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Abstract: In this work, two problems will be presented: The Taylor Vortex problem and the Driven Cavity problem. Both 
problems are solved using the Stream function-Vorticity formulation of the Navier-Stokes equations in 2D. Results are obtained 
using two methods: A fixed point iterative method and another one working with matrixes A and B resulting from the 
discretization of the Laplacian and the advective term, respectively. This second method resulted faster than the fixed point 
iterative one. 
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1. Introduction 
In this work results for the Taylor Vortex problem and the 

driven cavity problem will be presented. The formulation used 
is the Stream Function-Vorticity formulation of the 
Navier-Stokes equations in 2D. The equations are solved 
using finite differences and two methods: a fixed point 
iterative method and another one working with both matrixes 
A and B resulting from the discretization of the Laplacian and 
the advective term, respectively. The iterative method has 
already been used for solving the Navier-Stokes and 
Boussinesq equations in different formulations, [3 - 6].  

With the fixed point iterative method used in [1], the idea 
was to work with a symmetric positive definite matrix. This 
scheme worked very well, as shown in [3 - 7], but the 
processing time, was in general, very large, especially for high 
Reynolds numbers. With the second method we are working 
with a matrix which is not symmetric, but it can be proved that 
it is strictly diagonally dominant for ∆t sufficiently small. The 
processing time was more or less 30% to 35% smaller when 
using this method. 

2. Mathematical Model 
Let D = Ω	 ×	(0, 	), T > 0, Ω ⊂ �
, be the region of the 

flow of an unsteady isothermal incompressible fluid and Г its 

boundary. These flows are governed by the non-dimensional 
system of equations in D, defined by: 

u� − �
�� ∇


u + ∇p + u ∙ ∇u = f	         (1) 

∇ ∙ u = 0                     (2) 

These are the Navier-Stokes equations in primitive 
variables, where u is the velocity, p is the pressure and the 
dimensionless parameter Re is the Reynolds number. This 
system must be supplemented with appropriate initial and 
boundary conditions: �(�, 0) = ��(�) in Ω and � = � on Г, 
respectively. In order to avoid the pressure variable and the 
incompressibility condition in Eq. (2), the Stream 
function-Vorticity formulation is used here.  

The Stream function ψ is defined by:  

� = ��
�� 	 ,  = ��

�!                 (3) 

where u and v are the velocities in x and y-axis, respectively. 
In this case,(u ∙ ∇)ψ = 0. The vorticity is defined as the curl 
of the velocity field, and in 2D it is defined as: 

# = �$
�� −

�%
�!                 (4) 

So we get the following coupled system of equations: 
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#� − �
�� ∇


# + u ∙ ∇# = 0	         (5) 

∇
ψ = −#              (6) 

These are the Navier-Stokes equations in the Stream 
function-Vorticity formulation. 

3. The Numerical Method 
We approximate the time derivative by the second-order 

scheme: 

#�(�, (& + 1)∆)) ≈ +,-./01,-2,-3/


∆�
      (7) 

where & ≥ 1, � ∈ Ω and ∆) > 0 is the time step. 
At each time level the following nonlinear system defined 

in Ω has to be solved: 

∇
ψ = −#, ψ|Г = 0            (8a) 

αω − �
�� ∇


# + u ∙ ∇# = ;<	, ω|Г = ω=>   (8b) 

where ∝= +

∆�, and ;< = 1,-0,-3/


∆�
. In the first time step, to 

obtain (ψ�, #�), any second order strategy using a combination 
of one step can be applied. Eq. (8b) is a transport type 
equation.  

To solve Eq. (8a)-(8b) two strategies were used in this work: 
First we used a fixed point iterative method, described in [1]. 

Denoting 

�,(#, ψ) = αω − �
�� ∇


# + u ∙ ∇# − ;<  (9) 

system (8a)-(8b) is equivalent to: 

∇
ψ = −#, ψ|Г = 0          (10a) 

�,(#, ψ) = 0, ω|Г = ω=>         (10b) 

So then Eq. (10a)-(10b), at time level n+1, are solved via 
the following iterative process [1]: 

Given #� = #@, and ψ� = ψ@, solve until convergence in 
ω and Ψ: 

∇
ψA2� = −#A, in Ω, ψA2�|Г = 0     (11a) 

BCD − �
�� ∇


E#A2� = #AF�,(#A , ψA2�), in Ω   (11b) 

#A2� = #=>
A2�	on Г,  ρ>0; 

and then take 

(#@2�, ψ@2�) = (#A2�, ψA2�). 

In order to reduce computing time we worked on solving Eq. 
(8a)-(8b) by the following method at each time step: 

∇
ψ@2� 	= −#@              (12a) 

BCD − G
HI JE#

@2� + �

HK#

@2� = ;<      (12b) 

where = �
�� . Then, equation (12b) is solved using 

Gauss-Seidel. 

4. Numerical Experiments 
With respect to the driven cavity problem, Ω=(0,1)×(0,1). 

The top wall is moving with a nonzero velocity given by (1,0) 
and for the other three walls the velocity is given by (0,0). 
Following Goyon [17] ψ=0	 is chosen on Г. As already 

mentioned, ψ is overdetermined on the boundary (��
�@ |Г is 

also known) and no boundary condition is given for # . 
Several alternatives have been proposed, we follow the 
alternative given by Goyon [8]. A translation of the boundary 
condition in terms of the velocity (primitive variable) has to be 
used. By Taylor expansion of (8a) on the boundary for the 
driven cavity the following boundary conditions for ω are 
obtained: 

( ) ( ) ( ) ( )2
2

1
0, , 8ψ , , ψ 2 , ,

2
 = − − + x x x

x

y t h y t h y t O h
h

ω (13a) 

( ) ( ) ( ) ( )2
2

1
, , 8ψ , , ψ 2 , ,

2
x x x

x

a y t a h y t a h y t O h
h

ω  = − − − − +  (13b) 

( ) ( ) ( ) ( )2
2

1
,0, 8ψ , , ψ , 2 ,

2
y y y

y

x t x h t x h t O h
h

ω  = − − +  (13c) 

# ( ) ( ) ( ) ( )2
2

1 3
, , 8ψ , , ψ , ,

2
y y y

yy

x b t x b h t x b h t O h
hh

 = − − − − − +
  (13d) 

with		ℎ!, 	ℎ� space steps. 
For the driven cavity problem we show results for Re=5000 

and Re=7500, with ℎ! = ℎ� = 1/64 for Re=5000, and 
ℎ! = ℎ�=1/128 for Re=7500. For both Reynolds numbers, 
results are for t=100. With the two methods described we get 
the same graphs. The streamlines and the isovorticity contours 
are shown in Figures 1 and 2. Next, in Figure 3, we show 
results for Re=25000 with	ℎ! = ℎ�= 1/768 and t=5, and for 
Re=31000 with ℎ! = ℎ�= 1/512 and t=5 .Upwind is used to 
handle such Reynolds numbers. For these Reynolds numbers, 
there is no steady state.  
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(a)                                            (b) 

Figure 1. Streamlines (left) and isovorticity contours (right) for Re=5000, ℎ! = ℎ� = 1/64 and t=100. 

 

Figure 2. Streamlines (left) and isovorticity contours (right) for Re=7500, ℎ! = ℎ� = 1/128 and t=100. 

 

Figure 3. Streamlines (left) and isovorticity contours (right) for Re=25000, ℎ! = ℎ� = 1/780 and t=5. 
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Figure 4. Streamlines (left) and isovorticity contours (right) for Re=31000, ℎ! = ℎ� = 1/512 and t=5. 

In Table 1 we show a table comparing the times for both 
methods: the Fixed Point Iterative Method (F.P.I. method) and 
the second one, working with both matrixes, A and B, 
resulting from the discretization of the Laplacian and the 
advective term respectively. 

Table 1. Time (in seconds) for the Reynolds Numbers given and the two 
methods described, for the Lid Driven Cavity problem. 

Reynolds Number Hx=Hy F.P.I Method Using A And B 

5000 1/64 612 480 

7500 1/128 2441 3204 

25000 1/768 61624 27402 

31000 1/512 18864 10013 

For the Taylor Vortex problem we show results for Re 
=5000 and Re=7500, withℎ = 1/64 , and t=10. For Re=5000 
we show the exact stream function and vorticity. 

For this problem, Ω = T0,2UV × T0,2UV. The exact solution 
is given by the following equations: 

�	(�, W, )) = −XYZ(�) [\&(W) \
3I]
^_        (14a) 

 	(�, W, )) = [\&(�) XYZ(W) \
3I]
^_        (14b) 

In the primitive variable formulation we have, as initial 
conditions: 

�	(�, W, 0) = −XYZ(�) [\&(W)       (15a) 

 	(�, W, 0) = [\&(�) XYZ(W)         (15b) 

The stream function ̀ and vorticity#are defined by: 

� = `� ,  = −`!,# = �� −  !          (16) 

The initial conditions for the stream function and the 

vorticity are obtained from equations (14) - (16): 

`(�, W, 0) = XYZ(�)XYZ(W)           (17) 

#(�, W, 0) = −2XYZ(�) XYZ(W)         (18) 

The boundary conditions for the stream function and the 
vorticity are obtained from equations (14) and (16). For the 
stream function, these boundary conditions are: 

ψ(�, 0, )) = ψ(�, 2U, )) = XYZ(�)\
3I]
^_      (19a) 

ψ(0, W, )) = ψ(2U, W, )) = XYZ(W)\
3I]
^_     (19b) 

For the vorticity, the boundary conditions are: 

ω(�, 0, )) = ω(�, 2U, )) = 2XYZ(�)\
3I]
^_      (20a) 

ω(0, W, )) = ω(2U, W, )) = 2XYZ(W)\
3I]
^_     (20b) 

Next, in Figure 5 we show streamlines and isovorticity 
contours for Re=5000 and t=10 with h=2π/64. In Figure 6 we 
show the graphs of the stream function and the vorticity in 3-D 
for Re=5000 at t=10. In Figure 7 we show the exact solution 
for Re=5000 and t=10 and they look the same. In Figure 8 we 
show the streamlines and the isovorticity contours for 
Re=7500 and t=10 with h=2π/64, respectively. Again, with 
both methods, we get the same results. We show the graph in 
3D of the stream function and vorticity in order to see the 
difference in scales at different times and for the different 
Reynolds numbers mentioned. In Table 2 we also show the 
times comparing the two methods. 

Table 2. Time (in seconds) for the two Reynolds Numbers given and the two 
methods described, for the Taylor Vortex problem. 

Reynolds Number F.P.I Method Using A And B 
5000 62 51 
7500 62 51 
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Figure 5. Streamlines and vorticity contours for Re=5000 and t=10. 

 

Figure 6. Stream function and vorticity forRe=5000 and t=10. 

 

Figure 7. Exact Stream function and vorticity for Re=5000 and t=10. 
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Figure 8. Stream function and vorticity for Re=7500 and t=10. 

5. Conclusions 
For the driven cavity problem, results agree very well with 

those reported in the literature [3-6], [9,10] and with the 
second method, introduced here, we were able to reduce 
processing time for about 30% to 35%, for moderate Reynolds 
numbers and almost 50% for high Reynolds numbers. It can 
be seen in Figures 1 and 2, oscillations occur because the 
Reynolds number is very large, so it is necessary to use 
smaller values of h [13], numerically for stability and 
physically to capture the fast dynamics of the flow. For high 
Reynolds numbers and small values of h the computational 
work takes some days, so reducing the time is very important. 

For the Taylor vortex problem [7], [11], we were able to 
reduce processing time for about 20%. 

We are still trying to reduce processing time. Till now we 
are using Fishpack [12] for solving equation (12a), which is an 
elliptic equation. We are working on solving this equation 
using Gauss-Seidel or SOR methods instead of using Fishpack, 
since the equation we are solving is a very simple one and 
Fishpack is used for solving a more general kind of equations. 
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