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Abstract: In this paper, the new iterative method (NIM) is applied to solve nonlinear fractional gas dynamics equation. 

Further, a coupling of the Sumudu transform and   Adomian decomposion (STADM) is used to get an approximate solution of 

the same problem. The results obtained by the two methods are found to be in agreement. Therefore, the NIM may be 

considered efficient method for finding approximate solutions of both linear and nonlinear fractional differential equations. 
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1. Introduction 

In recent years, fractional differential equations have 

gained importance and popularity, mainly due to its 

demonstrated applications in numerous seemingly diverse 

fields of science and engineering. For example, the nonlinear 

oscillation of earthquake can be modeled with fractional 

derivatives and the fluid-dynamic traffic model with 

fractional derivatives can eliminate the deficiency arising 

from the assumption of continuum traffic flow. The 

fractional differential equations are also used in modeling of 

many chemical processes, mathematical biology and many 

other problems in physics and engineering [1–12]. There is a 

very comprehensive literature review in some new 

asymptotic methods for the search for the solitary solutions 

of nonlinear differential equations, nonlinear differential-

difference equations, and nonlinear fractional differential 

equations; see [13]. The new iterative method (NIM) was 

first introduced by Gejji and Jafari [14]. The NIM was also 

studied by many authors to handle linear and nonlinear 

equations arising in various scientific and technological 

fields [15-18]. The Sumudu decomposition method [19,20] 

and variational iteration method (VIM) [21] have also been 

applied to study the various physical problems. 

In this paper, we consider the following nonlinear time-

fractional gas dynamics equation of the form 

( ) 0)1()(
2

1
, 2 =−−+ UUUtxUD xt

α
, 0>t  10 ≤< α ,    (1.1) 

with the initial condition 

.e)0,x(U x−=                                 (1.2) 

where α  is a parameter describing the order of the fractional 

derivative. The function ( )txU ,  is the probability density 

function, t  is the time, and x  is the spatial coordinate. The 

derivative is understood in the Caputo sense. The general 

response expression contains a parameter describing the 

order of the fractional derivative that can be varied to obtain 

various responses. In the case of 1=α the fractional gas 

dynamics equation reduces to the classical gas dynamics 

equation. The gas dynamics equations are based on the 

physical laws of conservation, namely, the laws of 

conservation of mass, conservation of momentum, 

conservation of energy, and so forth. The nonlinear fractional 

gas dynamics has been studied previously by Das and Kumar 

[22]. Further, we apply the NIM and SDM to solve the 

nonlinear time-fractional gas dynamics equation. The 

objective of the present paper is to extend the application of 

the NIM to obtain analytic and approximate solutions to the 

time-fractional gas dynamics equation. 
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2. Basic Definitions of Fractional 

Calculus 

In this section, we mention the following basic definitions 

of fractional calculus which are used further in the present 

work. 

2.1. Definition 

The Riemann-Liouvill fractional integral operator of order 

0>α ; of a function µCtf ∈)(  and 1−≥µ  is defined 

as : 

( ) ( ) ( ) ( ) τττ
α

α
α dfttfI

t 1

0

1 −

∫ −
Γ

= , 0>α ,            (2.1) 

( ) ( )tftfI =0 .                                  (2.2) 

For the Riemann-Liouville fractional integral, we have: 

( )
( )

αα

α
+

++Γ
+Γ= vv t

v

v
tI

1

1
.                             (2.3) 

2.2. Definition 

The fractional derivative of )(tf  in the Caputo sense is 

defined as: 

( ) ( ) ( ) ( ) ( ) τττ
α

α
αα dft

m
tfDItfD m

mt
mm

tt

1

0

1 −−
−

∫ −
−Γ

== , 

mm ≤<− α1 , 0>t                       (2.4) 

From properties of 
α
tD  ; it is important to note that: 

( )
( )

αα

α
−

−+Γ
+Γ= vv

t t
v

v
tD

1

1
.                           (2.5) 

For the Riemann-Liouvill fractional integral and Caputo 

fractional derivative, we have the following relation: 

( ) ( ) ( )
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0
1

0 k

t
ftftfDI

km

k

k

tt +

−

=
∑−=αα

.            (2.6) 

2.3. Definition 

The Sumudu transform of the Caputo fractional derivative 

is defined as follows [23]: 

( )[ ] ( )[ ] ( )+

−

=

+−− ∑−= 0
1

0

m

k

kk

t futfSutfDS ααα
, mm ≤<− α1   (2.7) 

3. Basic Idea of New Iterative Method 

(NIM) 

To describe the idea of the NIM, consider the following 

general functional equation [14-18]: 

)),(()()( xuNxfxu +=                       (3.1) 

where N  is a nonlinear operator from a Banach space 

BB → and f  is a known function. We are looking for a 

solution u of (3.1) having the series form 

.)()(
0
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=

=
i

i xuxu                                (3.2) 

The nonlinear operator N can be decomposed as follows 
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From Eqs. (3.2) and (3.3), Eq. (3.1) is equivalent to 
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We define the recurrence relation: 

,0 fu =                                        (3.5a) 

),( 01 uNu =                                   (3.5b) 

.,...3,2,1),...()...( 110101 =+++−+++= −+ nuuuNuuuNu nnn   (3.5c) 

Then: 

,,...3,2,1,)...()...( 1011 =+++=++ + nuuuNuu nn  







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




+== ∑∑

∞
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∞
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If N  is a contraction, i.e. 

)()( yNxN − ≤ ,10, <<− kyxk  

then: 

)...()...( 110101 −+ +++−+++= nnn uuuNuuuNu  

 ≤ nuk ≤ …≤ ,...,2,1,00 =nuk n
               (3.7) 

and the series ∑
∞

=0i

iu  absolutely and uniformly converges to a 

solution of (3.1) [24], which is unique, in view of the Banach 

fixed point theorem [25]. The k-term approximate solution of 

(3.1) is given by )x(u)x(u 1k
0i i∑= −

= . 

3.1. Reliable Algorithm of New Iterative Method for 

Solving the Linear and Nonlinear Partial Differential 

Equations 

After the above presentation of the NIM, we introduce a 

reliable algorithm for solving nonlinear PDEs using the NIM. 

Consider the following nonlinear PDE of arbitrary order: 

INmmmtxBuuAtxuDt ∈≤<−+∂= ,1),,(),(),( αα
  (3.8a) 

with the initial conditions 

,1,...,2,1,0),()0,( −==
∂
∂

mkxhxu
t

kk

k

    (3.8b) 
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where A  is a nonlinear function of u  and u∂ (partial 

derivatives of u  with respect to x  and t ) and B  is the 

source function. The initial value problem (3.8) is equivalent 

to the following integral equation 

,)(),(
!

)(),(
1
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=

+=++=
m

k

tt

k

k uNfAItxBI
k

t
xhtxu αα

    (3.9) 

where 

,),(
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              (3.10) 

and 

,)( AIuN t

α=                           (3.11) 

where 
n

tI  is an integral operator of n  fold. We get the 

solution of (3.9) by employing the algorithm (3.5). 

4. Sumudu Transform 

A new integral transform, named Sumudu transform is 

defined over the set of functions. 
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by the following formula 

[ ] ( )210
,,)()()( ττ−∈== ∫

∞ − udteutftfSuf t    (4.2) 

This Sumudu transfirm is applied to the solution of 

ordinary differential equation in control engineering problem, 

for more details see Watugala [26]. Some of the properties of 

this transform were established in [27,28]. Further 

fundamental properties of this transform were also 

established ,see [29] . Similarly, this transform was applied 

to the one-dimensional neutron transport equation in [30]. In 

fact it was shown that there is a strong relationship between 

Sumudu and other integral transforms; see [31]. In particular 

the relation between Sumudu transform and Laplace 

transforms was proved in [32]. 

Further, in [33], the Sumudu transform was extended to 

the distributions and some of their properties were also 

studied in [34]. Recently, this transform is applied to solve 

the system of differential equations; see [35]. 

Another interesting fact about about Sumudu transform is 

that the original function and its Sumudu transform have the 

same Taylor coefficients except the factor n; see [36]. That is, 

if ∑
∞

=
=

0
)(

n

n

ntatf  then we have ∑∞
== 0 !)( n

n
nuanuF , see [31].  

5. Basic Idea of Sumudu Transform and 

Adomian Decomposition Method 

(STADM) 

To illustrate the basic idea of this method, we consider a 

general nonlinear non-homogeneous partial differential 

equation [19, 20]: 

),(),(),(),( txgtxNUtxRUtxUDt =++α
         (5.1a) 

with initial conditions 

),()0,(),()0,( xfxUxhxU t ==               (5.1b) 

where ),( txUDt

α
 is the Caputo fractional derivative of the 

function ),( txU ), R  is the linear differential operator, N  

represents the general nonlinear differential operator, and 
),( txg  is the source term. Applying the Sumudu transform 

(denoted in this paper by S ) on both sides of Eq. (5.1), we 

get 

[ ] [ ] [ ] [ ]),(),(),(t)U(x,DS t txgStxNUStxRUS =++α
     (5.2) 

Using the differentiation property of the Sumudu 

transform and above initial conditions, we have 

[ ] [ ] [ ]),(),()()(),(t)U(x,S txNUtxRUSuxufxhtxgSu +−++= αα  (5.3) 

Now, applying the inverse Sumudu transform on both 

sides of Eq. (5.3), we get 

[ ][ ]),(),(),(t)U(x, 1 txNUtxRUSuStxG +−= − α       (5.4) 

where ),( txG  represents the term arising from the source 

term and the prescribed initial conditions. The second step in 

Sumudu decomposition method is that we represent solution 

as an infinite series given below 

∑
∞

=
=

0n

n t)(x,Ut)U(x,                                    (5.5) 

and the nonlinear term can be decomposed as: 

∑
∞

=

=
0n

nt)NU(x, A                                     (5.6) 

where nA  are Adomian polynomials [36] of n210 ,...,,, UUUU  

and it can be calculated by formula 
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Using Eq. (5.5) and Eq. (5.6) in Eq. (5.4), we get 



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On comparing both sides of the Eq. (5.8), we get 

),(),(0 txGtxU = , 

[ ][ ]
00

1

1 ),(),( AtxRUSuStxU +−= − α
, 

[ ][ ]
11

1

2 ),(),( AtxRUSuStxU +−= − α              (5.9) 

[ ][ ]22

1

3 ),(),( AtxRUSuStxU +−= − α
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In general the recursive relation is given by 

),(),(0 txGtxU = , 

[ ][ ] 0,),(),( n

1

1 ≥+−= −
+ nAtxRUSuStxU nn

α
     (5.10) 

Now first of all applying the Sumudu transform of the 

right hand side of Eq.(5.10) then applying the inverse 

Sumudu transform, we get the values of n210 ,...,,, UUUU  

respectively. 

6. Application 

6.1. Solution of the Problem by NIM  

In this subsection we present and illustrate the 

applicability and the effectiveness of the NIM to get an 

analytical solution to the nonlinear time-fractional gas 

dynamics equation of the form 

( ) 0)1()(
2

1
, 2 =−−+ UUUtxUD xt

α
, 10 ≤< α      (6.1a) 

with the initial condition 

.)0,( xexU −=                                (6.1b) 

From (3.5a) and (3.10), we obtain .),(0

xetxU −=  

Therefore, from (3.9), the initial value problem (6.1) is 

equivalent to the following integral equation: 
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Therefore, from (3.5), we can obtain easily the 

following .first few components of the new iterative solution 

for the equation (6.1): 

xetxU −=),(0 , 
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t
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⋮  

and so on. The n-order term approximate solution, in series 

form, is given by: 
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
+

+Γ
+

+Γ
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+Γ
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⋯
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etxU x
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In the special case, 1=α ; Eq. (6.2) becomes: 









++++= −
⋯

!3!2
1),(

32 tt
tetxU

x
              (6.3) 

In closed form, this gives:  

( ) xt

n

n etxUtxU −
∞

=

==∑
0

,),(  

which is the exact solution for Eq. (6.1) in the special case 

1=α . The 3-order term approximate solution and the 

corresponding exact solution for Eq. (6.1) are plotted in Fig. 

1(a), for 31=α ; in Fig. (1b), for 32=α ; in Fig. (1c), for 

1=α :and in Fig. 1(d) the exact solution. It is remarkable to 

note that the surface of the approximate solution converges 

to the surface of the exact solution as 1→α : It is evident that 

the efficiency of the NIM can be dramatically enhanced by 

computing further terms of ( )txU , . 

 

Fig. 1 (a). Approximate solution for Eq. (6.1). in case 10: →x ,   

10: →t , 31=α  

 

Fig. 1(b). Approximate solution for Eq. (6.1). in case 10: →x , 

10: →t , 32=α . 
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Fig. 1 (c). Approximate solution for Eq. (6.1) in case 10: →x , 

10: →t , 1=α .. 

 

Fig. 1 (d). Exact solution for Eq. (6.1), in case exact solution.. 

6.2. Solution of the Problem by (STADM) 

In this subsection we present and illustrate the 

applicability and the effectiveness of the SADM to get an 

analytical solution to the nonlinear time-fractional gas 

dynamics equation of the form 

By taking Sumudu transform for (6.1), we obtain 








 −+−+= − ))(
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),( 22 UUUSuetxSU x
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By applying the inverse Sumudu transform for (6.4), we 

get 
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Following the technique, if we assume an infinite series 

solution of the form (5.5) and (5.6), we obtain 
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In (6.6), )(UAn and )(UBn are Adomian polynomials that 

represent nonlinear term. So Adomian polynomials are given 

as follows: 
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The few components of the Adomian polynomials are 

given as follows: 
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From the relationship in (5.10), we obtain 
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which is the same solution as obtained by using NIM 

In the special case, 1=α ; Eq. (6.10) becomes: 
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In closed form, this gives: 
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Table 6.1. Numerical results of nonlinear time-fractional gas dynamics 
equation via mathematica using NIM, STADM and the exact solution when 

1=α  and x=0.1 

t NIM STADM Exact solution 

0.1 0.999996153 0.999996153 1 

0.2 1.105108099 1.105108099 1.105170918 

0.3 1.221078095 1.221078095 1.221402758 

0.4 1.348810977 1.348810977 1.349858807 

0.5 1.489211583 1.489211583 1.491824697 

0.6 1.643184751 1.643184751 1.648721270 
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Table 6.2. Numerical results of nonlinear time-fractional gas dynamics equation via mathematica using NIM, STADM and the exact solution when 1=α  and 

t= 0.1 

x NIM STADM Exact solution 

0 1.105166666 1.105166666 1.105170918 

0.2 0.904833937 0.904833937 0.904837418 

0.4 0.740815370 0.740815370 0.740818220 

0.6 0.606528326 0.606528326 0.606530659 

0.8 0.496583393 0.496583393 0.496585303 

1.0 0.406568095 0.406568095 0.406569659 

Table 6.3. Numerical results of nonlinear time-fractional gas dynamics equation via mathematica using NIM/STADM and the exact solution for different 

values of α and t = 0.1 

X NIM / STADM 5.0=α  NIM / STADM 75.0=α  NIM / STADM 9.0=α  NIM / STADM 1=α  

0 1.480613144 1.21948262 1.140829330 1.105166666 

0.2 1.212223515 0.998427930 0.934032056 0.904833937 

0.4 0.992484671 0.817443651 0.764720769 0.740815370 

0.6 0.812577722 0.669266256 0.626100411 0.606528326 

0.8 0.665282370 0.547948865 0.512607661 0.496583393 

1.0 0.544687136 0.448622587 0.419687656 0.406569659 

 

 

Fig. 2. Plots of ( )txU , versus t at 1=x  for different values of α . 

The obtained approximate semi-analytic solutions of 

fractional gas dynamics equation given in (6.1) is close at 

hand to the exact solution as it is seen from figures 1 and 2 

and from tables 6.1-6.3. It is to be observed that only fourth - 

order term of the NIM and STADM are used to compute the 

approximate solutions. It is to be noted that the accuracy of 

the proposed method can be improved by computing more 

additional terms of the approximate solutions. 

7. Conclusions 

In this paper, the new iterative method (NIM) and a 

coupling of the Sumudu transform and Adomian 

decomposition method (STADM) are successfully applied 

for solving nonlinear time-fractional gas dynamics equation. 

The numerical solutions show that there is a good agreement 

between the two methods. Therefore, these two methods are 

very powerful and efficient techniques for solving different 

kinds of linear and nonlinear fractional differential equations 

arising in different fields of science and engineering. 

However, the (NIM) has an advantage over the (STADM) 

which is that it solves the nonlinear problems without using 

Adomian polynomials. In conclusion, the NIM and the 

(STADM) may be considered as a nice refinement in existing 

numerical techniques and might find the wide applications. 
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