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Abstract: In this paper, we discussed the effect of shear stress for Homann and Convergent flows arising in the boundary 

layer theory with odd decimal numbers of tangential velocity. By this study we have to discuss positive solution, Homann flow, 

convergent flow, shear stress, tangential velocity etc. From beginning to end of the study, we have compared of stresses of 

different fluid flows arising in the boundary layer theory. The resulting figure is compared with the previous figure which was 

obtained by many authors. 
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1. Introduction 

Any real fluids moving along solid boundary will sustain a 

shear stress on that boundary. The no-slip condition dictates 

that the speed of the fluid at the boundary is zero, but at some 

height from the boundary the flow speed must equal that of 

the fluid. The region between these two points is aptly named 

the boundary layer. For all Newtonian fluids in laminar flow 

the shear stress is proportional to the strain rate in the fluid 

where the viscosity is the constant of proportionality. 

However, for non-Newtonian fluids, this is no longer the case 

as for these fluids the viscosity is not constant. The shear 

stress is imparted onto the boundary as a result of this loss of 

velocity. The existence of positive solution for the singular 

second-order nonlinear boundary value problem arising in 

the boundary layer theory for the strong suction is studied. 

Some of researchers as Schmidt [1], Soewono et al [2], 

Vajravelu et al [3], Schlichting H [5] etc are discussed the 

boundary layer theory. Singular nonlinear differential 

equations arising in the Homann flow are discussed by Shin 

[1997]. Molla and Banu [7] studied Some singular nonlinear 

BVPS arising in the boundary layer flow. Molla and Banu [9] 

shown that existence and uniqueness of positive solution of a 

singular nonlinear BVP. For a flat plate a singular non-linear 

BVP arising in the boundary layer flow studied by Molla[10]. 

Also a singular non-linear boundary value problem arising in 

a convergent channel was done by Molla [12]. The method of 

finding positive solution arising in the boundary layer theory 

by several authors; see Molla M. R. [8], Molla M. R. and M. 

Begum [13], M. R. Molla et al [11]. The effects of the 

positive solution arising in the boundary layer theory are 

discussed for the case of even decimal number of tangential 

velocity in the paper of Molla [15]. We have solved this 

problem by using the constructive method such as the 

method of upper and lower solutions with odd decimal 

number of tangential velocity to establish the existence of 

positive solution of (16). We have also tried to compare the 

result with the result of Molla [15] for even decimal number 

of tangential velocity. In this paper we have also tried to 

compare the shear stress of the strong suction with the shear 

stress of the Homann and Convergent flow. Obtained result 

which is almost same as obtained result by Molla [15].  

2. Formulation of the Problem 

The differential equation 
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With boundary conditions 
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� = 0: � = � = 0 

� → ∞:	� = � 

is known as the boundary-layer equations for plane steady 

incompressible flow. 

The continuity equation can be integrated by introducing 

the stream function Ѱ(x, y) with 

� = �Ѱ
�� 	� = 	−�Ѱ

��  

The equation (1) becomes, 
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With the boundary conditions 

�Ѱ
��=

�Ѱ
��=0 for y=0 

�Ѱ
��=U for y→∝ 

We now carry out a coordinate transformation from the 

variable x, y to the new dimensionless variables 

ξ = �
� ,	� = �

� . √� /"(ξ) 

f(ξ, η)=Ѱ(ξ, η)	√� /('	�((ξ)"(ξ))                   (4) 

Also we have Re=)'/	�  where Re→Reynolds numder, 

)→Reference velocity, l→ Reference length,(ξ) →boundary 

layer. 

From (3) we have 

Ѱ(ξ, η)= 	'�((ξ)"(ξ) f(ξ, η)/	√�                      (5) 

Differentiating (5) w.r.t. x we get 
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Again differentiating w.r.t. y, we get 
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The similar solution exists only when -  and - ´  does not 

depends on ξ. 
∴The equation (6) becomes 
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- ´´´ + B,-- ´´	 + B/ − BC- ´/ = 0                    (7) 

With boundary conditions 

-(η) = - ´(η) = 0	EF	η = 0	 

and 

- ´ → 1	EG	η →∞ 

When B, = B	  and B/ = BC = H  i. e. 	� = �(  Than 

equation (7) becomes  

	- ´´´ + B-- ´´	 + H(1 − - ´/) = 0                       (8) 

With boundary conditions 

-(η) = - ´(η) = 0	EF	η = 0 

and 

- ´ → 1	EG	η →∞                                 (9) 

This equation (8) is known as Falkner-Skan boundary 

layer equation. 

When ⍺=1 and H	=0.5, the equation (8) becomes  

- ´´´ + -- ´´ + 0.5 K1 − - ´/L = 0                    (10) 

With boundary conditions (9). This equation represents 

Homman flow. 

For ⍺=0 and H	=1, the equation (8) takes the following 

form 

- ´´´ + 1 − - ´/ = 0                               (11) 

With boundary conditions (9). This equation represents 

flow in a convergent channel. 

Shin [4] discussed the differential equation (10) with 

boundary conditions (9) by using the method of upper and 

lower solutions. Later Molla [15] used this method for the 

differential equation 

	MNNN + MNN = 0                                 (12) 

With boundary conditions 

φ(η)=MN(�) =0 at � = 0                           (13) 

φ′ → ∞ as � → ∞ 

which arises in the boundary layer theory for strong suction.  

Now we want to discuss the constructive method such as, 

the method of upper and lower solutions with graphically by 

the help of Molla [15].  

Let us take the shear stress h(x) = 	MNN(�)  and the 

tangential velocity x=MN(�)  as dependent and independent 

variable respectively. The quantity x and h are called Crocco 

variable. 

Now 
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e. ℎNMNN = MNNN                                  (14) 

Differentiating (14) with respect to η we get  
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=
��
�Z

�
�� (ℎℎ

N) 

=MNN{hℎNN + (ℎN)/} 
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Again differentiating (12) we get  

	MN˅ + MNNN = 0 

⇒ h2 ℎNN +h(ℎN)/+hℎN=0 [using equation (14)] 

⇒ h ℎNN +(ℎN)/+ℎN=0 

Now 

h(x)=	MNN=
�
�Z[MN(�)] 

Therefore, 

h(1)=[ ��Z(MN(�))] x=1 = [ ��Z(MN(�))]	MN(�) = 1 =0 

Again 

ℎN(x)=	�Q�� =	X
WWW	

XWW	 = − XWW	
XWW	 = −1 

∴ℎN(0)=−1 

Substituting for h(x)= 	MNN  and x= MN(�)  then equation 

(12)and (13) takes the following form  

hℎNN +(ℎN)/+ℎN=0, 0<x<1                   (16.a) 

ℎN(0)=−1 and h(1)=0                         (16.b) 

Equation (16) is a second order singular nonlinear 

boundary value problem. For ⍺=1 and H	=0.5, equation (8) 

with boundary conditions (9) may be written as  

	ℎ/ℎNN − ,
/ (1 − �/)ℎN = 0, 0<x<1                  (17.a) 

ℎN(0)=−0.5 and h(1)=0                                 (17.b) 

By setting h=-NN(�) and x=-N(�) and its positive solution 

has been studied by Shin [4]. The nonlinear differential 

equation (8) with boundary conditions (9) has been studied 

by many authors for different values of ⍺ and H	 using 

different methods. 

For ⍺=0 and H	=1, equation (8) with boundary conditions 

(9) may be written as  

ℎ/ℎNN + (ℎN)/ − 2� = 0, 0<x<1            (18.a) 
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ℎN(0)=−0.86603 and h(1)=0                (18.b) 

By letting h=-NN#�$ and x=-N#�$ and its positive solution 

has been studied by Molla[13]. 

The equation (16) is equivalent to the nonlinear differential 

equation (12) with boundary conditions (13). So positive 

solution of (16) on [0,1] is equivalent to the shear stress 

-NN#�$ on [0,∞).  

Let us define the following definition: 

A function ⍺1∈ a/[0,1b is called a positive upper solution 

of (16), if ⍺1 >0 on (0,1). 

⍺1⍺1
’’

 +(⍺1
’
)
2

 + ⍺1
’
 c 0 on (0,1). 

1((0) 1α ′ ≤ −  and ⍺1 (1)d0 

A function ⍺2∈ a/[0,1b is called a positive lower solution 

of (16), if ⍺2 >0 on (0,1) 

⍺2⍺2
’’

 +(⍺2
’
)
2

 + ⍺2
’
 d0 on (0,1) 

1((0) 1α ′ ≤ −  and ⍺1 (1)c0 

Similar definitions hold for positive upper and lower 

solutions of a perturbation (19) which will be given in the 

following section. 

A function h∈C[0,1]∩ a/[0,1$ is called a positive solution 

of (16), if h>0 on (0,1) 

PPNN 3 #PN$/ 3 PN � 0	fg	#0,1$ 
PN#0$ � �1	Eg?	P#1$ � 0 

3. Establishing the Existence of Positive 

Solution 

Consider the non-linear boundary value problem  

PPNN 3 #PN$/ 3 PN � 0, 0<x<1 

PN#0$ � �1	Eg?	P#1$ � 1/h                    (19) 

For each pd1, which may be viewed as a perturbation of 

(16). 

We would like to prove, P�i#�$ � 0.01�⍺√1 � � 3 ,
i⍺ is a 

positive lower solution of (19). For each pd1, where ⍺=10j 

and k is integer, finite but very large. 

It is clear that P�i#�$ k 0	  on (0,1), 	P�iN (0)=0d �1 , 

P�i#1$ � ,
⍺i  which can be written as P�i#1$ � ,

⍺i c ,
i  and 

g(x)= 	PPNN 3 #PN$/ 3 PN = P�iP�iNN 3 #P�iN$/ 3 P�iN d 0 , for 

0<x<1 and pd 1. 

Thus P�i is a positive lower solution of (19). Accordingly 

P� � 0.01�⍺√1 � �  is a positive lower solution of (16). 

Again we have to prove, P�i#�$ � 2√1 � � 3 ,
i is a positive 

upper solution of (19), for each pd1. 

It is clear that P�i#�$ k 0	on (0,1), 	P�iN (0)=�1 , which 

can be written as 	P�iN (0)= �1 c �1  and P�i#1$ � ,
i d

,
i . P�iP�iNN 3 #P�iN$/ 3 P�iN � �l2√1 � � 3 ,

im l0.5#1 �
�$�	m 3 ,

,n� � ,
√,n� c 0,	 

For, 0<x<1 and pd 1 

Thus P�i  is a positive upper solution of (19). Therefore, 

P� � 2√1 � � is a positive upper solution of (16). 

From Schauder’s Fixed Point Theorem we know that, for 

any pd 1, there exists a positive solution Pi ∈ a/[0,1b of the 

problem (19) such that P�i c Pi c P�i on 0c � c 1. 

Also again we have to prove Pi � #1 � �$ 3 ,
i  is a 

positive solution of (19) for each pd 1. 
It is clear that Pi#�$ k 0	on (0,1),	PiN#0$ � �1, Pi#1$ �,

i  and PPNN 3 #PN$/ 3 PN � PiPiNN 3 #PiN$/ 3 PiN =0, for 

0o � o 1 and pd 1. 
Thus Pi  is a positive solution of (19). Consequently 

P � 1 � � is a positive solution of (16). 

For any pd 1, there exists a positive solution P ∈ a/[0,1b 
of the problem (16) such that P� c P c P�  on 0c � c 1 , 

where P� , P and P� are as given above. 

4. Figures and Tables 

Now from the above discussion we have to make the tables 

and figures for different value of tangential velocity. With the 

help of figures and tables we discussed the shear stress for 

Homman and Convergent flow arising in the boundary layer 

theory. 

 

Figure 1. Different solutions such as h, hl and hu. All are taken for even 

decimal number of tangential velocity. 

 

Figure 2. Different solutions such as h, hc, hsl and hsu. All are taken for even 

decimal number of tangential velocity. 
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Table 1. Numerical values of different positive, positive lower and positive upper solutions with even decimal number.  

x h=1-x hc =pqnrstusv
v   hsl =(1-x)/2  hl =0.01s⍺√w � s    For k=1  hsu = hu =2√#w � s$  

 0 1 1.1547 0.05 0 2.000 

0.2 0.8 0.9688 0.04 9.1589E-10 1.789 

0.4 0.6 0.7589 0.03 8.1222E-10 1.549 

0.6 0.4 0.5266 0.02 3.8242E-05 1.265 

0.8 0.2 0.2733 0.01 4.8019E-04 0.894 

1.0 0 0 0 0 0 

Table 2. Numerical values of different positive, positive lower and positive upper solutions with odd decimal number.  

x h=1-x hc =pqnrstusv
v   hsl =(1-x)/2  hl =0.01s⍺√w � s    For k=1  hsu=hu=2√#w � s$  

0 1 1.154701 0.5 0 2 

0.1 0.9 1.064894 0.45 9.49E-13 1.897367 

0.3 0.7 0.866795 0.35 4.94E-08 1.67332 

0.5 0.5 0.645497 0.25 6.91E-06 1.414214 

0.7 0.3 0.402492 0.15 0.000155 1.095445 

0.9 0.1 0.139044 0.05 0.001103 0.632456 

1.0 0 0 0 0 0 

 

 

Figure 3. Different solutions such as h, hl and hu. All are taken for odd 

decimal number of tangential velocity. 

 

Figure 4. Different solutions such as h, hc, hsl and hsu. All are taken for odd 

decimal number of tangential velocity. 

Table 3. Numerical values of different positive, positive lower and positive upper solutions with even and odd decimal number.  

X h=1-x hc =pqnrstusv
v   hsl =(1-x)/2  hl =0.01s⍺√w � s    For k=1  hsu=hu=√#w � s$  

0 1 1.154701 0.5 0 2 

0.1 0.9 1.064894 0.45 9.49E-13 1.897367 

0.2 0.8 0.968848 0.4 9.16E-10 1.788854 

0.3 0.7 0.866795 0.35 4.94E-08 1.67332 

0.4 0.6 0.758947 0.3 8.12E-07 1.549193 

0.5 0.5 0.645497 0.25 6.91E-06 1.414214 

0.6 0.4 0.526624 0.2 3.82E-05 1.264911 

0.7 0.3 0.402492 0.15 0.000155 1.095445 

0.8 0.2 0.273252 0.1 0.00048 0.894427 

0.9 0.1 0.139044 0.05 0.001103 0.632456 

1.0 0 0 0 0 0 
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Figure 5. Different solutions such as h, hc, hsl and hsu. All are taken for both 

even and odd decimal number of tangential velocity. 

5. Results and Discussions 

The positive solution hs of (17) lies between the positive 

lower and upper solutions hsl =0.5(1-x) and hsu =2√#1 � �$ 
respectively obtained by Shin[4]. The positive solution hc 

=√#xny�t/�CC $  of (18) lies between the positive lower and 

upper solutions hlp= √#1.3334 � 2.0000705� 3
0.0000035�/ 3 0.666667�C$  and hup =3 log#2 � �$  +3 

respectively obtained by Molla[13]. The positive solution of 

(16) is h=1-x obtained by Molla [15]. For even decimal 

number of tangential velocity we get the Table 1 and both fig. 

1 and fig. 2 which was done by Molla[15]. From the Table 2 

and fig. 3 we see that the positive solution h of (12) lies 

between hl and hu for odd order decimal number of tangential 

velocity. Shin[4] shown that there will be exist a positive 

solution of (17) lies on between hsl and hsu. Also from the fig. 

4 it is observed that the positive solution h of (12) is less than 

or equal to the positive solution hc of (18) and the positive 

solution hs of (17) less than or equal to the positive solutions 

h and hc of (12) and (18) respectively for odd decimal 

number of tangential velocity. From Table 2 it is clear that 

the shear stress for the strong suction is decreasing uniformly 

with increasing tangential velocity. On the other hand the 

shear stress for the convergent flow is decreasing not 

uniformly with increasing tangential velocity. From Table 3 

and fig. 5 for both even and odd decimal number of 

tangential velocity, we see that the shear stress for the strong 

suction is decreasing uniformly with increasing tangential 

velocity. Also we get the shear stress for the convergent flow 

is decreasing not uniformly with increasing tangential 

velocity. For odd and both even and odd decimal number of 

the tangential velocity we get the result in fig. 3, fig. 4, fig. 5 

which is same as the result by Molla[15] in fig. 1, fig. 2. 

6. Conclusion 

We have tried to discuss the shear stress between Homann 

and convergent flow for odd order decimal number and both 

even and odd order decimal number of the tangential 

velocity. By this study we have discussed positive solution, 

Homann flow, convergent flow, shear stress, tangential 

velocity etc. Also we have compared the shear stress of the 

strong suction with the shear stress of the Homann and 

Convergent flow. From the above figure we see that the 

obtained result is same as the previous result, i. e. It’s a 

comparison between present and previous result. 
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