)	9 = 9� iff for every : ! → � , we have 2(9) = 2(9�) in � , written � ⊨\,®, (∀!)	9 = 9�.
• A < [, F, ¦ > −9a¡¡	2b£¡¤a2� satisfies a set E of

equations iff it satisfies each one, written � ⊨\,®, ,.
We also say that � is a < [, F, ¦, , >-tree algebra.
The class of < [, F, ¦, , >-tree algebras is called a
variety defined by < [, F, ¦, , >.

Definition 4.10. ((Σ, Θ, Δ) − 8a¡¡	�¤�9a279	°292	8>©¡) The tree abstract
data type (abbreviated TADT) defined by a specification B =< [, F, ¦, , > is the class of initial P-algebras.

4.4. Matrix-Based Multisorted Tree Algebra

This section presents an example of multisorted tree
algebra main components. The sorts are the various types of (6	 × 	©)-matrix. The signature operations are the operations
on matrix defined below. We limit our description to the
signature and the aggregation operator. The construction of
matrix based multisorted algebras can be done for any
hierarchy by following the description above.

Definition 4.11. (Matrix and vectors over set) Let , be a
non-empty set and 6, © two positive integers. An (6 ×©)-matrix A over ,, also called a matrix of type (,, 6, ©), is
a function �: {1, . . . , 6} 	× {1, . . . , ©} → ,,(", O) ⟼ 23S

We write � = (23S)(N3N),(NSN² and the elements 23S are
called the components of A.
• When 6 = 1 , the matrix � = (2((, . . . , 2(²) simply

denoted by � = (2(, . . . , 2²) is a ©-horizontal vector.

• When © = 1 then � = ³2((⋮2)(µ simply denoted by

� = ³2(⋮2)µis a 6-vertical vector.

• When 6 = © = 1, then � is an element 2	`_	,.
• When the context is clearly defined, the matrix � is

denoted by (23S) and the set of all 6	 × ©-matrix over , is denoted by ℳ(,, 6, ©).
Definition 4.12. (Matrix and vectors operators) Let (,, +,×) be a field and 6, © be two positive integers. Let � = (23S) and / = (¤3S) be two matrices of ℳ(,, 6, ©), ¸ = (�S) an horizontal vector in ℳ(,, 1, ©) and � = (¹3)

a vertical vector in ℳ(,, 6, 1). The following operators are

defined:
1. The sum of matrix operator noted + is a function

defined as follow : +∶ 	ℳ(,, 6, ©) ×ℳ(,, 6, ©) → 	ℳ(,, 6, ©),(R23ST, R¤3ST) ⟼ (23S + ¤3S)

2. The rows sum of matrix operator noted +ºº» is a function
defined as follows : +ºº»∶ 	ℳ(,, 6, ©) → 	ℳ(,, 6, 1),

R23ST ⟼ ¼ΣSJ(SJ²2(S⋮ΣSJ(SJ²2)S½

3. The column sum of matrix operator noted ↓ + is a
function defined as follows : ↓ +∶ 	ℳ(,, 6, ©) → 	ℳ(,, 1, ©),R23ST ⟼ RΣ3J(3J)23(, . . . , Σ3J(3J)23²T

4. The parallel product of two matrix operator noted ×¿ is
a function known as Hadamard product and defined as
follows : ×¿∶ 	ℳ(,, 6, ©) ×ℳ(,, 6, ©) → 	ℳ(,, 6, ©),(R23ST, R¤3ST) ⟼ (23S × ¤3S)

5. The horizontal product of matrix and vector operator
noted ×ºº» is a function defined as follows : ×ºº»∶ 	ℳ(,, 6, ©) ×ℳ(,, 6, 1) → 	ℳ(,, 6, ©),(R23ST, (�3)) ⟼ (23S × �3)

6. The vertical product of matrix and vector operator noted ↓× is a function defined as follows: ↓×∶ 	ℳ(,, 6, ©) ×ℳ(,, 1, ©) → 	ℳ(,, 6, ©),(R23ST, R¹ST) ⟼ (23S × ¹S)

7. The total sum of a matrix or vector operator noted ⊕ is
a function defined as follows: ⊕∶ 	ℳ(,, 6, ©) → 	ℳ(,, 1,1),R23ST ⟼ ∑3J(3J)∑SJ(SJ²23S

8. The total product of a matrix or vector operator noted ⊗
is a function defined as follows: ⊗∶ 	ℳ(,, 6, ©) → 	ℳ(,, 1,1),R23ST ⟼ Π3J(3J)ΠSJ(SJ²23S

One may notice that the operator ⊕ is the composition of
the two operators Ã→and ↓ + defined above.

Remark 4.1. 1.The set {⊕	;	⊗	; 	+ºº»	; 	↓ +	;	×ºº»	;	×¿	; 	+	; 	↓×	}
is a signature of matrix-based multisorted algebra.

2. The addition of matrix is a Σ-aggregator

 Applied and Computational Mathematics 2014; 3(6): 295-302 301

5. Multisorted Tree Algebras in
Universal Algebra Theory

When the hierarchy ∆ of a (Ɵ, Ʃ, ∆)-multisorted algebra is
not reduced to single node, then it Structure is different with
the one of any Σ -universal algebra. Comparing the both
algebraic structures is as comparing a wall structure with a
block used to build that wall. The (Ɵ, Ʃ, ∆) -multisorted
algebra structure is composed of Ʃ -algebras networked on a
tree. The computations are handled by a network of Ʃ-algebras that is built by operation from Ʃ that are combined
by Ʃ aggregations. While in universal algebra the resulting
computations are expressed by Ʃ-terms, in multisorted tree
algebras they are expressed as a tree of terms at each nodes of
the hierarchy. Some of these terms are gradually generated
from terms at the bottom of the hierarchy. Some similarities
can be made with computations systems in the literature as
grid computing. Base on their structure as graph of Ʃ-algebras,
one may have the intention to consider multisorted tree
algebras as a graphs in the category of Ʃ-algebra [16, 17]. A
graph in ∁(Σ) has as modes Ʃ -algebras and as edges Ʃ-homomorphisms. Even though some of those graphs may
have a shape of tree, they are not multisorted tree algebras
becaused the concept of homomorphism is not contained in
the definition of multisorted tree algebra.

Figure 1. Example of multisorted tree algebra structure.

Multisorted tree algebras are specific algebraic structures
constructed by gluing universal algebras through an
aggregation operation to account for realities as the bottom up
data computations and processing flow to generate different
data at each nodes of a hierarchy. In È"£�a¡	1, the leaves
contains Ʃ-algebra with supports noted as �, /, É, °, ,, and
the intermediate level contains the aggregated Ʃ-algebras with
supports noted as Ɵ[�, /, É] and Ɵ[E, F]. In this example, a
list of five terms at the bottom of the hierarchy will generate
three terms classified as triangle nodes with the first two at the
basis. One can notice that aggregation operators may be used
to construct more complex algebraic structures that don’t
necessary have the shape of a balanced tree. Multisorted tree
algebra therefore offers a mathematical framework for
investigating such constructions and their engineering.
However, the features and properties of these new
mathematical objects need to be studied in detail.

Elsewhere, the foundation of algebraic specification rely on
the fact that an Abstract

Data Types is modeled by universal algebra. Therefore, the
introduction of multisorted tree algebra induces by analogy

the introduction of Tree Abstract Data Type that could be
useful for studying classes programming language in software
engineering.

6. Conclusions and Perspectives
In this paper we have introduced a hierarchical algebraic

structure called multisorted tree algebra. A brief description of
results in multisorted algebra has been given in the first
section. Then the concept of aggregation operator has been
presented as an operator that generatesa Σ-algebra from
different other Σ-algebras. It has also been shown that
aggregation operators generate a Σ-homomorphism form a
given family of Σ-homomorphisms between the aggregated
Σ-algebras. Next, multisorted tree algebra has been
constructed by placing multisorted algebra at the bottom of a
hierarchy, and by placing at other nodes the aggregation of
multisorted algebra placed at their immediate subordinate’s
nodes. Furthermore, an analysis about the features and the
place of multisorted tree algebra in the universal algebra
theory has been briefly discussed. Among the perspectives
generated by this paper, investigations on mathematical
features and approaches to the study of multisorted tree
algebra are necessary. One of the major reasons to engage in
these further studies is the fact that they represent a hierarchy
of algebraic structures that cannot be classified in classic
varieties of universal algebra theory and also, they are not
graphs of categories of universal algebras of given signature.
The multisorted tree algebra concept may also be expanded by
investigating aggregations of universal algebras of different
signatures, or the construction of aggregations on a graph that
are not trees. Among the application perspectives, multisorted
tree algebra seems to give to computer scientists a different
abstract data type described as a hierarchy of data types. It’s
not pretentious to think that this new concepts could also give
an approach to assemble abstract data type architectures and
therefore expand results where classic universal algebras has
contributed in theoretical computer science domains including
for example Ë-calculus [18], type theory [19], data structures
[20] and algebraic specification [21, 7].

Elsewhere, bottom up data processing in hierarchical
organizations are characterized by computations of data at
each node of the hierarchy with fact that upper nodes generally
compute aggregate data from their direct subordinate nodes.
An information system that manages such computations can
therefore be modeled by a multisorted tree algebra. If each
node is modeled as a data type because of the computations
implemented at it level, then the whole system is therefore
considered as a hierarchy of data types. Hence, multisorted
tree algebras also account for the modeling of such
hierarchical computations and information systems [13].

References
[1] K. D. . S. L. Wismath, Universal Algebra and Applications in

Theoretical Computer Science, CRC, 2002.

302 Erick Patrick Zobo and Marcel Fouda Ndjodo: Multisorted Tree Algebra

[2] S. Burris. . H. P. Shankappanavar, A Course in Universal
Algebra, the millenium edition Edition, Springer-Verlag,
http://www.cs.elte.hu/ ewkiss/univ-algebra.pdf, 1981.

[3] W. Wechler, Universal Algebra for Computer Scientists,
Springer-Verlag, 1992.

[4] C. Oriat, Etude des speci_cations modulaires: constructions de
colimites _nies, diagrammes, isomorphismes, Informatique,
Institut National Polytechnique de Grenoble, Laboratoire
Logiciels Systmes et Rseaux (LSR-IMAG) (janvier 1996).

[5] A. Mucka. al., Many-sorted and single-sorted algebras,
Algebra Universalis 69 (2013) 171{190.

[6] J. A. Goguen, Hidden algebraic engineering, in: C. Nahaniv
(Ed.), Conference on semi groups and algebraic engineering,
University Aisu, 1997.

[7] J. Goguen, Hidden algebra for software engineering, in: Proc.
Conf. Discrete Mathematics and Theoretical Computer Science,
Vol. 21 of Australian Computer Science Communications,
1999, pp. 35{59.

[8] J. Stell, A framework for order-sorted algebra, in: H. Kirchner,
C. Ringeissen (Eds.), Algebraic Methodology and Software
Technology, Vol. 2422 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2002, pp. 396{411.

[9] J. J. M. M. Rutten, Universal coalgebra: a theory of systems
(2000).

[10] G. Rosu, Hidden logic, Phd, University of California, San
Diego (2000).

[11] T. V. Zandt, Real-time hierarchical resource allocation,
http://faculty.insead.edu/vanzandt/research-orgs/papers/Resour
ce1.pdf.

[12] M. W. A. Knapp, A formal approach to object-oriented
software engineering, Theoretical ComputerScience 285 (2002)
519{560.

[13] T. V. Zandt, Hierarchical computation of the resource
allocation problem, European Economic Review39 (1995)
700{708.

[14] F. H. Trinkl, Hierarchical resource allocation decisions, Policy
Sciences 4 (1973) 211{221.

[15] J. G. . G. Malcom, A hidden agenda, Theoretical Computer
science 245 (2000) 55{101.

[16] M. Barr, C. Wells, Category Theory for Computer Science,
Pintice-Hall International, 1990.

[17] J. L. Fiadeiro, Cathegories for software engineering, Springer,
2005.

[18] G. Manzonetto, A. Salibra, From -calculus to universal algebra
and back, in: MFCS08, volume 5162 of LNCS, 2008, pp.
479{490.

[19] V. Capretta, Universal algebra in type theory, in: Theorem
Proving in Higher Order Logics, 12th International Conference,
TPHOLs '99, volume 1690 of LNCS, Springer-Verlag, 1999,
pp. 131{148.

[20] J. V. Guttag, Abstract data types and the development of data
structures, Communication of the ACM6 (1977) 396{404.

[21] J. A. Goguen, G. Malcolm, Software Engineering with OBJ:
algebraic specification in action, Vol. Advances in Formal
Methods, Kluwer Academic Publishers, 2000.

