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Abstract: A class of second-order nonlinear differential equations with a damping term is investigated in this paper. By using 

the Riccati transformation technique and general weight functions, we obtain some new sufficient conditions for the oscillation 

of the equation. Our results improve and extend some known results. Two examples are given to illustrate the main results. 

Keywords: Oscillation, Second Order Nonlinear Differential Equation, Damping Term, Riccati Transformation Technique, 

Weight Function 

 

1. Introduction 

In this paper we are concerned with the problem of 

oscillation of the nonlinear second order differential equation 

with a damping term  

0))(()())()(()))()((( =+′+′′ txftqtxtptxtr αα    (1) 

00 >≥ tt  

Several assumptions are as follow: 

(I) [ )( )),0(,,)( 0
1 ∞∞∈ tCtr , [ )( )),0(,,)(),( 0 ∞∞∈ tCtqtp ; 

(II) ( )RRCxf ,)( ∈ , and kxxf ≥β
)( , for some 0>k  

and for all 0)( ≠tx . 1≥α , 1≥β , and they are both 

quotients of odd positive integers. 

Let { }+∞<≤≤= tststD 0:),( , { }+∞<<≤= tststD 00 :),( . 

We say the function [ )( )+∞∈ ,0,DCH  belongs to a class αW  

if: 

(i) 0),( =ttH  for all 0tt ≥ , 0),( >stH  in 0D ; 

(ii) H has a continuous and non-positive partial derivative 

in 0D  with respect to the second variable satisfying the 

condition 

( ) 1
),(),(),(

+−=
∂
∂ αα

stHsthstH
s

, 

for some function ),( RDLh loc∈ . 

We shall consider the solutions of Equation (1) which are 

defined for all large t . A solution of Equation (1) is said to be 

oscillatory if it has arbitrarily large zeros, otherwise it is said 

to be non-oscillatory. Equation (1) is called oscillatory if all its 

solutions are oscillatory. 

Recently, there are many authors who have investigated the 

oscillation for second order differential equations with a 

damping term, see [3-16] and the references are cited therein. 

Wong [10] has studied the equation 

0)()()( =+′+′′ xftqxtpx .          (2) 

Rogovchenko and Tuncay [7], M. Kirane and Yu. V. 

Rogovchenko [8], Yan [12] have obtained oscillation criteria 

of the following equation: 

0))(()()()())()(( =+′+′′ txftqtxtptxtr .     (3) 

Theorem A [8]. Assume that the function f satisfies 

0
)( >≥ K

x

xf
for some constant K and for all 0≠x . Suppose 
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further that the functions h , ( )( )+∞∞−∈ ,,DCH  are such 

that H belongs to the class Ρ  and  

( ) 21
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s
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Then Eq.(3) is oscillatory. 

More recently, Li et al [9] investigated oscillation criteria 

for the following equation: 

0))(()())()(()))()((( =+′+′′ txftqtxtptxtr γγ ,   (4) 

where 1≥γ  is a quotient of odd positive integers and 

µγ ≥xxf )(  for some 0>µ . 

Theorem B [9]. Suppose that there exists a function 

( )( )RtC ,,0
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and 211 )),(())()((),(),( stHsrspsthstQ −+= . 

Then Eq. (4) is oscillatory. 

Theorem C [9]. Suppose that there exists a function 

γWH ∈ ,  

( )( )RtC ,,0
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where )(sψ  and )(sv  are as in theorem B. If  
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where { }0),(max)( tt φφ =+ , then Eq.(4) is oscillatory. 

It is obvious that (2), (3) and (4) are special cases of Eq. 

(1). 

Motivated by the idea of Li [9], in this paper we obtain, by 

using a generalized Riccati technique due to Li [9], several 

new interval criteria for oscillation, that is, criteria given by 

the behavior of equation (1) on [ )∞,0t . Our results improve 

and extend the results of Li [9], Rogovchenko [3, 7, 8], and 

Grace [16]. Finally, several examples are inserted to illustrate 

the main results. 

2. Lemmas 

Lemma 1. Let 1≥λ  be a ratio of two odd numbers. Then,  
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B
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1
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Lemma 2. Let 0≠C , 0>D , 0>u  and 0>λ , then 
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3. Conclusions 

Theorem 1. Suppose that there exists a function 

[ )( )RtCtg ,,)( 0
1 ∞∈  such that, for some [ ]1,0∈m  and for 
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Then, equation (1) is oscillatory. 

Proof. To obtain a contradiction, suppose that )(tx is a 

non-oscillatory solution of Eq. (1) and let 01 tt ≥  such that 

0)( ≠tx  for all 1tt ≥ . Without loss of generality, we may 

assume that 0)( >tx  for all 1tt ≥  since the similar 

argument holds also for )(tx eventually negative. We define a 

generalized Riccati substitution by  
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Differentiating (8) and using (1), we obtain  
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where )(tx  is a continuous function and 0)( >tx , so there 

exist 12 tt ≥  and [ ]1,0∈m  such that mtx ≥)( , for all 2tt ≥ . 
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Thus, (9) and (10) yield  
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Multiplying the both sides of (11) by ),( stH  and 

integrating the inequality from 2t  to t , we obtain, for all 
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which contradicts (7). The proof is complete. 

Theorem 2. Suppose that there exist functions αWH ∈ , 

[ )( )RtCtg ,,)( 0
1 ∞∈ , and [ )( )RtCt ,,)( 0 ∞∈φ  such that, for 

all 0tT ≥ , 

+∞≤







<

∞→≥ ),(

),(
infliminf0

00 ttH

stH

tts
           (13) 

and  

)(
)1(

)()(),(
)(),(

),(

1
suplim

1

1

Tds
svsrsth

sstH
TtH

t

Tt

φ
α

ψ α

α
≥













+
−∫ +

+

∞→
 (14) 

where ψ  and v  are as in Theorem 1. If  
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where { }0),(max)( tt φφ =+ , then equation (1) is oscillatory. 

Proof. As in Theorem 1, without loss of generality we may 

assume that there exists a solution )(tx  of Eq. (1) such that 
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and that contradicts (15). 

Thus 
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which contradicts (15). This complete the proof. 

4. Examples 

Example 1. Consider the following equation 
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By theorem 1, Eq. (21) is oscillatory. 

Example 2. Consider the following equation 
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where 1,1 ≥≥ βα  are both quotients of odd positive 

integers, 1=k  and 1=m . Let 2)(),( ststH −=  and 
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It is easy to verify that (15) is satisfied. Hence, Eq. (22) is 

oscillatory by theorem 2. 
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