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Abstract: This paper explores the application of an Hermitian hybrid boundary integral formulation for handling Fisher-type 

equations. The Hermite system incorporates the problem unknowns with their space derivatives and as a consequence produces 

a relatively larger coefficient matrix than the corresponding linear approximation. However by adopting a finite element-like 

integral numerical procedure, the modified boundary integral formulation otherwise known as the Green element method 

(GEM) produces slender and sparse coefficient matrices which enhance an efficient solution algorithm. The resulting equations 

appear in the form of local elemental integral equations whose contributions add up to the coefficient matrix. This process is 

amply simplified in the Green element method due to the presence of the source point inside an element thereby encouraging 

integration to be carried out locally and accurately. This so called ‘divide and conquer’ approach is significantly much better 

than working with the entire matrix especially for nonlinear problems where an encounter with the problem domain can not be 

totally avoided. Numerical tests are carried out to illustrate the utility of this technique by comparing results obtained from 

both the Hermite and non-Hermite discretizations. It is observed that for each of the problems tested, not only do the results 

agree with those from literature, it took the Hermitian approximation fewer number of elements to achieve the same level of 

accuracy than its non-Hermitian version. However, application of same technique to multi-dimensional problems may not be as 

straightforward due to the construction and storing of the Hermite system matrix which will not only involve non-trivial 

operations in terms of a high computational cost but also a compromise in the quality of the numerical solution arising from 

significant round-off errors. 

Keywords: Fisher-Type Differential Equations, Boundary Element Method, Nonlinearity, Hybrid Boundary Integral Method, 

Green Element Method, Hermite Interpolation 

 

1. Introduction 

Cubic Hermite approximation possesses a unique feature 

namely; both the primary variable and its space derivative are 

continuous across inter-nodal boundaries of the problem 

domain. The utility of this approximation rests in the fact that 

not only is a differentiable 1C  interpolation of the dependent 

variable achieved but also a higher order more accurate 

scheme using the same nodes as those employed for the 

simple linear element is guaranteed. It goes without saying 

that there is also a price to be paid namely; extra 

computational cost, introduction of round-off errors, as well 

as storage requirements needed for the solution of additional 

equations. Nevertheless some of these numerical challenges 

can be dealt with by GEM’s element-based numerical 

procedure which produces a banded and sparse coefficient 

matrix. 

Transient diffusion coupled with nonlinear source or 

reaction terms are typical of Fisher-type equation, a 

prototypical reaction-diffusion differential equation. Such 

problems arise in several areas of engineering physics, 

epidemiology, applied mathematics, biological systems and 

nuclear reactor physics. The ubiquitous nature of these 

equations has provided the motivation for numerous 

theoretical and numerical work in several areas of application 

and has subsequently provided rich information for numerous 

problems targeted. 

The numerical solutions of Fisher’s equation often exhibit 

propagating fronts that can be very steep for large values of 

reaction rate coefficient. For such problems, linear 

interpolation is inadequate to capture the physics that 

accompany the rapid change of the scalar profile within a 

short spatial interval. Problems of this type,can therefore be 
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dealt with by incorporating higher order interpolation into the 

formulation. Hence from a modeling perspective, the work 

presented herein offers a good canonical model of a 

cooperation between a hybrid boundary integral numerical 

formulation and the first- order cubic Hermitian polynomials 

that are guaranteed to ensure the continuity of both the 

primary variable and its flux across interzonal boundaries. 

Fisher [1] was the first to study the movement of a viral 

mutant in a habitat by adopting the nonlinear reaction-

diffusion equation. Fisher’s equation illustrates a case where 

the diffusion term is linear and the reaction term is quadratic 

[2,3]. However it is known that there are other versions of it 

where the diffusion term is nonlinear [4,5]. Due to its 

complexity, a closed form solution of the governing equation 

in general is not achievable and as a result, most of the efforts 

directed at solving this nonlinear reaction-diffusion equation 

is by perturbation theory or more usually by numerical 

methods [6,7]. Despite these attempts Fisher’s equation still 

remains a challenging problem from a numerical point of 

view. This has a lot to do with the high steep fronts created 

for cases where the reaction becomes more prominent than 

diffusion . As a consequence, solutions of Fisher equation 

have elicited a vast area of research in fields such as finite 

difference, finite element techniques, boundary element 

method, adaptive and non-adaptive algorithms and spectral 

techniques [8,9]. One of the earliest numerical solutions 

using a pseudo-spectral approach was given by Gazdag and 

Canosa [10]. This was later followed by Mittal and Kumar 

[11]. More rigorous mathematical approaches were also 

applied in this field. Prominent among them are the following: 

the non-standard finite difference methods [12,13], boundary 

integral schemes[14,15] and the Adomian method [16]. 

Further attempts include the B-spline Galerkin approach of 

Sahin et al.[17]. Meral and Tezgin [18] applied the dual 

reciprocity boundary element technique as well as the 

differential quadrature method. They found the dual 

reciprocity boundary element method quite useful in 

transforming domain integrals resulting from the nonlinearity 

of the governing differential equation into equivalent 

boundary integrals . 

In the work reported herein we consider the numerical 

solutions of Fisher-type equations with a hybrid boundary 

integral technique known as the Green element method 

(GEM) first mentioned by Taigbenu [19,20] and further 

developed by Taigbenu and Onyejekwe[21]. GEM starts by 

transforming the governing partial differential equation into 

its integral analog via the Green’s second identity. The 

resulting singular boundary integral equations are then 

evaluated element-by-element. This is similar in 

implementation to the finite element method (FEM) yet it 

maintains BEM second order accuracy. Both the dependent 

variable and its flux are obtained at every node. 

GEM like every other boundary element- based technique 

requires the fundamental solution of an auxiliary equation of 

the governing differential equation. But unlike other BEM -

based technique, it does not convert to boundary integrals 

those other terms of the original PDE that are not considered 

when the fundamental solution is derived. Among the 

equations that come with domain integrals are those which 

have always posed considerable numerical challenges to 

boundary integral techniques and which do not always admit 

tidy solutions e.g. nonlinear and heterogeneous problems, 

transient problems, problems that involve body force and 

source/sink terms. These encompass a majority of those 

problems which form the bulk of real-life engineering 

computations. BEM could still be broken down into zones 

and compartments to deal with domain integrals and yet 

maintain its boundary-only thrust, but such an approach 

would seem to produce acceptable results only for problems 

involving weak nonlinear terms [22,23]. On the contrary, 

GEM deals with a large number of sub-regions or elements 

which at the extreme are called the ‘Green elements’  

(Onyejekwe[24]) 

GEM facilitates the fundamental solution of the Laplace 

equation and accurately accounts for the remaining terms of 

the governing equation by adopting domain integration. 

Similar approach can be found in the BDIM of Hribersek and 

Skerget [ 25] for the solution of incompressible viscous fluid 

flow as well as the iterative solution schemes of DRM-MD 

technique of Portapila and Power [26] where they applied 

DRM-MD to iteratively solve the linear systems of equations 

arising from the dual reciprocity method in multi-domains. 

2. Computational Approach 

We consider the generalized Fisher equation given as: 

( )1.0

, 0

m sT T
T T T

t x x

x t

ς σ∂ ∂ ∂ = + − ∂ ∂ ∂ 

−∞ +∞≺ ≺ ≻

                (1) 

where ( ),T x t  is a real valued function of the space variable 

x ∈ℝ  and time t +∈ℝ  

With initial and boundary conditions given as: 

( ) ( ) ( ) ( ) ( ) ( )1 2
,0 , , , , ,T x x T a t g x T b t g x= Φ = =  

where , , ,m sς σ   are constants. The application of GEM to 

obtain a discrete analog of equation(1) involves the following 

procedure: 

a) Solution of a prescribed auxiliary equation of (1), to 

obtain the Green function, also known as the 

fundamental solution or simply the free space Green 

function. Classical BEM approach requires that all the 

terms of the governing partial differential equation that  

can not be included in the auxiliary equation be put in 

the domain integral. In GEM there is no question of 

reconverting those integrals back to the boundary. They 

are left in the domain and dealt with as such. 

b) The Green’s second identity is invoked and appropriate 

substitutions are made from the auxiliary equation, the 

free space Green’s function and the governing 

differential equation offer the integral replication of the 
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governing differential equation. 

c) The point of departure from a classical boundary-based 

approach is effected in the discretization of the problem 

domain into suitable partitions or elements over which 

the scalar variables are prescribed. 

d) The finite-element component of this hybrid 

formulation requires that equations be derived for each 

element and both the boundary and initial conditions be 

enforced in the system of element equations. 

e) All the element equations are assembled into a global 

matrix, and the known scalar values put in the right 

hand-side vector with the boundary and continuity 

conditions enforced. 

f) In addition to GEM retaining its boundary integral 

second order accuracy, finite element implantation 

guarantees that the coefficient matrix be sparse and 

banded and easily handled numerically to yield the 

required dependent variables. As a consequence, the so 

called ‘local support’ is guaranteed as well as handling 

problems which require domain integration. 

With the above GEM formulation procedure outlined, the 

next is to set up a time-marching procedure to utilize known 

data at the beginning of a time step to predict new values at 

the end of the time step. 

Linear interpolation so called zero order continuity across 

inter-element boundaries has been found to be inadequate for 

handling  problems which exhibit fast changes in the solution 

profile. Among these are problems that display the formation 

of boundary layers, and the advection or reaction dominant 

types. Though the governing equation in such cases remains 

bounded as the scalar history evolves through time, its spatial 

derivative develops a steep profile which quickly becomes 

unbounded and not easy to handle numerically. Current 

boundary integral literature in this area points to an evolving 

active research aimed at efficiently handling both the 

problem domain as well as its boundary for those problems 

where domain consideration is a necessity [27 ,28, 29,30]. 

2.1. GEM Hermitian Cubic Interpolation 

Let us assume that , 1s mς σ=℘ = = =  , then equation (1) 

takes a form typical of a Fisher-like nonlinear diffusion-

reaction equation: 

( ) ( ), ,
T T

D T x t T
x x t

∂ ∂ ∂  =℘ − ℜ ∂ ∂ ∂ 
               (2) 

The singular integral representation of equation (2) for a 

typical element [ ]1 2
,x x  is formulated along the lines of our 

previous work [29], and some of the details are restated here 

for clarity. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

1

* *

2 2 1 1 2 2 1 1, , , , , , , , ,

ln 1
, , , , 0

i i i i i i i

x

i

x

T x t G x x T x t G x x T x t G x x x x G x x x x

D T
G x x x t x t T dx

x D T t

λ ϕ ϕ

ϕ

− + − − + +

 ∂ ∂ − + ℘ − ℜ =  ∂ ∂   
∫

                        (3) 

where lambda λ  takes the value of one half when the source 

node i
x is placed at the end of the element and unity when 

the source node is placed within the element. The auxiliary 

differential equation: ( )2 2

i
d G dx x xδ= −  , and its solution, 

the so called fundamental solution is: 

( ) ( ), 2i iG x x x x k= − +  , i
x−∞ ≤ ≤ ∞  , the parameter k is 

an arbitrary constant, which for the purposes of stability is 

assigned the longest element length, the flux is specified as: 

( ),x t dT dxϕ = , for a more general case, the diffusion 

coefficient admits nonlinearity and its reciprocal is given as: 

( )1 D T ψ=  , with its logarithm specified as: 

( ) ( )lnT D TΘ = ; while the derivative of the free space 

Greens function is: 

( ) ( )*
0.5 i iG dG dz H x x H x x= = − − −    where H is the 

Heaviside function. In our previous work [31] we adopted 

linear shape functions with zero-order 0C  continuity to do 

the interpolation of these functional values. For the current 

work however, we concentrate on a higher level of 

interpolation functions known as Hermitian cubic 

interpolation which guarantees the continuity of both the 

primary variable and its derivative across inter-element 

boundaries. 

Any variable ( ),T x t  is approximated as: 

( ) ( ) ( ) ( )ˆ,
j j j j

T x t T t T t xξ≈ Ω + Ω ∂ ∂        (4a) 

The following cubic Hermitian approximations are needed 

for equation (3) 

( ) ( ) ( ) ( ) ( )
ˆ

,
j j

j
x t T x T t t

x x

ξ ξ
ϕ ϕ

∂Ω ∂Ω
= ∂ ∂ ≈ +

∂ ∂
   (4b) 

( ) ( )ˆ
j j

j

T

x x x T x

ξ ξ∂Ω ∂Ω∂Θ ∂Θ ∂ ≈ Θ +  ∂ ∂ ∂ ∂ ∂ 
     (4c) 

( ) ( ) ( )ˆj j

j j

T tT

t t t

ϕ
ξ ξ

∂ ∂∂ ≈ Ω + Ω
∂ ∂ ∂

           (4d) 
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( ) ( ){ } ( ) ( ) ( ){ } ( )

[ ] ( )

[ ] ( )

2

1

2

1

ˆ ˆ

, ,

ˆ ˆˆ ˆ, ,

ˆ

n n n j j j

n j

x

n n j j inj n j inj i n j

x

x

n n j inj n inj i n j

j j x

n j

n

t t
T T

S S G x x dx

d d
S S G x x dx

dT dT

d

dT

ψψ ξ ψ ξ ϕ ξ ξ ϕ

ψ ψ

ψ ϕ ψ ϕ

ψ ϕ

  ∂ ∂   ≈ Ω + Ω Ω + Ω     ∂ ∂       

 Ω Ω ≡ ≡ Ω Ω 

    Ω Ω ≡ ≡ Ω Ω    
     

  Ω Ω  
  

∫

∫

ℝ
ℝ ℝ

ℝ ℝ

ℝ ℝ

( )

( )

2

1

2

1

ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, ,

x

j inj j inj i n j

n x

x

n j inj inj i n j

n j n j x

d
S S G x x dx

dT

d d d d
S S G x x dx

dT dT dT dT

ψψ ϕ

ψ ψϕ ϕ ϕ ϕ

   ≡ ≡ Ω Ω    

             Ω Ω ≡ ≡ Ω Ω             
                

∫

∫

ℝ

⌣ ⌣ℝ ℝ

                           (4e) 

( ) ( ){ } ( ) ( ) ( ) ( )

[ ] ( )

[ ] ( )

2

1

2

1

ˆ ˆ

, ,

ˆ ˆˆ ˆ, ,

ˆ

n n n j j
jn j

x

j j

n n j inj n inj i n j

x

x

n n j inj n inj i n j

j j x

n

T dT
t t

t T dt t

dT dT
S S G x x dx

dt dt

d d
S S G x x dx

dt dt

d

d

ψ ϕψ ξ ψ ξ ϕ ξ ξ

ψ ψ

ϕ ϕψ ψ

ψ

  ∂ ∂ ∂    ≈ Ω + Ω Ω + Ω      ∂ ∂ ∂        

 
Ω Ω ≡ ≡ Ω Ω 

 

    Ω Ω ≡ ≡ Ω Ω    
     

Ω

∫

∫

( ) ( ) ( )

( )

2

1

2

1

ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, ,

x

j j

j inj inj i n j

n n x

x

j

n j inj inj i n j

n n j xj

dT t dT td
S S G x x dx

T dt dT dt

dd d d
S S G x x dx

dT dt dT dt

ψϕ ϕ

ϕψ ψ ϕϕ ϕ

       Ω ≡ ≡ Ω Ω                 

            
 Ω Ω ≡ ≡ Ω Ω          

               

∫

∫
⌣ ⌣

                             (4f) 

where ( ) ( )ˆ,
j j

ξ ξΩ Ω  are Hermitian basis functions which 

are expressed in terms of a local coordinate ξ  as: 

2 3

1
1 3 2ξ ξΩ = − +                           (5a) 

2 3

2
3 2ξ ξΩ = −                             (5b) 

( )2

1
ˆ 1lξ ξΩ = −                               (5c) 

( )2

2
ˆ 1lξ ξΩ = −                             (5d) 

Substitution of all the Hermite approximated terms into 

equation(3) yields: 

ˆ ˆ

ˆ ˆ

ˆ ˆ

ij j ij j inj n j inj n j inj n

j

j j n

inj n inj n inj n

j j

j

inj inj n j inj n inj j

n j n

inj

d
R T L V T V V T

dT

dT d dTd d
V S S S

d dt dt dt dT

dd d d
S S S S

dT dt dT dT

d
S

dT

ϕ ϕ ϕ

ϕ ψϕ ϕ ψ ψ ϕ
θ

ϕψ ψϕ ψ ψ ϕ ϕ

ψ ϕ

Θ + − Θ − Θ − − 
 

Θ   + + + + +   
   

     + + + +     
     



⌣

⌣ ℝ
ℝ ℝ

⌣
0

n j

d

dT
ϕ   =   

   

ℝ

                                              (6) 

Equation (6) is a system of first order highly nonlinear differential equation. The next chore is to interpolate the 
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temporal derivative terms for the flux and the primary 

variable terms. The following equation is obtained by 

adopting a two-level time scheme for both variables. 

 

( ) ( ){ }
( ) ( )

( ) ( )( )
( ) ( )

( )

( ) ( ){ }

1

1

1

1

1

1

ˆ

ˆ

ˆ

m m

m m

ij inj n n inj

n n
m

j
m m

inj injm m

n n

n n

m m

ij inj n n inj

d d
R V V

dT dT
T

S S d d

t t dT dT

d
L V V

dT

α α ω α ϕ ω ϕ

ψ ψαψ ωψ α ω

α α ω α ϕ

+
+

+

+
+

+

   Θ Θ      − Θ + Θ − + +    
           + 

     + + + +      ∆ ∆       

Θ − Θ + Θ − 


⌣
( ) ( )

( ) ( )( )
( ) ( )

( )

( ) ( ){ }
( ) ( )

1

1

1

1

1

1

ˆ

ˆ

m m

n n
m

j
m m

inj injm m

n n

n n

m m

m m

ij inj n n inj

n n

d

dT

S S d d

t t dT dT

d d
R V V

dT dT

ω ϕ

ϕ
ψ ψαψ ωψ α ω

ω α ω α ϕ ω ϕ

+

+

+
+

+
+

   Θ    + +   
          + 

     + + + +      ∆ ∆       

  Θ Θ    
 − Θ + Θ − +    

      

⌣

( ) ( )( )
( ) ( )

( )

( ) ( ){ }
( ) ( )

( ) ( )( )

1

1

1

1

1

ˆ

ˆ

ˆ

m

j
m m

inj injm m

n n

n n

m m

m m

ij inj n n inj

n n

inj injm m

n n

T
S S d d

t t dT dT

d d
L V V

dT dT

S S d

t t dT

ψ ψαψ ωψ α ω

ω α ω α ϕ ω ϕ

ψαψ ωψ α

+
+

+
+

+

 
  +
   + 

     − + − +      ∆ ∆       

  Θ Θ    
 − Θ + Θ − + +    

       

− + −
∆ ∆ 

⌣

⌣ ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

1

1

1

1

1

1

ˆ

ˆ

m

j
m m

n n

m m

m m

inj n n

j j

m m

m m

inj j j

n n
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    +           

     + + +           

      + + +           

  + 
 

ℝ ℝ

ℝ ℝ

⌣
( ) ( ) ( )1

0

m m m

n j j

d d
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           

ℝ ℝ

                       (7) 

Linearization has to be adopted to solve equation (7). Because of the huge computational cost that will be involved in 

dealing with the derivatives of the dependent variables and computing the Jacobian matrix, the Newton-Raphson procedure is 

avoided. The Picard procedure is implemented instead to yield: 
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                            (8) 

The Picard technique employs known estimates of the 

dependent variable in the coefficient matrix to calculate 

refined estimates. These are compared with previous values 

until the difference between the two are less that an a-priorily 

set convergence estimate. By so doing the chore of 

determining the derivatives as well as a careful choice of the 

first estimates are obviated. 

2.2. Modification of the Fisher’s Equation 

Apart from the quadratic nonlinearity that is inherent in the 

reaction term for the Fisher’s equation, other sources of 

nonlinearity can occur to account for cases involving 

nonlinear boundary conditions, temperature-dependent 

thermo-elastic properties of a material for both or either the 

conduction coefficient or heat capacity terms. 

The governing equation for a temperature-dependent 

conductivity, specific heat and density is given as: 

( ) ( ) ( ), ,
T

D T T T x y t
t

∂∇ • ∇ =℘ +   ∂
ℝ             (9) 

where ( ) ( ) ( )T T c Tρ℘ =  is the heat capacity term, , cρ  are 

the density and specific heat of the material respectively, 

i jx x∇ = ∂ ∂ + ∂ ∂  is the two-dimensional (2D) gradient 
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operator and i  and j  are unit vectors in the horizontal and 

vertical directions. Equation (1) can admit any of the 

following first (Dirichlet) and second kind (Neumann) 

boundary conditions: 

( ) 1 1
, ,T x y t T on= Γ                       (10a) 

( ) 2
, , n

n
D T x y t q on− ∇ • = Γ                  (10b) 

Or a combination of Dirichlet and Neumann conditions 

where both the function value and the normal derivative are 

specified on the boundary of the domain. This is the Cauchy 

type boundary condition and is given as: 

( ) ( ) ( ) ( ) ( )
n

dT s
s T s s s

d
α β+ = ℑ                 (10c) 

where ( ) ( ) ( ),s s and sα β ℑ  are specified on the boundary, 

n  stands for a unit outward normal vector from the boundary, 

1 2
andΓ Γ  are different sections of the boundary and s is a 

time parameter. Another requirement is that the scalar profile 

be established everywhere in the problem domain at an initial 

time. 

Classical boundary element theory requires a 

complimentary differential equation be adopted for the 

solution process. This can be of the type ( )2

i
G r rδ∇ = −  for 

which ( ),r x y=  is the coordinate of the field node, for the 

source node ( ),
i i i

r x y= . The fundamental solution of this 

Laplacian operator is given as: ( ) ( ), ln
i i

G r r r r= −  The 

finite element component of this hybrid computational 

technique, requires the problem domain Ω  to be discretized 

into suitable polygonal elements over which equation (9) 

applies. This approach unlike those techniques that shun the 

problem domain facilitates the numerical handling of 

nonlinearity and heterogeneity because medium parameters 

are considered homogeneous within an element though they 

may vary from element to element (piece-wise 

homogeneous). 

We now make use of both the fundamental solution and 

the Green’s second identity to obtain a singular integral 

analog of equation (9): 

 

( ) ( ), .n 0i

dT
T r t T G G ds G T dA

dt
λ ϕ κ χ

Γ Λ

 − + ∇ − + −∇Θ ∇ + + =  
∫ ∫∫ i ℝ                                        (11) 

in which λ  is equal to the twice the nodal angle at the source 

node. ( ), ln 1D D and Dχ κ=℘ Θ = = . The problem 

domain is discretized with rectangular polygonal elements 

over which functional variables are interpolated. Using linear 

functions in space and time to interpolate functional 

quantities yields a general equation of the type 

( ) ( ) ( ) ( ) ( )
, 1,2,......... , 1, 2

z z

j j
T r r T j wτ τ= Ω Ω = Ω =   (12) 

where z  represents the time component; 1, 2z z= =  

represents current and previous times respectively, 

( ) ( ) ( ),
z

j
r τΩ Ω  stand for linear interpolation functions in 

both time and space and w  is the number of nodes in the 

element. When equation (12) is substituted into equation (11) 

for all the functional variables, we obtain a system of discrete 

equations for a generic element of the problem domain. 

0
j

ij j ij j ijl j l ij j ijl j j j

dT
R T L V T P U

dt
ϕ κ χ

 
+ − Θ − Θ + + = 

 
ℝ  (13) 

where the coefficient matrices are given as: 

( ),
i

ij j ij

G r r
R ds

n
δ λ

Γ

∂
= Ω −

∂∫                     (14a) 

( ),ij i jL G r r ds
Γ

= − Ω∫                          (14b) 

( ),
j jl l

ijl i

G GG G
V G r r dA

x x y yΛ

∂ ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 
∫∫         (14c) 

( ),
ijl i j l

U G r r dA
Λ

= Ω Ω∫∫                          (14d) 

2.3. Piecewise Approach 

Hybridization of the boundary element method by the 

introduction of a FEM-like domain integration procedure 

makes it possible for domain properties to be treated as 

piecewise homogeneous. As a result, equation (9) is 

simplified to read: 

( ) ( ), ,
T

D T x y t
t

∂∇ • ∇ =℘ +
∂
ℝ            (15) 

The integral formulation of equation (15) is given as: 

( ), 0i

G T T
T r t T G ds G dA

n n t
λ κ χ

Λ
Γ

∂ ∂ ∂   − + − + + =   ∂ ∂ ∂   
∫ ∫∫ ℝ  

(16) 

Quantities with overhead bars are element centroidal 

values of the media properties. 

We hasten to comment that equation (16) is still nonlinear 

because media properties are still functions of the dependent 

variable even though they now have elemental representative 

averaged-values. As a result equation (13) converts to: 

0
ij j ij j ij j

dT
R T L Q

dt
ϕ χ κ + + + =  

ℝ         (17) 

where ( ),
ij i j

Q G r r dA
Λ

= Ω∫∫  

The temporal derivative is approximated by a 2-level time 

discretization, and equation (17) becomes: 
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1 1
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1 1 1
0
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z z
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t t

L Q g
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α ω
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+
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      + +      + + + +   
   ∆ ∆         

 + + + + ≡ =
 

ℝ ℝ

                                (18) 

The global matrix equation is obtained by assembling the 

element equation (18) and can be represented by: 

( ) ( ){ } ( ){ }M Vij j i
G S RHS  =             (19)  

where { }i
RHS  is the right hand side vector of known values 

which takes care of the boundary and initial conditions as 

well as point and distributed sources. The banded global 

matrix ( )M ij
G 
   stores the coefficients of the element 

equations, while the mixed vector of unknown values ( ){ }v j
S  

contains both the dependent variable and its flux. Equation 

(19) is linearized by the Picard’s algorithm. 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

1

1

1, 1,

1 1

z z

j j z zz z
ij ij ij ijj j z k z k

ij ij ij ij

z z z z

ij

R T L
tR T L

t

Q

αχ αχ
ω ω ϕαχ αχ

α α ϕ

ακ ακ α ω

+

+

+ +

+ +

  +
      − + −+      ∆   + + = −       ∆        + +

  
ℝ ℝ

                 (20) 

3. Numerical Illustrations 

The formulations developed in section 2 are applied to 

study the behavior of Fisher’s equation. 

3.1. Example 1 

We consider equation (1) with the following values of 

coefficients 1 0 0m sς = = = . The general solution has a 

travelling wave solution of the form [33]: 

( )
2

5
, 1.0 exp

6 6
T x t x t

σ σ
−

  
= + −   
   

             (21) 

And satisfies initial and boundary conditions with the 

solution travelling at a constant analytical wave speed: 

5 6c σ= . In equation (1), energy released by the non-

linear reaction term is balanced by the energy consumed by 

the diffusion process and results in travelling wave fronts. 

These have important applications in tracking population and 

gene spread. Figure 1 shows the profile of solving equation 

(1) with a unit reaction rate coefficient. In order to compare 

the results obtained herein with those of [33], σ  the reaction 

coefficient is given a value of unity; and the boundary 

conditions given as ( ) ( ), 1.0, , 0T t T t−∞ = ∞ =  The 

problem domain x−∞ ∞≺ ≺  was truncated to 

50.0 400x− ≺ ≺  and equally spaced 451 grid points were 

used to correspond with the problem parameters given in [33]. 

Table 1 shows a comparison of the theoretical wave speed 

(c=2.041241452) with the numerical wave speed: 

( )1nV T T dx

∞

−∞

= −∫                              (22) 

Table 1. Steady state wave speeds for different numerical methods methods. 

Numerical Method t=0 t=4 t=8 t=12 t=16 t=20.0 

Explicit 2.0412414 1.8582093 1.8164059 1.8055922 1.8014246 1.7994060 

Explicit predict Corrector 2.0412414 1.9872378 2.0000463 2.0111028 2.0175552 2.0215470 

Implicit 2.0412414 2.2988649 2.4175923 2.4619361 2.4827240 2.4946464 

Implicit Predict-Corrector 2.0412414 2.0501223 2.0670761 2.0765175 2.0815662 2.0845510 

Crank-Nicolson 2.0412414 2.0552063 2.0766924 2.0882345 2.0943385 2.0979418 

Explicit Mthd. Of Lines 2.0412414 2.0021823 2.0404156 1.9685848 1.9650300 1.9632689 

Fourth- Order Accurate Mthd. Of Lines 2.0412414 2.0412854 2.0404156 2.0393077 2.0385086 2.0379799 

GEM 2.0412414 1.8486051 1.8448975 1.8496224 1.8553683 1.8581186 

GEM Hermitian 2.0412414 2.0348765 2.0465783 2.0784722 2.0975893 2.0997537 

Finite element 2.0412414 2.0258639 1.9953227 1.9781165 1.9696573 1.9654903 
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Fig. 1. Numerical solutions for example 1 ( )1.0σ = . 

Obtained by different numerical techniques. Table1 

illustrates directly the accuracy of different computational 

techniques in relation to the numerical technique adopted 

herein as well as the effects of the discretization errors on the 

computed results for different times. It can be seen that the 

explicit schemes, underestimate the theoretical wave speed as 

time increases. This can be attributed to the first order 

truncation errors of the explicit scheme. It should be noted 

also the GEM without the Hermitian interpolation yielded 

results that are of the same level of accuracy as the explicit 

schemes. On the other hand, results for the fourth-order 

method of lines as well as the Hermitian GEM and the finite 

element method are found to be closer to the theoretical wave 

speed at steady state. We hasten to report that half the total 

number of grid points were used for the Hermitian GEM 

technique 

3.2. Example 2 

Consider the following form of the 1-D nonlinear Fisher’s 

equation: 

( )
2 2

2 2
1.0

T T
D T

x x
β∂ ∂= + −

∂ ∂
            (23a) 

A pulse profile initial condition given as: 

( ) ( )2
,0 sec 10T x h x=                   (23b) 

and the boundary conditions are: 

( ) ( )lim , lim , 0
x x

T x t T x t→−∞ →∞= =         (23c) 

The following parameters apply to this problem: 

0.1, 1.0, 0.05, 0.005D x tβ= = ∆ = ∆ =     (23d) 

The problem domain should be large enough to 

accommodate wave propagation. 

Figures 2,3,4,5 illustrate the profiles of the solution history 

from short to long times. The interaction between the 

reaction and diffusion components at short times, is 

illustrated by figures 2 and 3. Initially diffusion dominates 

the reaction term and as result the peak of the graph goes 

down rapidly and becomes flat. This can be explained by 

noting that both the reaction and diffusion terms, are very 

small in the beginning and since diffusion for this problem, 

the absolute values of the diffusion term are found to 

dominate those of the reaction terms. However this trend 

immediately changes once the peak of the contour gets to its 

lowest level, at this stage, the reaction term starts to dominate 

the diffusion term (Fig.3) . The profile then continues with an 

upward ascent and with an increasing amplitude until it gets 

to the top where the value of the dependent variable is unity. 
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The solution profiles then assume a bell shaped curve and 

become flatter with the lateral sides becoming very steep 

(Figs 4 and 5). 
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Fig. 2. Pulse profile at initial condition for example 2. 

 

Fig. 3. Emerging solution profiles for example 2 ( )0 0.4t≤ ≤ . 
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Fig. 4. Emerging solution profiles for example 2 ( )0 5.0t≤ ≤ . 

 

Fig. 5. Emerging solution profiles for example 2 ( )5.0 40.0t≤ ≤ . 
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3.3. Example 3 

The Fisher’s equation is given by Mittal and Jain [34] as 

well as Cattani and Kudreyko [35] as: 

2
2

2

T T
bT aT

t x
α∂ ∂= − +

∂ ∂
               (24a) 

Equation (35a) is used mainly in population genetics and 

determines the a wave front of a particular gene though a 

population. While the second term on the right hand side of 

the equation determines how fast the infected particles are 

diffusing, the third term measures the infection rate. The 

following problem parameters apply: 

[ ]0, ,0 ,t t t x∈ ∞ − ∞ ∞≺ ≺ ≺ ≺  . The initial condition is 

given as: 

( ) { }( ) { }( )2
,0 0.25 sec 24 2 tanh 24 2T x a b h sqrt ax c sqrt ax c = − − − −                                       (24b) 

The exact solution of equation (35a) has been determined 

by [35] as: 

( )
( )

( )
2sec 24 5 12

, 0.25
2 tanh 24 5 12 2

h ax c at
T x t a b

ax c at

 ± + +
 = −
 − ± + + −  

 

(24c) 

The numerical results for a=0.5 and b=c= 1.0 and analytic 

solution are shown in Table 2 and are found to be in good 

agreement with those of [34] and [35]. 

Table 2. Numerical and analytical results for example 3. 

Results at t=5 

x-coordinates Present Analytical 

-30.00 0.5000000e+00 0.4999784e+00 

-27.00 0.4999540e+00 0.4999487e+00 

-26.00 0.4999342e+00 0.4999315e+00 

-25.00 0.4999096e+00 0.4999086e+00 

-23.50 0.4998586e+00 0.4998591e+00 

-22.00 0.4997818e+00 0.4997828e+00 

-13.75 0.4976467e+00 0.4976566e+00 

-12.00 0.4961095e+00 0.4961253e+00 

0.00 0.3953775e+00 0.3954037e+00 

1.00 0.3676782e+00 0.3676518e+00 

3.00 0.2978695e+00 0.2976762e+00 

5.00 0.2147389e+00 0.2143460e+00 

10.00 0.4821771e-01 0.4783219e-01 

15.00 0.4642077e-02 0.4572265e-02 

Results at t=6 

30.00 0.5000000e+00 0.4999858e+00 

-27.00 0.4999700e+00 0.4999662e+00 

-26.00 0.4999568e+00 0.4999548e+00 

Results at t=5 

x-coordinates Present Analytical 

-25.00 0.4999404e+00 0.4999397e+00 

-23.50 0.4999068e+00 0.4999071e+00 

-22.00 0.4998558e+00 0.4998568e+00 

-13.75 0.4984455e+00 0.4984533e+00 

-12.00 0.4974281e+00 0.4974405e+00 

0.00 0.4269779e+00 0.4270202e+00 

1.00 0.4061343e+00 0.4061379e+00 

3.00 0.3501897e+00 0.3500467e+00 

5.00 0.2756906e+00 0.2753178e+00 

10.00 0.8241704e-01 0.8181168e-01 

15.00 0.9709230e-02 0.9553112e-02 

3.4. Example 4 

In order to admit rigor and test to the formulation 

developed herein, we address the numerically challenging 

strong reaction problem by considering the case where 
410σ =  . The presence of a strong reaction force, makes the 

solution to evolve into a wave like pattern. The solution 

technique must be able to handle the rapidly changing 

solution profile. This problem has been solved by many 

researchers [36,37,38]. The computational parameters used 

for this test follow that of [36] and are: 
60.002, 5.0*10 , 1.0 3.0

L R
x t x x−∆ = ∆ = = − = . Figs 5a 

shows the numerical solution profiles for times: 

t=0.0005,0.0010,0.0015 and t= 0.003. The steeper profiles 

shown by Fig. 6 demonstrates the physical effects of 

increasing the reaction rate coefficient. In addition ,the flux 

profile is illustrated in Fig. 7. Both are in complete agreement 

with those of [36]. 
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Fig. 6. Numerical and exact solutions for example 4. 

 

Fig. 7. Flux profile for example 4. 
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3.5. Example 5 

The Hermitian GEM is further tested on a Fisher- type 

equation complicated by a nonlinear diffusion and heat 

capacity term. The governing equation can be described as : 

( ) ( )1.0
T

c div D T T T
t

ρ ∂ = ∇ + −
∂

                 (25a) 

where cρ  is the heat capacity term. Equation (25a) has a lot 

of application in heat transfer process as demonstrated by 

Segal and Praagman [39] where they considered nonlinear 

heat conducting two dimensional bar with all the walls 

insulated except at the left boundary. A constant heat supply 

of ( ) 1.0q D T n= − ∂ ∂ =  serves as an input at this end. Both 

the thermal capacity and thermal conductivity are equal and 

are functions of temperature specified as: 

( ) ( ) 1.0 0.5D T c T Tρ= = + . Before going much further it 

should be observed that the adiabatic type of the boundary 

conditions applied to the top and bottom of the two-

dimensional domain of this problem makes conversion to an 

equivalent 1-D analog straightforward. However we apply a 

2-D non Hermitian GEM approach ( equations (9) to 

equation (20)) to enhance comparison with the 2-D example 

solved in literature. Segal and Praagman [39] solved this 

problem without the source term and as such it was possible 

for them to test their formulation with a closed form solution 

expressed as: 

( ) ( ){ }2, 2 1 2 exp 4 1T x t t x tπ = + − −       (25b) 

The same approach has also been adopted for this test. The 

following problem parameters are employed: 

0.1 0.5x t∆ = ∆ = . The 2-D finite element method (FEM) 

results of [39] as well as those from the 2D averaged GEM 

and the 1-D Hermitian were found to be almost identical and 

compared very well with the analytical solution for that 

reason only those of the 1-D Hermitian GEM are displayed in 

Fig.8. The next step was to find the influence of the nonlinear 

source term on the numerical results using the 1D Hermitian 

GEM approach. At initial time, the value of the nonlinear 

diffusion coefficient is unity but the reaction term is quite 

small. As the dependent variable evolves with time the 

diffusion increases further and still becomes lager than the 

reaction term. This is contrary to our observation in example 

(2) and results in a continuous domination of diffusion over 

the reaction term over time as depicted in Fig. 9. Fig. 10 is a 

3-D illustration of the solution profiles for the time of 

computation and clearly illustrates the nonlinear response of 

the of the governing equation to the specified boundary and 

initial conditions. 

 

Fig. 8. Numerical and analytical solutions for example 5. 
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Fig. 9. Influence of source term on numerical solutions. 

 

Fig. 10. A 3-D view of solution profiles. 

4. Conclusion 

A modified boundary integral approach has been applied to 

nonlinear Fisher-type transient differential equations. The 

method reduces the governing equations to their weak forms 

before applying an element-based numerical approach to 

seek their numerical solutions. The overlying nonlinearity 

was handled straightforwardly by the Picard’s algorithm. It is 

noted that the introduction of an element-based hybrid 

numerica technique resulted in the presence of the source 

node in each computational element. This has a concomitant 

effect of not only converting a boundary based numerical 

method into its hybrid elemental analog but also facilitates 

the hybridization procedure. The benefits of this are immense 

in terms of not only simplifying the rigors of computation but 

at the same time advancing straightforwardly from one to 

multidimensional applications. The numerical results 

obtained so far confirms the reliability of the numerical 

formulation. 
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