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Abstract: In this work, two problems will be presented: Traylor Vortex problem and the Driven Cavity probleButh
problems are solved using the Stream function-stbytformulation of the Navier-Stokes equation®D. Results are obtained
using two methods: A fixed point iterative methoddaanother one working with matrixes A and B rasgltfrom the
discretization of the Laplacian and the advectemnt respectively. This second method resultecefabtin the fixed point
iterative one.
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1. Introduction

In this work results for the Taylor Vortex probleand the boundary. These flows are governed by the non-dsineal
driven cavity problem will be presented. The foratidn used system of equations in D, defined by:
is the Stream Function-Vorticity formulation of the 1y
Navier-Stokes equations in 2D. The equations ateedo u——Vu+Vp+u-Vu=f (1)
using finite differences and two methods: a fixedinp
iterative method and another one working with botitrixes V-u=0 (2)
A and B resulting from the discretization of theplacian and These are the Navier-Stokes equations in primitive

the advective term, respectively. The iterative huodt has Variab'eS, where u is the Ve'ocity, p is the pr%md the

already been used for solving the Navier-Stokes angimensionless parameter Re is the Reynolds nuniies.

Boussinesq equations in different formulations; €3. system must be supplemented with appropriate liréti
With the fixed point iterative method used in [ttje idea boundary conditionsu(x, 0) = u,(x) inQ andu = g onT,

was to work with a symmetric positive definite niatiThis  respectively. In order to avoid the pressure végiamnd the

scheme worked very well, as shown in [3 - 7], blo¢ t incompressibility conditon in Eg. (2), the Stream

processing time, was in general, very large, eafigdor high  function-Vorticity formulation is used here.

Reynolds numbers. With the second method we ar&imgr The Stream functiony is defined by:

with a matrix which is not symmetric, but it canpreved that

a a
it is strictly diagonally dominant faxt sufficiently small. The u= % V= % 3)
processing time was more or less 30% to 35% smaten

using this method. where u and v are the velocities in x and y-ax@spectively.

In this casdu - V) = 0. The vorticity is defined as the curl

2 Mathematical Model of the velocity field, and in 2D it is defined as:
_m_ v

LetD=Q x (0,T), T > 0,0 c R?, be the region of the ©=5 T o )

flow of an unsteady isothermal incompressible flardiIl" its , )
So we get the following coupled system of equations
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w; — v +u-Vo=0 (5) In order to reduce computing time we worked onisghEq.
ke (8a)-(8b) by the following method at each time step
Vi = —w (6) 5
Viyntl = —on (12a)
These are the Navier-Stokes equations in the Stream . )
function-Vorticity formulation. (al - pA) W™+ —Bo" = f, (12b)
3. The Numerical Method where = é . Then, equation (12b) is solved using

Gauss-Seidel.
We approximate the time derivative by the secortkor

scheme: 4. Numerical Experiments

With respect to the driven cavity problef=(0,1)x(0,1).
The top wall is moving with a nonzero velocity giMey (1,0)
wheren > 1, x € Q and At > 0 is the time step. and for the other three walls the velocity is given (0,0).

At each time level the following nonlinear systeefided  Following Goyon [17]y=0 is chosen orl. As already

in Q2 has to be solved: mentioned,ys is overdetermined on the bounda%'g (r is

V2 = —w, Ylr =0 (8a) also known) and no boundary condition is given for

L Several alternatives have been proposed, we follbey

aw — Evzw +u-Vo =f,, oy =w, (8b) alternative given by Goyon [8]. A translation oéthoundary
condition in terms of the velocity (primitive vabie) has to be

where <= i andf, = 40"=0" 11 the first time step, to used. By Taylor expansion of (8a) on the boundarytfie
2at driven cavity the following boundary conditions far are

3wt l_g4pnyen~1 (7)

w:(x,(n+ 1DAL) = ™

obtain (y?, 1) any second order strategy using a combination

of one step can be applied. Eq. (8b) is a transpgre Obtained:
equation.

To solve Eq. (8a)-(8b) two strategies were usdtiiswork: ~ @(0,.t) > [&V h, v ) -w(2h, v 9]+ q fi) (13a)
First we used a fixed point iterative method, digsat in [1]. 2"y

Denoting

: A 2h,
Rw(w,¢)=am—ivzw+u-Vw—fm 9) @2 hZ[S\V “hexdov(azh )l Cé 6)(13b)

system (8a)-(8b) is equivalent to:

w(%0) == an(x . ) ~w(x2h. ]+ o §) (230

Vi = —w, Ylp =0 (10a) y
R, (@, 1) = 0, w|p = wp, (10b) (x,b,t):—z—%[&v(x b-h, ) -y( xb- b, )}-%+ 9 8) (13d)
So then Eq. (10a)-(10b), at time level n+1, areesblvia
the following iterative process [1]: with h,, h, space steps.
Given w° = w", and §° = ", solve until convergence in  For the driven cavity problem we show results fe=R000
o and¥: and Re=7500, withh, =h, = 1/64 for Re=5000, and

V2gmH = o™ in Q, ¢, = 0 (11a) hy = h,=1/128 for Re:_7500. For both Reynolds_ numbers,
results are for t=100. With the two methods desttitive get
(al _ivz> W™ = wMpR, (0™, YD), I Q  (11b) the same gr_aph;. The streamlines and t_he i;ouym:mhtours
Re are shown in Figures 1 and 2. Next, in Figure 3,slew
@™t = @t onT, p>0; results for Re=25000 with, = h,= 1/768 and t=5, and for
Re=31000 withh, = h,= 1/512 and t=5 .Upwind is used to
and then take handle such Reynolds numbers. For these Reynohibens,

there is no steady state.
(wn+1’ ¢n+1) — (wm+1’ ¢m+1). y
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Figure 2. Streamlines (left) and isovorticity contours (rigfdar Re=7500,h, = h, = 1/128 and t=100.

700}

O ] 600 I

5001
[
400f

300 q

200 1

100 q
.

100 200 300 400 500 600 700 1 (I‘)o 2‘00 360 4‘00 560 6(:)0 7‘00

a) b)

Figure 3. Streamlines (left) and isovorticity contours (ripfor Re=25000,h, = h,, = 1/780 and t=5.
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Figure 4. Streamlines (left) and isovorticity contours (rigfdr Re=31000,h, = h,, = 1/512 and t=5.

In Table 1 we show a table comparing the timesbfuth
methods: the Fixed Point Iterative Method (F.Pgtimd) and

the second one, working with both matrixes, A and B

resulting from the discretization of the Laplaciand the
advective term respectively.

Table 1. Time (in seconds) for the Reynolds Numbers givehtha two
methods described, for the Lid Driven Cavity profle

Reynolds Number Hx=Hy F.P.I Method Using AAnd B
5000 1/64 612 480

7500 1/128 2441 3204

25000 1/768 61624 27402

31000 1/512 18864 10013

For the Taylor Vortex problem we show results fog R
=5000 and Re=7500, with= 1/64 , and t=10. For Re=5000

we show the exact stream function and vorticity.
For this problem) = [0,27] x [0,27]. The exact solution
is given by the following equations:

uw (x,9,8) = — Cos(x) Sen(y) e re (14a)

v (x,y,t) = Sen(x) Cos(y) e%: (14b)

In the primitive variable formulation we have, astial
conditions:

u (x,v,0) = — Cos(x) Sen(y) (15a)

v (x,y,0) = Sen(x) Cos(y) (15b)

The stream functiony and vorticityware defined by:

U=y, V==Y 0 =U, — Uy (16)

The initial conditions for the stream function atite

vorticity are obtained from equations (14) - (16):
Y(x,y,0) = Cos(x)Cos(y)
w(x,y,0) = =2 Cos(x) Cos(y)

7
(18)

The boundary conditions for the stream function &mel
vorticity are obtained from equations (14) and (I&)r the
stream function, these boundary conditions are:

P(x,0,t) = Y(x,2m,t) = Cos(x)e% (19a)
P(0,y,t) = Y(2m,y,t) = Cos(y)ere  (19b)

For the vorticity, the boundary conditions are:
w(x,0,t) = w(x,2m,t) = ZCos(x)e% (20a)
w(0,y,t) = w(2m, y,t) = ZCos(y)e;Tz; (20b)

Next, in Figure 5 we show streamlines and isovibytic
contours for Re=5000 and t=10 with he#@4. In Figure 6 we
show the graphs of the stream function and thecityrtn 3-D
for Re=5000 at t=10. In Figure 7 we show the esadtition
for Re=5000 and t=10 and they look the same. Inrf€i@ we
show the streamlines and the isovorticity contofms
Re=7500 and t=10 with haZ64, respectively. Again, with
both methods, we get the same results. We shogrtph in
3D of the stream function and vorticity in order gee the
difference in scales at different times and for thfferent
Reynolds numbers mentioned. In Table 2 we also sth@w
times comparing the two methods.

Table 2. Time (in seconds) for the two Reynolds Numbersgivel the two
methods described, for the Taylor Vortex problem.

Reynolds Number F.P.l Method Using AAnd B
5000 62 51
7500 62 51
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Figure5. Streamlines and vorticity contours for Re=5000 &nt0.

a) b)

Figure 6. Stream function and vorticity forRe=5000 and t=10.
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Figure 7. Exact Stream function and vorticity for Re=500@ &n10.
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b)

Figure 8. Stream function and vorticity for Re=7500 and t=10.

5. Conclusions

For the driven cavity problem, results agree veeyl with
those reported in the literature [3-6], [9,10] awdh the
second method, introduced here, we were able taceed
processing time for about 30% to 35%, for modeRagnolds
numbers and almost 50% for high Reynolds numbeéisar
be seen in Figures 1 and 2, oscillations occur usecdhe
Reynolds number is very large, so it is necessaryde
smaller values of h [13], numerically for stabilitgnd
physically to capture the fast dynamics of the fléwr high
Reynolds numbers and small values of h the computit
work takes some days, so reducing the time is wepprtant.

For the Taylor vortex problem [7], [11], we werelalbo
reduce processing time for about 20%.

We are still trying to reduce processing time. Tidiw we
are using Fishpack [12] for solving equation (124)ich is an
elliptic equation. We are working on solving thiguation
using Gauss-Seidel or SOR methods instead of &s#gack,
since the equation we are solving is a very singrle and
Fishpack is used for solving a more general kindapfations.
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