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Abstract: Although the modified simple equation (MSE) method effectively provides exact traveling wave solutions to 

nonlinear evolution equations (NLEEs) in the field of engineering and mathematical physics, it has some limitations. When the 

balance number is greater than one, usually the method does not give any solution. In this article, we have exposed a process 

how to implement the MSE method to solve NLEEs for balance number two. In order to verify the process, the generalized 

fifth-order KdV equation has been solved. By means of this scheme, we found some fresh traveling wave solutions to the 

above mentioned equation. When the parameters receive special values, solitary wave solutions are derived from the exact 

solutions. We analyze the solitary wave properties by the graphs of the solutions. This shows the validity, usefulness, and 

necessity of the process. 

Keywords: MSE Method, Nonlinear Evolution Equations, Solitary Wave Solutions, Exact Solutions,  

Generalized Fifth-Order Kdv Equation 

 

1. Introduction 

Nonlinear evolution equations occur not only from many 

fields of mathematics, but also from other branches of 

science such as physics, material science, mechanics etc. 

Intricacy of NLEEs and challenges in their theoretical study 

has attracted lots of attention from numerous mathematicians 

and scientists who are concern with nonlinear sciences. 

Therefore, the studies of exact solutions to NLEEs play a 

very important role to know the inner structure of the 

nonlinear phenomena. But the basic problem is, it is not easy 

to attain their exact solutions. Therefore, in order to examine 

exact solutions, different groups of mathematicians and 

physicist are working jointly. In the recent years, 

considerable developments have been made for searching 

exact solutions to NLEEs. They established several methods, 

such as,the inverse scattering transformation method [1], the 

Hirota’s bilinear method [2], the Backlund transformation 

method ([3][4]), the Darboux transformation method [5], the 

Painleve expansion method [6], the Adomian decomposition 

method ([7][8]), the He’s homotopy perturbation method 

([9][10]), the Jacobi elliptic function method ([11][12]), the 

Miura transformation method [13], the sine-cosine method 

([14][15]), the homogeneous balance method [16], the tanh-

function method ([17][18]), the extended tanh-function 

method ([19] [20]), the first integration method [21], the F-

expansion method [22],the auxiliary equation method [23], 

the Lie group symmetry method [24], the variational iteration 

method [25], the ansatz method ([26][27]), the Exp-function 

method ([28][29]), the ( / )G G′ -expansion method ([30]-

[35]), the modified simple equation method ([36]-[40]),the 

exp( ( ))φ η− -expansion method ([41][42]), etc. 

The modified simple equation method ([36]-[40]) is a 

recently developed rising method. Its computation is 

straightforward, systematic, and no need the symbolic 

computation software to manipulate the algebraic equations. 

But, the method has some shortcoming, when the balance 

number is greater than one, usually the method does not give 

any solution. To the best of our knowledge, till now only two 

articles are available in the literature concerning higher 

balance number (for balance number two). Salam [43] used 

the MSE method to the modified Liouville equation (wherein 

the balance number is two) and write-down a solution to this 

equation. However, unfortunately the obtained solution does 
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not satisfy the equation. And in Ref. [44], Zayed and Arnous 

solved the KP-BBM equation by means of the MSE method 

and found some solutions of this equation. But there is no 

guideline in this article, how one can solve other NLEEs for 

the higher balance number. In the present article, we have 

developed a technique so that the MSE method can be 

exploited to solve NLEEs for balance number two. Inserting 

the assumed solution to the corresponding ordinary 

differential equation and then equating the coefficients of 

( ) , ( 0,1, 2, , )js j Nξ − = L  yields an over-determined set of 

algebraic and differential equations. During determination the 

unknown function, there born a third order linear ordinary 

differential equation in s and ξ . If in the solution of s , ξ  

appear as a polynomial, it will not be eligible to receive as 

solitary wave solution, because for solitary wave solution, we 

know that 0u →  as ξ → ±∞  [7]. Therefore, the 

coefficients of the polynomial must be zero. This constraint 

is essential to solve NLEEs for higher balance number. 

The article is organized as follows: In section 2, we 

summarize the description of the method. In section 3, we 

employ the method to NLEEs with balance number two. In 

section 4, the physical explanations of the solutions are 

presented and in section 5, we have drawn our conclusions. 

2. The Method 

Let us consider the nonlinear evolution equation of the 

form 

( , , , , , , ,...) 0t x y z x x t tH u u u u u u u = ,                  (2.1) 

where ( , , , )u u x y z t=  is an unidentified function, H  is a 

polynomial in ( , , , )u x y z t  and its partial derivatives, which 

include the highest order derivatives and nonlinear terms of 

the highest order, and the subscripts denote partial 

derivatives. In order to solve (2.1) by means of the MSE 

method [36-40], we have to execute the following steps: 

Step 1: The traveling wave variable, 

( , , , ) ( )u x y z t u ξ= , ( )k x y z tξ ω= + + ±           (2.2) 

permits us to transform the Eq. (2.1) into the following 

ordinary differential equation (ODE): 

( , , , ) 0G u u u′ ′′ =L ,                             (2.3) 

where G  is a polynomial in ( )u ξ  and its derivatives, wherein 

( )
d u

u
d

ξ
ξ

′ = . 

Step 2:We suppose that the solution of (2.3) can be express 

in the form, 

0

( )
( )

( )

i
N

i

i

s
u a

s

ξξ
ξ=

′ 
=  

 
∑ ,                         (2.4) 

where ,
i

a ( 0,1,2, , )i N= L  are unknown constants to be 

determined, such that 0
N

a ≠ , and ( )s ξ  is an unknown 

function to be evaluated. In tanh-function method, ( / )G G′ -

expansion method, sine-cosine method, Jacobi elliptic 

function method, Exp-function method etc., the solutions are 

proposed in terms of some functions established in advance, 

but in the MSE method, ( )s ξ  is not pre-defined or not a 

solution of any pre-defined differential equation. Therefore, it 

is not possible to conjecture from earlier what kind of 

solutions one may get through this method. This is the 

individuality and distinction of this method. Therefore, some 

fresh solutions might be found by this method. 

Step 3: The positive integer N  appearing in Eq. (2.4) can 

be determined by taking into account the homogeneous 

balance between the highest order nonlinear terms and the 

derivatives of highest order occurring in Eq. (2.3). 

Step 4: We substitute (2.4) into (2.3) and then we account 

the function ( )s ξ . As a result of this substitution, we get a 

polynomial of ( )( ) / ( )s sξ ξ′  and its derivatives. In the 

resultant polynomial, we equate all the coefficients of 

( )( ) , ( 0,1,2,..., )
i

s i Nξ − =  to zero. This procedure yields a 

system of algebraic and differential equations which can be 

solved for getting i
a ( 0,1,2, , )i N= L , ( )s ξ  and the value of 

the other needful parameters. This completes the 

determination of the solutions to the equation (2.1). 

3. Application of the Method 

In this section, we will execute the MSE method to extract 

solitary wave solutions to the generalized fifth-order KdV 

equation which is very important in the fields of surface 

wave propagation on shallow water surfaces. Let us consider 

the generalized fifth-order KdV equation of the form 

2 0t x x x x x x x x x xu u u u u u uα β γ µ+ + + + =         (3.1) 

where , ,α β γ and µ  are the real constants. 

To construct solitary wave solutions of the generalized 

fifth-order KdV equation by applying the MSE method, we 

use the wave variable 

( , ) ( ) , ( )u x t U k x tξ ξ ω= = − .                (3.2) 

The traveling wave transformation (3.2) reduces Eq. (3.1) 

to the following ODE in the form: 

2 2 4 ( ) 0vU U U U U k U k Uω α β γ µ′ ′ ′ ′′′− + + + + =    (3.3) 

where prime denotes the derivatives with respect to ξ . Now, 

integrating the Eq. (3.3) with respect to ξ , we get a new 

ODE in the form 

2 3
2 4 ( ) 0

2 3

ivU U
U k U k Uω α β γ µ′′− + + + + =         (3.4) 

Balancing the highest order derivative term 
)(ivU  and the 

nonlinear term of the highest order 3U  occurring in (3.4), we 
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get 2=N . Thus, the solution (2.4) takes the form 

2

210)( 






 ′
+
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


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+=

s
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a

s

s
aaU ξ .                 (3.5) 

where 10 , aa  and 2a  are constants to be determined, such 

that 02 ≠a , and )(ξs  is an unknown function to be 

determined. Now, it is easy to accomplish 

( ) ( )2 3

1 2 1 2

2 3 2

2 2a s a s a s a s s
U

ss s s

′ ′ ′′ ′ ′′
′ = − − + + .       (3.6) 

2

21

2

2
2

3

2
2

2

1

4

4
2

3

3
1

2)(2

)(103)(6)(2

s

ssa

s

sa

s

sa

s

ssa

s

ssa

s

sa

s

sa
U

′′′′
+

′′′
+

′′
+

′′′
−

′′′
−

′
+

′
=′′

.    (3.7) 
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Substituting the values of UUUU ′′′′′′ ,,,  and 
)(ivU  from 

(3.5)-(3.9) into Eq. (3.4) and then equating the coefficients of 
43210 ,,,, −−−− sssss  to zero, we respectively obtain 

( ) 0236
6
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( ){ }( ) 033624
4

2
42

2
4

1 =′′′−+ ssakaka µβµ .         (3.15) 

( )( ) 0360
3

1 62
2

4
2 =′+ saka βµ .                 (3.16) 

From Eqs. (3.10) and (3.16), we obtain 

0since,
106

and0 2

2

20 ≠±== a
ki

aa
β

µ
. 

Therefore, the following cases arise depending on the 

values of 2a . 

Case 1: When 
β

µ2

2

106 ki
a = , then from Eqs. (3.11)-

(3.15), we obtain 

,
102

6
2/3

22

1 β
µα

β
γ kik

a +±=  

µβ
µαµγβαγβ
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, 
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( ) 2
10

102

1
4/1

4/1

102

10
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ξ
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ξ

m
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where 1c  and 2c  are integrating constants. 

Now, substituting the values of 210 ,, aaa  and )(ξs   into 

Eq. (3.5), we obtain 
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Simplifying the required solution (3.17), we obtain the following close-form solution to the generalized fifth-order KdV 

equation (3.1): 

( )
( )

( ) ( )( ) ( ) ( )( ){ }
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3/ 4

1 2

2
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1 2
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,

10 cos sin 2 10 cos sin
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k c i i c i i

β β γ α µ

β µ θ θ β γ α µ θ θ

− +
=

± ± +
m
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Where 

( )
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2 2
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5/4 3/ 2

50 10 8 10 30 5 10
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x i t

i

β µ β γ α β γ µ α µ
θ

β µ β γ α µ
−
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Since 1c  and 2c  are arbitrary constants, one may 

randomly pick their values. If we choose 

µαγβ 1021 ic +=  and µβ 4/1
2 10 kc −= then 

from (3.18), we obtain the following solitary wave solution: 

( ) ( )
( )
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i

i
txu . (3.19) 

Again, if we choose µαγβ 1021 ic +=  and 

µβ 4/1
2 10 kc =  then from (3.18), we obtain 

( ) ( )
( )
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On the other hand, if µαγβ 1021 ic +=  and 

µβ 4/1
2 10 kic ±= , from solution (3.18), we derive the 

solitary wave solutions in the form: 
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Also when µαγβ 1021 ic +=  and 

µβ 4/1
2 10 kic m=  then from solution (3.18) can be 

written as the following solitary wave solutions in the form: 
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Case 2: When 
β
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2
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a −= , then from Eqs. 

(3.11)-(3.15), we get 
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here 1c  and 2c  are integrating constants. 

Now, substituting the values of ( )ξsaaa and,, 210  into 

Eq. (3.5), we obtain the solution in the form: 
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Simplifying the required exponential solution (3.23) into trigonometric function, we derive the solution of the Eq. (3.1) in 

the following: 

.   (3.24) 

where  

. 

Thus, we get the exact solution (3.24) of the generalized 

fifth-order KdV equation (3.1). But 1c  and 2c  are arbitrary 

constants, so, one may arbitrarily pick their values. 

Therefore, if we choose µαγβ 1021 ic −=  and 

µβ 4/1
2 10 kc −= , then the solitary wave solution (3.24) 

becomes 
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Again, if we choose µαγβ 1021 ic −=  and 

µβ 4/1
2 10 kc = , then from (3.24), we obtain the 

following solitary wave solution: 
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On the other hand, if we take µαγβ 1021 ic −=  

and µβ 4/1
2 10 kic ±= , then from (3.24), we get the 

solution in the form: 
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Also if  µαγβ 1021 ic −=  and 

µβ 4/1
2 10 kic m= , then the solitary wave solution 

(3.24) can be written in the form: 
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But, since 1
c  and 2

c  are arbitrary constants for other 

choices of 1
c and 2

c , we might obtain much new and more 

general exact solutions to Eq. (3.1) by the MSE method 

without any aid of symbolic computation software. The 

major advantage of the MSE method is that the calculations 

are not sophisticated and easy to control. It is not required 

any computer algebra system to facilitate the calculations as 

it take to the Exp-function method, the ( / )G G′ -expansion, 

the tanh-function method, the homotopy analysis method etc. 

But the solutions obtained by the MSE method are equivalent 

to those solutions obtained by the above mentioned method. 

Remark: Solutions (3.19)-(3.22) and (3.25)-(3.28) have 

been verified by putting them back into the original equation 

and found correct. 

4. Explanations and Physical 

Interpretations of the Solutions 

In this section, we will depict the graph and signify the 

obtained solutions to the generalized fifth-order KdV 

equation. The solutions (3.19) to (3.22) are represents the 

periodic solutions. These solutions are traveling wave 

solutions that are all periodic bell shape but different, such 

that Fig. 1 shows the bell shape of the solitons (3.19) to 

(3.20) and Fig. 2 drawn the bell shape solitons (3.21) to 

(3.22) are respectively for 1 and 1kα γ µ β= = = = = −
within 10 , 10.x t− ≤ ≤ Solitons are solitary waves with 

resilient scattering property. On the other hand, Fig. 3 and 

Fig. 4 are plotted the periodic solitons (3.25)-(3.26) and 

(3.27)-(3.28) respectively for 1 and 1kα β γ µ= = − = = =  
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within 10 , 10.x t− ≤ ≤ Here, the Figures 1 to 2 and the figures 

3 to 4 are sketch of same type but all are different. 

 

 

Fig. 1. Bell shape multi-solitons of solutions (3.19) and (3.20) to the 

generalized fifth-order KdV equation (3.1). 

 

 
Fig. 2. Bell shape multi-solitons of solutions (3.21) and (3.22) to the 

generalized fifth-order KdV equation (3.1). 

 

 

Fig. 3. Dark solitons of solutions (3.25) and (3.26) to the generalized fifth-

order KdV equation (3.1). 

 

 

Fig. 4. Dark solitons of solutions (3.27) and (3.28) to the generalized fifth-

order KdV equation. 
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5. Conclusions 

If the balance number is greater than one, in general the 

MSE method does not provide any solution. For this case, we 

have established a procedure in order to implement the MSE 

method to solve NLEEs for balance number two. If the 

solution of ( )s ξ  consists of polynomial of the wave variable 

ξ , it will not be the solitary wave solution, since it does not 

meet the condition 0u →  as ξ → ±∞  for solitary wave 

solution. In this case, each coefficient of the polynomial must 

be zero. This constraint is crucial to solve NLEEs for higher 

balance number. By using this achieved process, we have 

solved the generalized fifth-order KdV equation and found 

some new traveling wave solutions. When the parameters 

receive special values, solitary wave solutions are derived 

from the exact solutions. We analyze the solitary wave 

properties of the solutions via the graphs. 
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