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Abstract: We consider an SEIR model with constant population size and formulate an optimal control problem subject to 

vaccination and supportive treatment as controls. Our aim is to find the optimal combination of vaccination and supportive 

treatment strategies that will minimize the cost of the two control measures as well as the number of infectives while efficiently 

balancing vaccination and management of measles applied to the models with various cost scenarios. We used Pontryagin’s 

maximum principle to characterize the optimal levels of the two controls. The resulting optimality system is solved numerically 

by forward-backward sweep method. The results show that the optimal combination of the strategies required to achieve the set 

objective will depend on the relative cost of each of the control measures and the resulting optimality system showed that, the use 

of vaccinating and supportive treating at the same time at the highest possible rate to the population as early as possible is 

essential for controlling measles epidemic. The results from our simulation are discussed. 

Keywords: Measles, Optimal Control, Pontryagin’s Maximum Principle, Adjoint Condition, Transversality Condition, 

Hamiltonian, Optimality System 

 

1. Introduction 

Most infectious diseases could be driven towards 

eradication, if adequate and timely steps (e.g. vaccination, 

treatment, educational and enlightenment campaign, etc.) are 

taken in the course of the epidemic [7, 10, 11, 12].  However, 

many of these diseases eventually become endemic in many 

societies due to lack of adequate policies and timely 

interventions to mitigate the spread of the diseases [14]. 

Consequently, there is the need for proactive steps towards 

controlling the spread of infectious diseases, particularly those 

ones for which both vaccine and cure are available. Moreover, 

it is often cheaper to prevent the occurrence of a disease with 

management of treatment strategies than to cure it. 

Measles is an acute, highly communicable, viral infectious 

human disease cause serious illness, life-long complications 

and death caused by measles virus (paramyxovirus)[1, 2, 3, 4, 

5]. It is still a public health problem in many developing 

countries. According to the World Health Organization (WHO) 

[1,2,3], more than 20 million people are affected by measles 

each year with more than 95% of measles deaths occur in 

countries that have low per capita incomes and weak health 

infrastructures particulary in Africa and Asia. Measles 

epidemics often occur every two to three years and usually last 

between two and three months [2, 3, 4]. In the year 2012, the 

World Health Organization (WHO) estimated that 122,000 

children died of measles. The majority of these occur in 

developing countries with more than half in sub-Saharan 

Africa. This disease burden accounts for 15% of all under-five 

mortality [1, 2, 3, 4, 6]. 

Measles can be transmitted by direct contact with infected 

nasal or throat secretions or transmission through coughing 

and sneezing of infected people. Humans are the only natural 

hosts of measles virus. As a result, it can spread rapidly by 

contact in a susceptible population [2, 3]. 

Clinical features of measles can be divided into four stages 

of illness period the first stage is incubation period, this stage 

is approximately 10–12 days from exposure to the onset of 

fever and other nonspecific symptoms and average 14 days. 

The second, prodrome period, during this period, symptoms 

appear. They usually begin 12-14 days after exposure. 

Common symptoms include: fever, fatigue, decreased appetite, 

red watery eyes, runny nose, cough and often peaking as high 

as 38°C. The third stage is exanthem (rash) period, during this 

period, a rash develops. The rash usually starts on the face and 

spreads to the neck, trunk, arms and legs. The last stage is 

recovery period, a cough may last for 1-2 weeks after the 
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measles infection [2, 13]. There is no specific medicine that 

kills the measles virus. The best way to reduce the risk of 

contracting measles is to be immunized with the measles 

vaccine. In the absence of vaccination, the measles virus 

would infect almost 100 percent of the population [1, 2, 3, 4,]. 

Optimal control theory is an area of mathematics that is 

used extensively in controlling the spread of infectious 

diseases. It is a powerful mathematical tool in the late 1950s, 

and has been used successfully to make decisions involving 

complex biological situations. It is often used in the control of 

the spread of most diseases for which either vaccine or 

treatment is available [8, 15, 16, 17, 18, 25, 26]. 

In this paper we intended to answer the question of how to 

optimally combine the vaccination and the supportive 

treatment schedules and control strategies such that the cost of 

the implementation of the two interventions is minimized 

while the disease is eradicated within a specified period. 

2. Model Formulation 

In this paper, we formulate an SEIR (susceptible, exposed, 

infected and recovered) model for measles with the optimal 

control strategies. In a typical measles infection scenario, 

when mothers have been infected, immunoglobulin (IgG) 

antibodies transferred across the placenta to newborn infants 

give them temporary passive immunity to measles infection. 

After that, maternal antibodies remain in the body up to nine 

months. It can therefore be assumed that an infant enters 

directly into the susceptible class S at birth. When there is an 

adequate contact of a susceptible with an infective disease 

transmission occurs, and the susceptible enters the exposed 

class E of those in the latent period, who are infected but not 

yet infectious. At the end of the latent period, an individual 

enters the class I of infectives. These can be considered 

infectious in the sense that they are capable of transmitting the 

infection. When the infectious period ends, the individual 

enters the recovered class R consisting of those with 

permanent infection-acquired immunity otherwise they pass 

away. We exclude vertical incidence in our model, this 

obviates the infection rate of newborns by their mothers. Our 

model belong SEIR transmission model [18, 40]. 

3. Model Assumptions 

1. The population is uniform and mixes homogeneously. 

The total population size, N, is constant, i.e. 
 

( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + + at any time 0t ≥ . 

2. The natural birth b  and death rates
 

µ  are assumed 

to be equal. With rapid urbanization and economic 

diversification, this assumption can be considered 

valid in many developing countries. 

3. The infectious I  move from their compartment to 

R-compartment at a constant rate γ , and latent’s E 

move from their compartment to I - compartment at a 

constant rate ε , so that 1/ γ is the mean infectious 

period and 1/ ε  is the mean latent period; 

4. Each individual in the population is considered as 

having an equal probability of contacting the disease 

with a contact rate β  ; 

5. An infected individual makes contact and is able to 

transmit the disease with Nβ  others per unit time, 

that is, the contact rate is proportional to the total 

population size. 

6. The fraction of contacts by an infected with a 

susceptible is / .S N   Therefore the number of new 

infections in unit time per infective becomes

( ) ( )/N S Nβ . This rate is called an infection rate. 

This gives the rate of new infections or those leaving 

the susceptible category as ( ) ( )/N S N I SIβ β= , 

which is called an incidence of the disease.  

7. The number of infected individuals from the exposed 

compartment per unit time is Eε  at time t and the 

number of recovered individuals from the infected 

compartment per unit time is Iγ at time t. 

8. The rate of susceptible, exposed, infected & recovered 

individual removed from each compartments through 

natural death is ,Sµ ,Eµ ,Iµ and Rµ
 
respectively. 

9. Individuals in the recovered class are assumed to be 

immune for life; 

4. Model with Controls 

In this section, an optimal control problem is formulated by 

incorporating two intervention strategies. 

(i) ( )u t is the control which represents the percentage of 

susceptible individuals being vaccinated per unit of 

time. 

(ii) ( )v t is the control effort aimed at treating infected 

individuals being supportively treated per unit of time. 

 

Figure 1. The SEIR schematic model with control u and v  
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The vaccine and supportive treatment drives the susceptible 

and infected individuals to the recovered class, respectively. 

So we introduce the control function ( )u t  and ( )v t and in 

order to set up an optimal control problem related to the SEIR 

epidemic model. 

Table 1.1. Summary of description of variables and parameters for the 

measles model. 

Symbols Description 

S  Susceptibles population 

E  Exposed population 

I  Infectives population 

R  Recovered population 

β  Transmission Rate 

µ Average Death Rate 

b  Average Birth Rate 

ε  Latency Rate 

γ  Recovery Rate 

1/ ε  Average Latent period 

1 / γ  Average Infectious Period 

Based on the assumption and diagram we drive the 

following differential equations (state equations) of the 

dynamics measles transmission model is given in equation (1). 

( )

( )

d S
b S I S u S

d t

d E
S I E

d t

d I
E v I

d t

d R
I R u S v I

d t

β µ

β ε µ

ε γ µ

γ µ

 = − − −

 = − +


 = − + +


 = − + +


         (1) 

With initial conditions 

0

0

0

0

(0) 0,

(0) 0,

(0) 0,

(0) 0

S S

E E

I I

R R

= ≥
 = ≥
 = ≥
 = ≥

                        (1.1) 

 

5. Optimal Control Problem 

A typical optimal control problem requires a cost functional

[ ]( )( ), ( ), ( )J x t u t v t , a set of state variables ( )( )x t X∈ and a 

set of control variables ( )( )u t U∈ in a time t , 0 t T≤ ≤ . 

We aim to minimize the objective (cost) functional J

considering the costs of vaccination of susceptible human and 

costs with supportive treatment of infected human given by: 

2 2

1 2 1 2

0

1 1
( , )

2 2

T

J u v A E A I B u B v dt
 = + + + 
 
∫           (2) 

subject to the differential equations (1) where: 

� The control set U  is measurable functions and it is 

defined as: 

( ) ( )( ) [ ]{ }max max, | 0 1, 0 1, 0,U u t v t u u v v t T= ≤ ≤ < ≤ ≤ < ∈    (3) 

� 
max

u is maximum attainable value for u  and 
max

v  is 

maximum attainable value for v  because resources are 

limited. 

� 
1 2

B and B are positive constants representing the 

relative weights attached to the cost of vaccination and 

cost of supportive treatment respectively.  

� 
1 2

A and A are constants to keep a balance in the size of E 

and I  in the functional objective, respectively. 

� [0, T] represents the control period [0, 90] in days. 

The second term in the functional objective (as it is 

customary) the quadratic term (cost) 2

1

1

2
B u

 
and 2

2

1

2
B v  take a 

nonlinear function, where
1

B and 
2

B  are positive weight 

parameters associated with the control u  and v . Weight 

parameter (B) ‘measures’ the comparative importance of 

reducing the disease burden compared to reducing the 

vaccination and treatment costs. 

The control u  is the percentage of the susceptible that is 

vaccinated per unit time while the control v  is the percentage 

of the infectives that are supportively treated per unit time. 

Thus, u  and v  lie between 0 and 1 while 
max

u  and 
max

v  

will depend on the amount of resources available to 

implement each of the control measures. If 0,u = 0v = then 

no vaccination and no treatment is done hence the extended 

model (1) is considered as uncontrolled. When 1, 1u v= =
indicate that all susceptible and infectious population are 

vaccinated and treated respectively. The rate of vaccination 

and treatment are assumed to take values in the range of [0, 0.9] 

instead of [0, 1] respectively in order to eliminate the case 

where the entire susceptible and infectious population are 

vaccinated and treated [15, 20, 22, 26, 27]. 

The weights B1 and B2 will depend on the relative 

importance of each of the control measures in mitigating the 

spread of the disease as well as the cost (human effort, 

material resources, infrastructural resources, etc.) of 

implementing each of the control measures per unit time. The 

vaccination cost could include the cost of the vaccine, cost of 

syringes, cost of safety boxes, the vaccine storage cost, other 

related overheads, etc. The supportive treatment cost should 

include the cost of the medical tests and diagnosis, drug cost, 

hospitalization cost if needed etc [22]. 

Our target is to minimize the objective functional defined 

above by decreasing the number of infected and exposed 

individuals and increasing the number of recovered 

individuals by using possible minimal control variables u  

and v (or minimize the cost of the vaccination and the cost of 

the supportive treatment at each time unit within the 

implementation period). 

The Optimal Control Problem of nonlinear dynamics of the 

SEIR measles epidemic model given by; 
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( ) [ ]{ }

2 2

, 1 2 1 2

0

max max

1 1
min ( , ) min

2 2

:

( )

( )

;  

( ), ( ) | 0 1, 0 1, 0,

T

u v
J u v A E A I B u B v dt

Subject to

dS
b SI S uS

dt

dE
SI E

dt

dI
E I vI

dt

dR
I R uS vI

dt

control set defined as

U u t v t u u v v t T

β µ

β ε µ

ε γ µ

γ µ

 = + + + 
 

 = − − −

 = − +


 = − + −


 = − + +


= ≤ ≤ < ≤ ≤ < ∈

∫

                 (4) 

6. Pontryagin's Maximum Principle-PMP  

We consider controls u and v , together with state variables S, E, I and R including respective adjoint functions 
1 2 3
, ,λ λ λ and 

4
λ The Hamiltonian function is given by 

( ) ( ) ( )

( )

4

1 2 3 4

1

1 2 3 4

, , , , , , , , , , , , , , , , , , , , , ,

, , , , , , ' ' ' '

i i

i

H t S E I R u v f t S E I R u v g t S E I R u v

f t S E I R u v S E I R

λ λ λ λ λ

λ λ λ λ
=

 = +

 ⇒ + + + +

∑
                    (5) 

where 
' ' ' ', , ,S E I R  are obtained from (1) 

( )
( )

( )
( )

1

22 2

1 2 1 2

3

4

( )1 1

2 2 ( )

SI S uS

SI E
H A E A I B u B v

E I vI

I R uS vI

λ µ β µ
λ β ε µ

λ ε γ µ
λ γ µ

− − − + 
 

− + +  = + + + +   − + − +   
 − + + 

                        (6)
 

Next, by applying Pontryagin’s maximum principle to the 

Hamiltonian, we obtain the following results. 

Given optimal control ( )*, *u v pair and the corresponding 

solution *, *, *S E I and *R of systems (4), there exist adjoint 

variables
1 2 3
, ,λ λ λ ,and 

4
λ that satisfy the adjoint condition 

[15, 31, 37, 38, 50 51]; 

( )
4

' '

1
ii i i i x

ii

H
t f g

x
λ λ λ

=

∂  = − ⇒ = − + ∂  
∑        (7) 

Here 
i

x , i = 1, 2, 3, 4 are the state variables S, E, I and R, 

and 
i

g are the right hand sides of the system (1). We find the 

adjoint function for each state variable S,E, I  and R for 

system of equation (4) 

The adjoint equations are: 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )( ) ( )

'

1 1 2 4

'

2 1 2 3

'

3 2 1 2 3 4

'

4 4

I u I u

A

A S S v v

λ λ β µ λ β λ

λ λ ε µ λ ε

λ λ β λ β λ γ µ λ γ

λ λ µ

 = + + − −


= − + + −


= − + − + + + − +
 =

   (8) 

with transversality conditions in (9) 

The state variables are not assigned at the final time T  so 

that we have the transversality equations: 

( ) 0, 1, 2,3, 4i ft iλ = =                        (9) 

In order to illustrate the characterization of the optimal 

control *u and *,v we consider first the optimality condition. 

The optimality condition for each control *u and *v  

from Hamiltonian in (6) yields 

( ) ( )

( ) ( )1 1 4

0 * , , , , 0

, *

u u

H
at u u f t x u g t x u

u

B u S S at u u

λ

λ λ

∂ = = ⇒ + =
∂

⇒ + − + =
 

( )1 4

1

*
S

u
B

λ λ= −               (10) 

( ) ( )

( ) ( )2 3 4

0 * , , , , 0

, *

v v

H
at v v f t x u g t x u

v

B v I I at v v

λ

λ λ

∂ = = ⇒ + =
∂

⇒ + − + =

 

( )3 4

2

*
I

v
B

λ λ= −              (11) 
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taking into account the bounds on *u and *v  the characterization as in eq.(12): 

( ) ( )1 4 3 4

1 2

0 0 0 0

* 0 * 0

0 .9 0 0 .9 0

H H
if if

u v

S H I H
u if a n d v if

B u B v

H H
if if

u v

λ λ λ λ

 ∂ ∂> > ∂ ∂ 
∂ ∂ = − = = − = ∂ ∂ 

 ∂ ∂< < 
∂ ∂ 

                   (12) 

so the optimal control pair ( )*, *u v  may be written in short 

form: 

( )

( )

1 4

1

3 4

2

* max min ,0.9 ,0

* max min ,0.9 ,0

S
u

B

I
v

B

λ λ

λ λ

  
= −   

  

  
= −   

  

        (13) 

 

The optimal control pair and the state are found by solving 

the following optimality system, which consists of the state 

system (1), the adjoint system (8), tranversality conditions (9) 

and the characterization of the optimal control pair ( )*, *u v  

(13). The following system which characterizes the optimal 

control is called the optimality system. 

( ) ( )
( ) ( )
( ) ( ) ( )( ) ( )

( )

0 0 0 0

'

1 1 2 4

'

2 1 2 3

'

3 2 1 2 3 4

'

4 4

' *

' ( )

' ( *)

' * *

(0) 0, (0) 0, (0) 0, (0) 0

* *

* *

0, 1, 2, 3, 4i f

S b SI S u S

E SI E

I E v I

R I R u S v I

S S E E I I R R

I u I u

A

A S S v v

t i

β µ
β ε µ

ε γ µ
γ µ

λ λ β µ λ β λ

λ λ ε µ λ ε

λ λ β λ β λ γ µ λ γ

λ λ µ
λ

= − − −
 = − +
 = − + +
 = − + +

= ≥ = ≥ = ≥ = ≥
 = + + − −

= − + + −

= − + − + + + − +

=

= =














                      (14) 

7. Simulation Results and Discussion 

In this section, we solve numerically the optimality system 

(14) using the forward-backward sweep method developed by 

Suzanne lenhart and J.T.Workman [31]. The numerical 

procedure begins with an initial guess on the control variable; 

then, the state equations are solved simultaneously forward in 

time, followed by the adjoint equations which are 

simultaneously solved backward in time. The control is 

updated by inserting the new values of states and adjoints into 

its characterization, and the process is repeated until 

convergence occurs. The ODE solver used for the state and 

adjoint systems is a Runge-Kutta fourth order procedure 

executing using MATLAB [8, 15].

Table 1.2. Epidemiological parameters used for the numerical simulations. 

Parameters Description Value Reference 

0S  Initial Susceptible Population 0.8 [25, 26, 27] 

0E  Initial Exposed Population 0.1 [25, 26, 27] 

0I  Initial Infected Population 0.1 [25, 26, 27] 

0R  Initial Recovered Population 0 [25, 26, 27] 

b  Natural Birth Rate 0.00314 per month Estimated [1, 4, 6, 32] 

ε  Latent Rate from E to I  3.04167 per month Estimated [1, 4, 6, 32] 

γ  Recovery Rate from I  to R 2.53472 per month Estimated [1, 4, 6, 32] 

β  Transmission Rate 2.76517 per month Estimated [1, 4, 6, 32] 

1 2A and A
 

Weight parameters 1-100  [25, 26, 27] 

1 2B and B
 

Weight parameter 1-100  [25, 26, 27] 

[0, T] Vaccination period [0,90 days (3 months)] [1, 2, 3, 4, 5, 6, 13] 

[0, u]  Vaccination ratio bounds [0, 0.9] [23, 25, 26, 27] 

[0, v] Supportive treatment ratio bounds [0, 0.9] [23, 25, 26, 27] 
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Figure 2a. Comparison of susceptible individuals under an optimal control situation and no control (for A1=100, A2=100, B1=1, B2=1). 

In figure 2a, we show the numerical solution of controlled 

and uncontrolled susceptible populations. There is a 

significant decrease in the number of susceptible with control 

compared with those not vaccinated. As vaccination is not 

given to the susceptible individual, during the first 12 day 

latent period, large amount of susceptible individuals can be 

exposed to the disease and steadily decreases until it starts to 

slowly increase in the last instants of the interval. On the 

contrary, vaccinated susceptible group develops an immunity 

which keeps it from moving to the exposed class. Even if they 

are in contact with infected individual the vaccine protects 

them from measles infection. 

 

Figure 2b. Comparison of exposed individuals under an optimal control situation and no control (for A1=100, A2=100, A3=100, B1=1, B2=1). 

In figure 2b, we show the numerical solution of controlled 

and uncontrolled exposed populations. Since in figure 2a 

unvaccinated susceptible individuals move fast to exposed 

class during the latent period (on the first 12 days), because of 

this, figure 2b shows that the exposed individuals increased 

during latent period which peaks at about 0.57% population. 

However, in case of the uncontrolled class, a small number of 

individuals move to the exposed class. This results in reducing 

the exposed individuals from the measles disease. After 60 

days both groups approach stable states. 

 

Figure 2c. Comparison of infected individuals under an optimal control situation and no control (for A1=100, A2=100, B1=1, B2=1). 

Fig. 2c, illustrates that control of infected individuals results 

in reducing the infected individuals (to 0.05%) of population. 

This is because supportive treatment is given to this group. It 

should be noted that large numbers of exposed individual 
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move to this class during the latent period and after latent period the number decreases because of the recovery rate. 

 

Figure 2d. Comparison of recovered individuals under an optimal control situation and no control (for A1=100, A2=100, B1=1, B2=1). 

Figure 2d, demonstrates the dynamics of the recovered 

class with and without control measures. The recovered class 

without any control increases faster than control during the 

control period. This is because as large numbers of individuals 

enter into this group from the susceptible, exposed, and 

infected class. The recovered classes with control increases 

continuously until the populations developed immunity. 

Generally it can be seen from Figs. 2a-2d that the optimal 

vaccination and supportive treatment policies have a profound 

effect on the spread and control of measles epidemic. In 

addition, the overall dynamics clearly demonstrates the impact 

of intervention before 12 days of the epidemic is more 

substantial. We also observe that when the population is 

uncontrolled (no vaccination and no supportive treatment) 

almost all susceptible population is exposed and infected with 

the disease. The number of people in the susceptible, exposed 

and infected with control measures decreased more than 

without any control. 

 

Figure 3a and Fig. 3b. The control functions u and v  a) on the left and susceptible and infectious individuals b) on the right versus time (for A1=100, A2=100, 

1 1B = and 2 1B = ). 

Fig. 3a illustrates the profile of the control functions u  and 

v  with weight
1 2

1, 1,B B= = the simulation shows the effects 

of vaccination and supportive treatment given for a much 

longer time. This results leads in a significant reduction of 

susceptible and the infected individuals over time. Figs. 3a 

and 3b show that using both controls at the same time with the 

accompanying weights could minimize the number of 

susceptible and infected individuals significantly. 

 

Figure 4a and 4b. The control functions u and v  a) on the left and susceptible and infectious individuals b) on the right versus time (for A1=100, A2=100, 

1 1B = and 2 20B = ). 
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Unlike before, the weights are increased 
1

1B = and 

2
20B = . The results of the simulation clearly show that 

increasing the weight values for treatment results in a slightly 

more increase in infected individuals. At the final time 

( )0.09%I =  as compared to the case for 
2

1B = ( )0.05%I = . 

 

Figure 5a and 5b. The control functions u and v  a) on the left and susceptible and infectious individuals b) on the right versus time (for A1=100, A2=100, 

1 20B = and 2 1B = ). 

Increasing the weight of vaccination ( )1 20B = results in 

higher susceptible individuals (0.34%) when compared to 

(0.22%) in 
1

1B = case. So applying more of the vaccination 

1
B  for a short period does not appreciably decreases the 

susceptible human population. 

 

Figure 6a and 6b. Control functions u and v  a) on the left and susceptible and infectious individuals b) on the right versus time (for A1=100, A2=100,

1 100B = and 2 100B = ). 

We demonstrate the effects of increments of weight values 

for both vaccination and supportive treatment (B1=100, 

B2=100). The above graphs show that the profiles of both 

control function are significantly altered. At the end of the 

control period, the susceptible and infectious individual show 

changes of (S=0.48, I=0.1)% in comparison with (S=0.22, 

I=0.05)%. of the previous case. This implies that in order to 

mitigate the disease, initially we have to apply more of the 

supportive treatment control to reduce infection to a certain 

threshold, after which we can gradually start to apply more of 

the vaccination control with less of the treatment. 

Figs 3-6 show that more care must be taken to control the 

disease burden at the beginning of the epidemic. This will 

involve a judicious application of vaccination and supportive 

treatment measures. 

 

Figure 7. The marginal cost 1 3andλ λ  (for A1=100, A2=100, 1 21 1B and B= = ). 
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Figure 7 displays the numerical solutions for the adjoint 

variables for the case 
1 2

1, 1.B B= =
 

The marginal cost of vaccination 
1

λ  is lower than marginal 

cost of supportive treatment 
3

λ
 
at the beginning of the 

control period. However for both controls, the cost is high 

initially and decreases continuously through the control 

period. 

 

Figure 8. The marginal cost 1 3andλ λ  (for A1=100, A2=100, 1 21 20B and B= = ).

For the given adjoint variables and for weights 
1

1,B =

2
20B = the prescribed weighted values of supportive 

treatment result in a decrease in the marginal cost of treatment. 

However this decrease does not necessarily result in a 

decrease in infected individuals. (see Figs. 4a). 

 

Figure 9. The marginal cost 1 3andλ λ  (for A1=100, A2=100, 1 2100 100B and B= = ). 

Fig. 9 predicts an increase in marginal cost as the weight 

values of both controls are increased. However this does not 

result in a concomitant increase in outcome for both 

susceptible and infected individuals as was the case for 

relatively lower weights (B1=1 and B2=1). This is because 

both the percentages of the population to be vaccinated and 

treated for the period are relatively small. This is still the case 

even if relatively higher weights are given (see Fig. 6b). 

Figs. 7-9 show that the marginal cost of supportive 

treatment is higher than the marginal cost of vaccination in all 

cases in the first few weeks. Increasing the marginal cost of 

controls in the first few weeks cannot reduce both susceptible 

and infectious individuals, though the increase in the latter is 

more significant. This implies that it will be more economical 

to expand the vaccination coverage than to expand the 

supportive treatment coverage. However, after the overlap of 

the two costs, the marginal costs for both vaccination and 

supportive treatment begin to fall continually through the 

control period. Since, the marginal costs of the controls 

continue to decrease over time, this strategy is really 

advantageous to adopt especially in developing countries 

where primary and supportive care for infectious diseases are 

often neglected. 

8. Conclusions 

The work presented herein demonstrates an optimal control 

strategy for measles disease subject to SEIR epidemiological 

model. We used Pontryagin’s maximum principle to 

characterize the controls and derive an optimality system. A 

state of the art of uncontrolled and controlled mathematical 

models was employed to support the formulation. 

The resulting optimality protocol displayed positive effects 

upon the population especially in the number of susceptible, 

exposed and infected individuals during the control period. 

It was found that optimal control strategies become more 

effective in the control and containment of measles when 

vaccination and supportive treatment are combined optimally. 

This may require less weighting for longer control periods. 

The susceptible and infectious can be reduced up to 85% and 

60% around the eighth week of the control period respectively. 

Since the cost of effectively managing measles decreases with 
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time, a more proactive approach in combating the fight against 

measles is suggested. 

The role played by the weight parameter B in the objective 

functional is made evident in this study. This parameter 

‘measures’ the comparative importance of reducing the 

disease burden (see figures 3-9). In addition, it gives a clue 

concerning the relative importance of the application of 

treatment management strategies involving vaccination and 

supportive care in effectively controlling measles. It is shown 

that combined use of vaccination and supportive treatment is 

indicated as the most important intervention of any control 

strategy of measles epidemic. 

Finally numerical simulations of the resulting optimality 

system showed that, in the case where it is more expensive to 

apply supportive treatment than vaccinate, resources should 

be invested in vaccination until the disease prevalence begins 

to fall. This option, however, will reduce the number of 

susceptible quickly enough, thus resulting in an overall 

decrease in the infected population. On the other hand, if it is 

more expensive to vaccinate than to supportively treat, then 

more resource must be put into care. Moreover, it is often 

cheaper to prevent the occurrence of a disease than to cure it. 
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