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Abstract: In oscillatory problems, the method of Krylov—Bogoliubov—Mitropolskii (KBM) is one of the most used
techniques to obtain analytical approximate solution of nonlinear systems with a small non-linearity. This article modifies the
KBM method to examine the solutions of fifth order critically damped nonlinear systems with four pairwise equal eigenvalues
and one distinct eigenvalue, in which the latter eigenvalue is much larger than the former four pairwise eigenvalues. This paper
suggests that the results obtained in this study correspond accurately to the numerical solutions obtained by the fourth order
Runge-Kutta method. This paper, therefore, concludes that the modified KBM method provides highly accurate results, which
can be applied for different kinds of nonlinear differential systems.
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1. Introduction

In oscillatory problems, the method of Krylov—
Bogoliubov—Mitropolskii (KBM) [1, 2] is particularly
convenient, and is the vastly used technique to obtain
analytical approximate solution of nonlinear systems with a
small non-linearity. The method was, in fact, developed by
Krylov and Bogoliubov [2] for obtaining periodic solutions,
which was amplified and justified by Bogoliubov and
Mitropolskii [1], and later extended by Popov [3] and
Meldelson [4] for damped nonlinear oscillations. Murty [5]
developed a unified KBM method for solving second-order
nonlinear systems. Sattar [6] studied a third-order over-
damped nonlinear system. Bojadziev [7] studied the damped

oscillations modeled by a three dimensional nonlinear system.

Shamsul and Sattar [8] developed a method for third order
critically-damped nonlinear equations. Rokibul and Akbar [9]
investigated a new solution of third order more critically
damped nonlinear systems. Shamsul and Sattar [10]
presented a unified KBM method for solving third-order
nonlinear systems. Akbar et al. [11] presented a method for
solving the fourth-order over-damped nonlinear systems.
Rokibul et al. [12] presented a new technique for fourth order
critically damped nonlinear systems with some conditions.

Rahaman and Rahman [13] suggested analytical approximate
solutions of fifth order more critically damped systems in the
case of smaller triply repeated roots. Rahaman and Kawser
[14] also proposed asymptotic solutions of fifth order
critically damped nonlinear systems with pairwise equal
eigenvalues and another is distinct.

The aim of this article is to obtain the analytical
approximate solutions of fifth order critically damped
nonlinear systems by extending the KBM method. In this
study, it is suggested that the results obtained by the
perturbation solution have been compared with those
obtained by the fourth order Runge—Kutta method.

2. The Method

We are going to propose a perturbation technique to solve
fifth order non-linear differential systems of the form

) (iv) . . _ s (V)
"+ x™ +kX kX +kx Hkx = —ef (x,%,X,X,x™) (1)

where x and x™ stand for the fifth and fourth
derivatives respectively, and over dots are used for the first,
second and third derivatives of x with respect to
k.,k,, k,, k,, k, are constants, € is a sufficiently small
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function. As the unperturbed equation (1) has five real
negative eigenvalues, where four eigenvalues are pairwise
equal and the other one is distinct. Here, the distinct
eigenvalue is much larger than the pairwise equal
eigenvalues. Now, suppose that the eigenvalues are
=N, =AW, — M, VL

When ¢ = 0, the equation (1) becomes linear and the
solution of the corresponding linear equation becomes

X(t,O) = (30 +b0t)e_}\l +(c0 +d0t)e‘ul +hoe—v1 (2)

where a,, b, c¢,, d, andh, are constants of integration.

When & # 0 following Shamsul [15], an asymptotic
solution of the equation (1) is sought in the form

x(t,€) = (a+bt)e™ +(c+dt)e™ +he™

(3)
+¢u,(a,b,c,d,h,t) +...
where a, b, ¢, d and h are the functions of ¢ and they satisfy
the first order differential equations

a=¢A (a,b,c,d,h,t)+... b=¢€B,(a,b,c,d,h,t) +...
¢=¢C,(a,b,c,d,h,t) +... @)

d=¢D,(a,b,c,d,h,t)+... h =¢H,(a,b,c,d,h,t) +...

Now differentiating (3) five times with respect to ¢,
substituting the value of x and the derivatives

relations presented in (4) and finally extracting the
coefficients of ¢, we obtain

%+2Bl
eN(D+u-A2(D+v -1y O +
0B,
+t—L
ot
%+2D1 3)
e (D+A-W?*(D+v-p) +
aD,
+t—L
ot

e (D+A-V)’(D+u-V)°H, +

(D+2)* D+ (D+V)u, == (a,b,c.d,h, 1)

Where £ (a,b,c,d,h,t) =f(x,%,%,%,x")
And x(t,0) = (a, +b,t)e™ +(c, +d,t)e™ +he™

We have expanded the function f'© in the Taylor’s series
(Sattar [16], Shamsul [17, 18], Shamsul and Sattar [8]) about
the origin in power of ¢. Therefore, we obtain

£ :z{tq 3 qul(a,b,c,d,h)e'(“”“m)‘} (6)

a=0 [ iikI=0

Thus, using (6), the equation (5) becomes

LI
e N (D+u-AY(D+v-r) O +
0B,
+t—L
at
ac,
B R
MDA -p (D +v-p)| & '
aD, (7
2D, +t—1
at
eV (D+A-V)’(D+u-V)’H, +
(D+AY D+ (D+v)u, =
-Z{t“ > (a,b,c,d,h)e‘“”“*k”‘}
g=0 | ijk=0

Following the KBM method, Murty and Deekshatulu [19],
Sattar [16], Shamsul [18], and Shamsul and Sattar [8, 20]
imposed the condition that u, does not contain the
fundamental terms (the solution (2) is called the generating
solution and its terms are called the fundamental terms) of
£ Therefore, equation (7) can be separated for unknown
functions A,, B;, C,, D,, H, and u, in the following way:

0,y
e™(D+u-A)P(D+v-7)| O +
9B,

+—L
ot

%4.2])1

ot + (8)
9D,

ot
e (D+A-Vv)’(D+u-V)’H, =

1 o0
Sl 5 pboanee ]
q=0 ij

e"(D+A-p)*(D+Vv-p)
+t

i,j.k,1=0
(D+X)*(D+W)* (D+V)u, =

L) i o 9
_Z{tq Z F,.(a,b,c, d,h)e'(‘A+J“+k")‘} ©

q=2 [ ijkl=0
Now equating the coefficients of t’, t' from equation (8),

we obtain
e M(D+p-A)’(D+v —)\)(%+2Blj

+e'“‘(D+A—u)2<D+v—u>[%+2Dlj

+e"(D+A-Vv)’(D+u-Vv)’H, =~

(10)

Z FO,l (aa b, C, d, h)e_(i)‘*'ju*'kv)t

i.j.k,1=0
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eMD+p-A)>*(D+v —)\)%+e_“‘

: oD, _
(D A=W+ 22t =~ (1)

0

> F,(a,b,c,d,hye Pk

i.j.k,1=0

Here, we have only two equations (10) and (11) for
determining the unknown functions 4, By, C, , D, and H,
Thus, to obtain the unknown functions 4,, B, C;, Dy and H;
we need to impose some conditions (Shamsul [18, 20, 21, 23])
between the eigenvalues. Different authors have imposed
different conditions according to the behavior of the systems,
such as Shamsul [21] imposed the condition

LA HLA, + LA S+ D) FA LA

In this study, we have investigated solutions for the cases
A >>1 and A <<v. Therefore, we shall be able to separate
the equation (11) for unknown functions B; and D;; and
solving them for B, and D, substituting the values of B; and
D, into the equation (11) and applying the conditions A >> i
and A <<v, we can separate the equation (12) for three
unknown functions 4,, C; and H;; and solving them for 4,
C, and H,. Since &, b, ¢, dand h are proportional to small
parameter, they are slowly varying functions of time ¢, and
for first approximate solution, we may consider them as
constants in the right side. This assumption was first made by
Murty and Deekshatulu [19]. Thus, the solutions of the
equation (4) become

t

a=a, +8IA1(a,b,c, d,h, t)dt
0

b=b, +sj B,(a,b,c,d,h, t)dt
0

c=c, +£[C,(a,b,c,d,h, t)dt (12)
0

d=d, +&[D,(a,b,c,d,h, tdt
0
t

h =h, +&[H,(a,b,c,d,h, t)dt
0

Equation (9) is a non-homogeneous linear ordinary
differential equation; therefore, it can be solved by the well-
known operator method. Substituting the values of @, b, ¢, d,
h and u, in the equations (3), we shall get the complete
solution of (1). Therefore, the determination of the first
approximate solution is complete.

3. Example

As an example of the above method, we have considered
the Duffing type equation of fifth order nonlinear differential
system:

XY +k x ™ +k,X HkGX kX +kx = —ex’ (13)
Comparing equation (13) and equation (1), we obtain
f(x,%,%%,x™)=x’
Therefore,
£O = a3e—3m + 3a2ce—(2)\+u)t + 3aZhe—(2)\+v)t
+3ac’e M + gache MMV 4 3ah?
e—()\+2v)t + C3e—3ut + 302he—(2u+\))t + 3Ch2
e P2Vt 4 p3a-ave 3t{a2be_m + 2abce—(z)\+u)t
+a’de @M + 2abhe ™" +2acde !
+ bCZG—()\+2u)t + Zadhe—()\ﬂ,ﬁ-v)t + 2bche—()\+p+v)t
+bh’e™ ™ +cde”™ +2cdhe™ ™™V +dh?
e’““z")‘} +3t2 { ab%e™™ +b’ce” W +2abd
e ML L P21 a =AML 4 2=(F200 4 op g
e MM 4 2bdhe MV +cd’e ™ +d°h
e—<2u+v)t} +£ {b3e—3m + bzde—(zmu)t + bd2

e—()\+2u)t + d3e—3ut}

(14)

Now comparing equations (6) and (14), we obtain

D F,(a,b,c,d,h)e M =gl

L k1=0
+3a2ce™ @ 4 32he T BMV 435¢2
@ U g pa (AL | 301 2020t
+Cle M 43020 e 4 3cp2e MY

+ h3e—3\}t

Z Fl,l(a,b,c, d,h) e ATkt - 3{azbe_m

i.jK1=0
+2abee M 4 22daCAIN 4 9ok he AV
+ 2acde7(”2“)‘ + bczeﬂﬂu)t + zadhe*(?\‘rwv)t
+ 2bche At 4 hh2e™ M+t 4 (2 et

+2cdhe CHVt 4 dhze—(p+2v)t}

Y B, (a.b.c,dhye ™ =3lable

i,j,k,1=0
+ bzcef(z}wu)t + 2abdef(2)\+u)t + bzhef(z)wv)t
+ adZe—()\+2u)t + 2bcde—()\+2u)t + 2bdhe—()\+u+\))t

+edZe ™ +d2he—(2u+\))t}

(15)

0
Z 1:3,1(aab,C,(Lh)eim\wm’)t =pe™

ijk1=0
+ b2de*(2?\+u)t + bdze*(?\+2u)t + d3ef3ut

For equation (13), the equations (9) to (11) respectively
become
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(D + )\)2 (D + H)Z (D + V)ul = _3t2 {ab2€—3)\t D1 = mczde—zul (22)
+ bzce—(2A+u)t + 2abde—(2)\+u)t + bzhe—(z)\w)t Where
+ad’e ™" +2bcde” M + 2bdhe AV (16) L= 3 L= 3
+od’e ™ +d’he '} - t*{ble ™ UOAGA-R)’(V=3N) T 2NN HR)(V = =2M)
b2 de M 4 pdPe O 4 gl ) I = : L= = :
AN A +)(V - —2)) A +V)2A +v —p)?
0A 3 -6
—At _ 2 _ e 1 - , 1 - ,
¢ (DHU=A) D+ “( a ”Blj AW A2 AFE VAV
aC -3 -3
—pt _ 2 _ g 8 1 = , 1 - ,
e (DA (DY “)( a ”Dlj T TR G TRV S MV TRV TR IV
-Vt 2 2 —_ —
re DAV, = 19=2 A+ )\3+2 w2 ™o )\—332 -3
_{ase—m +3alce A (17) V(A +V)( V-H) H( K" (Vv —3H)

#30 he- A 4 30200 Using the values of B, and D, in equation (17), we obtain

+6ache ATVt 4 3?2 A2
+cle M 4 302pe 2R

+3ch?e ™Vt + h3€_3‘”} (D+A-p)*(D+v - H)% +e

e M(D+u-A)’(D+v —)\)%+e_“‘

(D+A-Vv)’(D+u-V)*H, =-a’e™
—3a’ce” W =337 he At — 352
e A2 _ gache  MHIIT _3gp2e A2V

_ C3e—3ut _ 3C2he—(2p+v)t _ 3Chze—(p+2v)t

e’“(D+p—)\)z(D+v—A)%

£ DA - D4y - 22 =

_ 3 2b =3\t +2 b —(2A+p)t + zd —(2A+p)t 18 3wt »
{a S apnce a dc ( ) _h3e 3 _2(3)\_u)2(v_3)\)11a2be 3t
+2abhe ™" + 2acde™ " +bele M —8A* (v = —2A)lL,abce W —8\? (23)
+ Zadhe—()\+p+v)t + 2bche—()\+p+v)t + bhze—()\+2v)t (V _ u _ 2)\)l3azde_(2““)‘ + 4)\(” —y- 2)\)2
+c2de ™ +2cdhe V) + dhze'“““)‘} 1,abhe ™ —2(A + )2 (v =2 - M),

25 L —(A+2p)t 2
Since the relations A >>p and A <<v among the (2acd +bc)e BRAURAONUR Y

—(A+p+v)

eigenvalues, then the equation (18) can be separated for the ls(adh +bch)e™ ™™ + 4p(u +v)l,cdh
unknown functions B, and D, in the following way: e MV 48V (U + V)l dh’e M
3B +2(A +2v =)’ (A +V)l bh’e 2

—-At _ 2 _ 1 —
(S (D+u. )\) (D+V )\)7— _2(}\_3u)2 (v_3u)mc2de—3ul

=3\ —(2A+ —-(2A+

—3{a2be 7+ 2abee ™M +a’de ! Again, applying the conditions A >>pu and A <<v in
+2abhe MVt 4 2acde A 4 pole MR (19)  equation (23), we obtain the following equations for
+2adhe MV 4 2hche MM 4 phZe M unknown functions A,, C, and H,:

+2odne” " +dh’e 2] &N (D+-N (D v -0 2oL = e
a

)

e (D+A-p)’(D+v - u)% =-3c’de™ (20) —3a’ce MWt —3ac2eT M
—2(3A —p)’ (v =3M)l,a’be
Solving equations (19) and (20), we get —8\2(V - - 2)\)lzabce_(2““)‘ (24)
B, =1,a’be™ +1,abce™ " +1,a°de” MW" —8A° (v —p—20)la’de™
+1,abhe™"™" +1_(2acd +bc?)e™" 1) —200+ U):(V j 2=l
+1,(adh +beh)e ™) +1_cdhe CHvM (2acd +bc?)e !

+ lsthG*(},HZV*)\)t + lgthG*()MZv)t
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e_Ut (D +)\ _ u)Z (D +y — u)% - _C3e—3u1
-2(A =3’ (v —3)mc’de ™

e (D+A-v)*(D+p-V)*H, =-3a’he ™"
—6ache MMV —3gpy2e AV _ 32 e RV
=3ch’e™" —=h’e™ +4A(U -V —2))*1,abh
e+ 2(A +v)* (A + W)l (adh +beh)e M
+4U(U+ V)L cdhe P +8v* (L + V)l dh’e *
+2(0+2V —0)* (A + V)], bhe V2

Solving equations (24), (25) and (26), we obtain

A, =ra‘e™ +ra’ce ™M +rac’e™
+r,a’be™ +rabce™ ! +ra’d

e MW ¢ (2acd +be’)e ™

3 24t

C,=nc’e e

2
+n,c de

H, =s,a’he™" +s,ache™ ™" +s,ah’e **""
+s,c’he™ +s,ch’e ™™ +5,h’e™
+s,abhe™" +s,(adh +bch)e ™"

+s,cdhe™ +5,,dh’e ™" +5  bh’e "
The solution of the equation (3.3.4) for u, is

u, =ab’e”™ (w,t* + w,t +w;) +(b’c +2abd)
e—(z)\ﬂm (W4t2 + Wst + WG ) + bzhe—(z)\w)t
(W,t* +wet+w,)+(ad” +2bcd)e "

2 —(A+p+v)t 2
(Wot” +w t+w,,) +bdhe (w,t

2 _-3ut 2

twttwg)tede ™ (Wt +wt+wg)
+ dzhe—(zpw)t(wlgtz Wt +W,,) +hle M
(Wt' + W t’ + Wy, t+w,,) +b’de” !
(Wt’ + W t7 + Wyt +w, ) +bd’e 2
(W' +wy t? +wy,t+w,)+de™

3 2
(Wit +wist™ +wyt+wy,)

1
AN G- (BA-V)’

where w, =

2 1 2 1
Wy =73 2 Tt + >
AN BA—W) (3)\—v)()\ 3A-p 3)\—\)]

(25)

(26)

@7

(28)

(29)

(30)

2 3 2 3
W, = 3 3 { + +
AN (3N =)’ (3N —V)

+ ! + ! + 2 },
AGA-V)  (BA=V)> (BA-W)(A-V)

_ 3

AN A+HRP ARV

W,

AN AGA-W)  (BA-p)’

Wll

S 26 2 1, 1 ’
ANA+W) CA+U=V) LA+ A 2A+u-V

3 3 3 2
We =32 2 TV
ACAF) T RA+U=V) A+ 4N AN+

1 1 2
+ + +
QA+H-VY  ACQA+H-V)  (A+H)2A +u—V)}’

_ 3
TNV P A +V)

Wy

_ 3 2 2 1
Ws = 2 2 + Rl
ACAHV—) (A+V)" (A+v 2A+v—-pu 2A

W = 3 3, 3
TOACA+HV )P A V) (A +V)D QA+ —p)?

4 1 1 1
+ —+ +
A+V)YA+V—) 44N> AA+V) A(2A +v—p)}’
_ 3
4 A+’ A +2u-v)

Wio

3 2 1 1
= +—+
2PN+’ (A +20-V) (Mu H A+2u-v}
_ 3
2PN+ )’ (A +20-V)

w12

3 3 2 1
—t—t + —
A+ 407 pA+R) A +2p-v)

+ ! + 2 },
HAA +2U=V) (A +H)A +2u-V)

B 6

ARV A V)

W13

12 1 2 2
Wi = 2 2 + + ’
A+W+V) A +V) (Hu H+V A+Vj
12
A+W(H+V) A +V)?

15

3,3 ., 4
A+V) (U+V)’ (H+HVIA+V)

1 2 2
+ +
A+ A+R)(E+V) (A+u)(>\+V)}’
_ 3
T M-3R BR-Y)

w1(7

: 3 1 2 1
W, = 3 3 —+ + S
WA =3 Gu-v) (1 3u=A 3u-v
_ 3
20 (N =30)° Bu-v)

w18

3 2 3 1
{—2+ + >+
47 HEH-=A) GU-AN)T UEH-V)

+ ! + 2 },
Gu-Vv)  GU-MEH-V)
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_ 3
2HUHV AP (V)

W19

_ 3 2 2 1
Wy = — 3 + — +— |,
HEH+V =N (L+V)" (H+V 2u+Vv=-A 2u

3 3 3
Wy = 3 2{ >t 3
HEU+V =N (L+V)" [((L+V)" (2pu+V=D)

+ 4 + 12+ L ! },
(H+VICH+V=A) 4p" UE+V)  PEp+V-A)
) i
N2 T TGN - GA-V)

3 1 2 1
W, = 3 3 —+ + 5
ANGA-W) GBA-V) A 3A-p 3A-v
W,, = 3
*OONGA-W(BA-V)

{ 3 2 3 1
—+ + +
AN AGA-R) GA-p)’  AGBA-V)

+ ! + 2 },
GA-v)  GA-p)(3A-V)

B 3 !
Y5 TN G- GA - v) {2)\3
3 3 4

+ + +
2NGA-W) AGA-p) GA-py’
1 2 1
+ + +
AGA-V)’ GA-pBA-V)’ (BA-v)’

+ 3 + 2 + 3 }
AN*(BA-V) AGA-WBA-V) BA-W)’(GA-V)
Was = > >
AN N+’ 2N+ V)

W = 9 (2 1 1 j
TOAN A+ RA+R=V) A+ A 2 +p-v )
%% = 9
R SO @) EATEY)

3 + 3 2 1
A+)° 4N AQ+p) QA +p-v)

+ ! + 2 },
ACA+U=V)  (A+R)(2A+p-V)

Wi = 9 ! +i
A+ CA+U-Y) (AR 2N
3 3 N 1 N 2

AR V) GAFE-V) | A CAFH-V)

1 2
+ +
ACQA+p=V)’ A+’ (A +p-v)

3 2
+ +
AN (N +R=V) A )2 +u—v>}’

_ 3
CHEN RN +2u-Y)

W3O

9 2 1 1
W3 =—— 2 _ t—+ Nk
WA+ A+2u=V) A+ U A+2p-v

9 3 3 2
Wi =7 P { Tt
WA+ A+2u=v) [((A+p)” 407 pAA+p)

1 1 2
+ + +
A+2u-v)  pA+2p-v) A+A +2u—V)}’

_ 9 4
S T AE A+ A+ 20— V) {(A +p)’
3 + 1 3

+ +
AN+ A+2u-v)' 2
3 2
+ +
HA+W)?* A+ +2p-v)*
1 3

+ +
HA +2u-Vv)*  A+p)° A\ +2u-V)

3 2
e u(A+u)(A+2u—V)}’
_ 1
T4 A-3RGR-Y)

_ 3
T4 (A -3 GR-)

1 2 1

—+ + ,

[u 3u-A 3u—VJ
w. = 3 3
2PN =3 (- v) (4

+ 2 + 3 >+ !
HGH=A)  (Bu-=A)" HEH-V)

Wiy

W35

+ ! + 2 },
Gu-v)*  Gu-M)EH-V)

_ 3 1
REARCTTErGY —3u)2(3u—V){2u3
3 3 4
+ 2 + 2+ 3
2WGBH-A) HGU-A)" (Bp-A)
1 2
+ 2 + 2
HGU=V)"  (Bu=M)(EBp-v)
1 3
+ +
(Bu-v)  4’Gu-v)

2 3
+ +
HGH=A)(EH-V) (311—)\)2(3“—\))}
Substituting the values of A, B,,C, D, and H, from
equations (27), (21), (28), (22) and (29) into equation (4), we
obtain



—2At

a= E{r1a3e +r,a

+r,a’be™ +rabce™ ™ +ra’de MW

+1,(2acd + bcz)e’z“‘}

b= E{llazbe’m +labce™ ™" +1,2°de M
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zce—()\ﬂm + r3acze—2ut s 1= —2ut ) 1 _equt
c=c,+&{nC, +n,c,d,
2u
, o 1=e™
d=d,+emc,d, (32)

+18dh26*(u+2vf)\)t

“2At —(A+p)t
—(A+V)t 2 .-2ut - 1-e
+1,abhe +1(2acd +bc”)e h=h, +g{sla§h0—+s2a0coh0)\—
N I +
+1s(adh +beh)e ™™ +1,cdhe™ H
_ e—()\+v)t a2t
-(A
+1,bh’e™ *2")‘} +s,a,h; ———— +s,coh, +s,c,h;
A+v
. 3 o 2 1 ot 1_e—(u+v)t 1- efzvt 1_672)\1
¢ s{nlc e +n,c’de } (1) +s,h2 +s,a,bh, ————
H+v 2v 2\
d =emc’de™ 1—e At 1—e™"
+5s,(a,doh, +bych))——+s,c,d,h,
A+l 21
- 21, —2At —(A+)t
h= £{sla he™™ +s,ache —(uv)t —(A+)t
wsdh2 178 g pop2 7S
+S3ah26‘(}\+v)t +s402he_2w +SSCh2 10400 U+V 1100 A+V

e—(p+\l)t +s6h3e—2vt +s7abhe—2}\t
+s,(adh +bch)e " +5,cdhe ™

+s,,dh’e +s“bhze’(“")‘}

Here, all of the equations (31) have no exact solutions.
However, since a, B, ¢, dand h are proportional to the small

parameter €, they are slowly varying functions of time ¢.
Consequently, it is possible to replace a, b, ¢, d and & by their
respective values obtained in linear case (i.e., the values of a,
b, ¢, d and h obtained when €= 0) in the right hand side of
equations (31). This type of replacement was first introduced
by Murty and Deekshatulu [24], and Mutry et.al. [19] to
solve similar types of nonlinear equations. Therefore, the
solutions of equation (31) are

=2t (A +p)t
a=a, +£{r1a3_—+r2aéco il
A+l
,1- -2t 5 A2t 1- e*(Mu)t
+1,3,C, 2 +r,a,b, +rab,c, ————

A+l

1- —(A+p)t

A+

2
+raaod0

1—-e™
+r,(2a,¢,d, + bocé) 2

A2t _ At
b=b, +edlalb, S I-e
2\ +H

1- ~(A+pt —(A+v)t

+13a§d0;T+14a0b0h0 il

_om

+ l5 (Zaocodo + bocé )1%“ + 1(7 (aodoho + bocoho)

— o ()t _ —utv-Mt
1-e +1c,d,h, lme ™
H+v 2U+V—A
_ A (p+2v-Mt _ A—(A2u)t
+1,d,h’ lme ™77 ,b,h? lme ™7
M+2V—A A+2v

Hence, we obtain the first approximate solution of the
equation (13) as:

x(t,€) = (a+bt)e™ +(c+dt)e™ +he™ +gu, (33)

where a, b, ¢, d and h are given by the equations (32) and u,
is given by (30).

4. Results and Discussion

The perturbation solution is usually compared to the
numerical solution to test the accuracy of the approximate
solution obtained by a certain perturbation method. Therefore,
we have first considered the eigenvalues A =0.75, u=0.1

and v =3.82. We have computed x(t,€) using (33), in
which a, b,c,d and h are obtained from (32) and u, is
calculated from equation (30) together with initial conditions
a, =025 b,=0.1, ¢,=04, d,=0.35 and h, =0.5
when € =0.1. The result obtained from (33) for various
values of 7, and the corresponding numerical solution

obtained by a fourth order Runge-Kutta method is plotted in
the Fig. 1.

0.6
0.5 |\ —— Perturbation Result
0.4 1\

0.3 - \

= LY

0.2

0.1 -

0 T T T |-\ - - _| 1
0 1 2 3

Fig. 1. Perturbation results are plotted by continuous line and numerical
results are plotted by dotted line.
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Again,
considering values of A =0.70, n=0.1 and v =3.80. We

we have computed x(t,€) from (33) by

have computed x(t, €) using (33), in which a, b, ¢, d and h
are obtained from (32) and u, is calculated from equation
(30) together with initial conditions a, =0.35, b, =0.15,
¢, =0.35, d, =0.35 and h, =0.5 when £=0.1. The result

obtained from (33) for various values of ¢ and the
corresponding numerical solution obtained by a fourth order
Runge-Kutta method is plotted in the Fig. 2.

07 -
0.6
0.5 -\
0.4 |\
0.3\
02 | b
0.1 -
0 : : EEE——— .
0 1 2

—— Perturbation Result

Fig. 2. Perturbation results are plotted by continuous line and numerical
results are plotted by dotted line.

Finally, we have computed Xx(Z, £) from (33) by
considering values of A =0.69, L =0.15 and v =3.79. We
have computed X(t, €) using (33), in which a, b, ¢, d and h
are obtained from (32) and u, is calculated from equation
(30) together with initial conditions a, =0.45, b, =0.20,
¢, =0.35, d; =0.30 and h, =0.5 when € =0.1. The result

obtained from (33) for various values of t, and the
corresponding numerical solution obtained by a fourth order
Runge-Kutta method is plotted in the Fig. 3.

0.7 -
0.6 -\
0.5 -
04 1 \
x
03 1 \
02+
.

0 . : E— .

0 1 2 3

—— Perturbation Result

Fig. 3. Perturbation results are plotted by continuous line and numerical
results are plotted by dotted line.

5. Conclusion

In conclusion, it is suggested that, in this article, the KBM
method has been modified and applied successfully to the
fifth order more critically damped nonlinear systems. In

relation to the fifth order critically damped systems, the
solutions are obtained in such circumstances where the four
eigenvalues are pairwise equal and another eigenvalue is
distinct. Normally, in the KBM method, it is noticed that
much error occurs in the case of rapid changes of x with
respect to time ¢ However, it is suggested that all the
aforementioned results obtained in this paper correspond
accurately to the numerical solutions obtained by the fourth
order Runge-Kutta method. It is, therefore, concluded that the
modified KBM method provides highly accurate results,
which can be applied for different kinds of nonlinear
differential systems.
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