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Abstract: In this paper, we discussed the effect of shear stress for Homann and Convergent flows arising in the boundary
layer theory with odd decimal numbers of tangential velocity. By this study we have to discuss positive solution, Homann flow,
convergent flow, shear stress, tangential velocity etc. From beginning to end of the study, we have compared of stresses of
different fluid flows arising in the boundary layer theory. The resulting figure is compared with the previous figure which was

obtained by many authors.

Keywords: Shear Stress, Homann Flow, Convergent Flow, Boundary Layer Flow

1. Introduction

Any real fluids moving along solid boundary will sustain a
shear stress on that boundary. The no-slip condition dictates
that the speed of the fluid at the boundary is zero, but at some
height from the boundary the flow speed must equal that of
the fluid. The region between these two points is aptly named
the boundary layer. For all Newtonian fluids in laminar flow
the shear stress is proportional to the strain rate in the fluid
where the viscosity is the constant of proportionality.
However, for non-Newtonian fluids, this is no longer the case
as for these fluids the viscosity is not constant. The shear
stress is imparted onto the boundary as a result of this loss of
velocity. The existence of positive solution for the singular
second-order nonlinear boundary value problem arising in
the boundary layer theory for the strong suction is studied.
Some of researchers as Schmidt [1], Soewono et al [2],
Vajravelu et al [3], Schlichting H [5] etc are discussed the
boundary layer theory. Singular nonlinear differential
equations arising in the Homann flow are discussed by Shin
[1997]. Molla and Banu [7] studied Some singular nonlinear
BVPS arising in the boundary layer flow. Molla and Banu [9]
shown that existence and uniqueness of positive solution of a
singular nonlinear BVP. For a flat plate a singular non-linear
BVP arising in the boundary layer flow studied by Molla[10].
Also a singular non-linear boundary value problem arising in

a convergent channel was done by Molla [12]. The method of
finding positive solution arising in the boundary layer theory
by several authors; see Molla M. R. [8], Molla M. R. and M.
Begum [13], M. R. Molla et al [11]. The effects of the
positive solution arising in the boundary layer theory are
discussed for the case of even decimal number of tangential
velocity in the paper of Molla [15]. We have solved this
problem by using the constructive method such as the
method of upper and lower solutions with odd decimal
number of tangential velocity to establish the existence of
positive solution of (16). We have also tried to compare the
result with the result of Molla [15] for even decimal number
of tangential velocity. In this paper we have also tried to
compare the shear stress of the strong suction with the shear
stress of the Homann and Convergent flow. Obtained result
which is almost same as obtained result by Molla [15].

2. Formulation of the Problem

The differential equation
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y=0u=v=0 Differentiating (5) w.r.t. x we get

y->ooiu=U ow _9¥93t  d¥on
dx 0% dx  On 0x
is known as the boundary-layer equations for plane steady

incompressible flow. Laz (lUN5f\/_)+ U8 f VRe{(yVReS§ )/(16%)}
The continuity equation can be integrated by introducing
the stream function ¥(x, y) with _ f _ ‘e
= 1/VRe{Uy$ 2t f R (Un8)} — Unyd f/(16)
oy v
u= ay V= "%x Differentiating (5) w. . t. y, we get
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.. , ~The equation (6) becomes
The similar solutlon exists only when f and f does not
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F raff +ay—asf =0 (7)
With boundary conditions
fo=fm=0atn=0
and
f = 1lasn >
When oy =a and a,=a3=f i. e. U=Uy Than
equation (7) becomes
fraff +BA-fH=0 ®)

With boundary conditions
f) =fM=0atn=0
and
f "S1las n —w )

This equation (8) is known as Falkner-Skan boundary
layer equation.

When a=1 and g =0.5, the equation (8) becomes

" 2
fr+ff +0s(1-%)=0 (10)

With boundary conditions (9). This equation represents
Homman flow.

For a=0 and f =1, the equation (8) takes the following
form

(11)

With boundary conditions (9). This equation represents
flow in a convergent channel.

Shin [4] discussed the differential equation (10) with
boundary conditions (9) by using the method of upper and
lower solutions. Later Molla [15] used this method for the
differential equation

Frr1-f%=0

(plll + (pll — 0 (12)
With boundary conditions
oMm)=¢'(n) =0atn =0 (13)

¢ > asn >

which arises in the boundary layer theory for strong suction.

Now we want to discuss the constructive method such as,
the method of upper and lower solutions with graphically by
the help of Molla [15].

Let us take the shear stress h(x) = ¢@''(n) and the
tangential velocity x=¢'(n) as dependent and independent
variable respectively. The quantity x and h are called Crocco
variable.

Now

dh  d(e'
h,_dh_d_n_ dn_ _¢®
dx % dh '’
dn dn

n (14)
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Differentiating (14) with respect to 1 we get
_—. d ! "
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=" (hh" + (')}
=h? h"" +h(h')? (15)
Again differentiating (12) we get
" +e" =0
= h? h" +h(h")?+hh'=0 [using equation (14)]
= hh" +(h)%+h'=0

Now

d
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Therefore,
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Again
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SR'(0)=—1

Substituting for h(x)= ¢" and x=¢'(n) then equation
(12)and (13) takes the following form

hh'' +(h’)2+h,:07 0<x<1 (163)

' (0)=—1 and h(1)=0 (16.b)

Equation (16) is a second order singular nonlinear
boundary value problem. For a=1 and 8 =0.5, equation (8)
with boundary conditions (9) may be written as

h2h" —%(1 —x2)h’ =0, 0<x<Il (17.2)

R'(0)=—0.5 and h(1)=0 (17.b)

By setting h=f"'(n) and x=f"(n) and its positive solution
has been studied by Shin [4]. The nonlinear differential
equation (8) with boundary conditions (9) has been studied
by many authors for different values of o and B using
different methods.

For a=0 and B =1, equation (8) with boundary conditions
(9) may be written as

h2R" + (hr)z —2x =0, 0<x<1 (18.&)
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R (0)=—0.86603 and h(1)=0 (18.b)

By letting h=f""(n) and x=f'(n) and its positive solution
has been studied by Molla[13].

The equation (16) is equivalent to the nonlinear differential
equation (12) with boundary conditions (13). So positive
solution of (16) on [0,1] is equivalent to the shear stress

f" () on [0,00).
Let us define the following definition:
A function o, € C?[0,1] is called a positive upper solution

of (16), if o; >0 on (0,1).
O(10(1" +(0(1’)2 + 0(1’ <0on (0,1).
a{((0)< -1 and a; (1)>0

A function a,€ C?[0,1] is called a positive lower solution
of (16), if o, >0 on (0,1)

e @) s =0 on (0,1)
a{((0)< -1 and a; (1)<0

Similar definitions hold for positive upper and lower
solutions of a perturbation (19) which will be given in the
following section.

A function heC[0,1]n C?[0,1) is called a positive solution
of (16), if h>0 on (0,1)

hh'" + (W)%2 +h' =00n (0,1)
h'(0) =—-1and h(1) =0

3. Establishing the Existence of Positive
Solution

Consider the non-linear boundary value problem
hh" + ()% + k' = 0, 0<x<1

h'(0)=—-1and h(1) =1/p (19)

For each p=1, which may be viewed as a perturbation of
(16).

We would like to prove, hy, (x) = 0.01x°V1 — x + p—la is a
positive lower solution of (19). For each p>1, where a=10%
and k is integer, finite but very large.

It is clear that h;,(x) >0 on (0,1), hlp' 0)=0> -1,
h, (1) = é which can be written as hy,(1) = é S% and
g(x)= hh" + (h)? + k' =hyhy," + (hy')*> + by, =20, for
0<x<1 and p> 1.

Thus hy, is a positive lower solution of (19). Accordingly
h; = 0.01x*/1 — x is a positive lower solution of (16).
Again we have to prove, hy,(x) = 2V1 —x + % is a positive
upper solution of (19), for each p>1.

It is clear that hy,(x) > 0 on (0,1), hup'(O):—l, which
can be written as hy, (0)=—1< —1 and hy,(1) = % >

%. hiphyy” + ()2 + hyy' = —{2vT =2 + %} fos(1 -
x)%} + ﬁ - ﬁ <0,

For, 0<x<1 and p> 1

Thus h,,, is a positive upper solution of (19). Therefore,
h, = 23/1 — x is a positive upper solution of (16).

From Schauder’s Fixed Point Theorem we know that, for
any p> 1, there exists a positive solution h, € C?[0,1] of the

problem (19) such that hy, < h,, < hy,, on 0< x < 1.

Also again we have to prove h, = (1—x) +% is a
positive solution of (19) for each p> 1.

It is clear that h,(x) > 0on (0,1), h,"(0) = —1, h,(1) =
~and RR 4+ ()2 + 1 = hohy" + (hy)2 + by =0, for
0< x < 1andp=> 1.

Thus h, is a positive solution of (19). Consequently
h = 1 — x is a positive solution of (16).

For any p> 1, there exists a positive solution h € €2[0,1]
of the problem (16) such that h, <h < h, on 0<x <1,
where h;, h and h,, are as given above.

4. Figures and Tables

Now from the above discussion we have to make the tables
and figures for different value of tangential velocity. With the
help of figures and tables we discussed the shear stress for
Homman and Convergent flow arising in the boundary layer
theory.
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Figure 1. Different solutions such as h, h; and h,. All are taken for even
decimal number of tangential velocity.
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Figure 2. Different solutions such as h, he, hy and hy,. All are taken for even
decimal number of tangential velocity.
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Table 1. Numerical values of different positive, positive lower and positive upper solutions with even decimal number.
x h=1-x h. = /%ﬂﬂ hy =(1-x)/2 h, =0.01x%yT — x For k=1 hy=h, =2v/(1 — x)
1 1.1547 0.05 0 2.000
0.2 0.8 0.9688 0.04 9.1589E-10 1.789
0.4 0.6 0.7589 0.03 8.1222E-10 1.549
0.6 0.4 0.5266 0.02 3.8242E-05 1.265
0.8 0.2 0.2733 0.01 4.8019E-04 0.894
1.0 0 0 0 0 0
Table 2. Numerical values of different positive, positive lower and positive upper solutions with odd decimal number.
X h=1-x h. = /%ﬂﬂ hy =(1-x)/2 h; =0.01x*y1 — x For k=1 he=h,=2/(1 — x)
0 1 1.154701 0.5 0 2
0.1 0.9 1.064894 0.45 9.49E-13 1.897367
0.3 0.7 0.866795 0.35 4.94E-08 1.67332
0.5 0.5 0.645497 0.25 6.91E-06 1.414214
0.7 0.3 0.402492 0.15 0.000155 1.095445
0.9 0.1 0.139044 0.05 0.001103 0.632456
1.0 0 0 0 0 0
2
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s 05 hu hsu
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x=Tangential velocity Figure 4. Different solutions such as h, h., hy and hg,. All are taken for odd

Figure 3. Different solutions such as h, h; and h,. All are taken for odd

decimal number of tangential velocity.

decimal number of tangential velocity.

Table 3. Numerical values of different positive, positive lower and positive upper solutions with even and odd decimal number.

X h=1-x h.= /%*“3 hy =(1-x)/2 h; =0.01x%/1 — x For k=1 ho=h,=V(1 — x)
0 1 1.154701 0.5 0 2

0.1 0.9 1.064894 0.45 9.49E-13 1.897367
0.2 0.8 0.968848 0.4 9.16E-10 1.788854
0.3 0.7 0.866795 0.35 4.94E-08 1.67332
0.4 0.6 0.758947 0.3 8.12E-07 1549193
0.5 0.5 0.645497 0.25 6.91E-06 1.414214
0.6 0.4 0.526624 0.2 3.82E-05 1.264911
0.7 0.3 0.402492 0.15 0.000155 1.095445
0.8 0.2 0.273252 0.1 0.00048 0.894427
0.9 0.1 0.139044 0.05 0.001103 0.632456
1.0 0 0 0 0 0
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Shear Stress

e hsl|
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Figure 5. Different solutions such as h, h., hy and hy,. All are taken for both
even and odd decimal number of tangential velocity.

5. Results and Discussions

The positive solution hy of (17) lies between the positive
lower and upper solutions hy =0.5(1-x) and hy, =2+ (1-x)
respectively obtained by Shin[4]. The positive solution h,

=V (@) of (18) lies between the positive lower and

upper  solutions  hy,=  +/(1.3334 — 2.0000705x +
0.0000035x% + 0.666667x*) and h,, =3 log(2—x) +3
respectively obtained by Molla[13]. The positive solution of
(16) is h=1-x obtained by Molla [15]. For even decimal
number of tangential velocity we get the Table 1 and both fig.
1 and fig. 2 which was done by Molla[15]. From the Table 2
and fig. 3 we see that the positive solution h of (12) lies
between h;and h, for odd order decimal number of tangential
velocity. Shin[4] shown that there will be exist a positive
solution of (17) lies on between hy and hg,. Also from the fig.
4 it is observed that the positive solution h of (12) is less than
or equal to the positive solution h, of (18) and the positive
solution hy of (17) less than or equal to the positive solutions
h and h, of (12) and (18) respectively for odd decimal
number of tangential velocity. From Table 2 it is clear that
the shear stress for the strong suction is decreasing uniformly
with increasing tangential velocity. On the other hand the
shear stress for the convergent flow is decreasing not
uniformly with increasing tangential velocity. From Table 3
and fig. 5 for both even and odd decimal number of
tangential velocity, we see that the shear stress for the strong
suction is decreasing uniformly with increasing tangential
velocity. Also we get the shear stress for the convergent flow
is decreasing not uniformly with increasing tangential
velocity. For odd and both even and odd decimal number of
the tangential velocity we get the result in fig. 3, fig. 4, fig. 5
which is same as the result by Molla[15] in fig. 1, fig. 2.

6. Conclusion

We have tried to discuss the shear stress between Homann
and convergent flow for odd order decimal number and both
even and odd order decimal number of the tangential
velocity. By this study we have discussed positive solution,
Homann flow, convergent flow, shear stress, tangential
velocity etc. Also we have compared the shear stress of the

strong suction with the shear stress of the Homann and
Convergent flow. From the above figure we see that the
obtained result is same as the previous result, i. e. It’s a
comparison between present and previous result.
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