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Abstract: Finite-difference method, a popular seismic forward modeling method is a technique which allows us to 

numerically solve partial differential equations like the wave equation solved in this paper. Beyond its use in standard data 

acquisition, it is a very instructive tool to understand how waves propagate in the earth's subsurface. Since the accuracy 

obtainable by using the finite difference scheme lies solely on its stability and ability to handle grid dispersion, this is 

achievable by applying appropriate grid step sizes. The developed finite-difference method was employed to generate 

snapshots of synthetic seismograms to highlight the effect of grid step sizes on computational time while ensuring numerical 

stability of the scheme used through accurate discretization of the medium and adopting Perfectly Matched Layer (PML) 

absorbing boundary conditions. Results shows that for a grid size of 5m x 5m x 5m having 260 x 260 x 100 grid points and 

time step of 100 - 500, the wavefield propagating is horizontally symmetric. From the results, the importance of grid step sizes 

on computational time is re-emphasized. 

Keywords: Finite Difference Method, Forward Modeling, Synthetic Seismogram, Stability, Wavefield,  
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1. Introduction 

Finite-difference method is a popular seismic forward 

modeling method. It is a numerical method for solving partial 

differential equations. It is useful in the computation of 

seismic displacement 'u' or seismic velocity 'v' at any point in 

a given geological model when applied to seismic wave 

equation of motion. The finite-difference method is used to 

compute the wave fields u(x,y,z,t) or v(x,y,z,t) at a discrete 

set of closely-spaced grid points (xi, yj, zk,tp), with i,j,k,p = 

0,1,2,3,4,5,........, by approximating the derivatives occurring 

in the equation of motion with finite-difference formula, and 

recursively solving the resulting difference equation. 

However, owning to the importance of the need for accuracy 

of the computed solution, using this method, a reliable way 

of ensuring this is to use smaller grid time-step sizes while 

ensuring that the stability condition is satisfied. It should be 

noted that other methods of improving the accuracy of finite-

difference exist, example is the use of higher-order 

approximations for the derivatives but they usually result in 

more complicated and cumbersome finite-difference scheme 

and in an increased computational time (Moczo et al., 2007). 

Against this background, this paper examines the effect of 

various grid step sizes on computational time while 

employing the finite-difference scheme to model seismic 

wave propagation in a 2-layered medium using simulation 

script written in MATLAB. 

2. Methodology 

The finite-difference method used for spatial discretization 

of the governing equations used in the modeling work carried 

out in this research is explained in more details here 

(Extracted from notes by Moczo et al., 2004). Only fully 

elastic media and in viscid fluids are modeled with the finite 

difference method. A velocity - stress finite difference 

formulation is used and the guiding equations formulated in 
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the following way: 
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Equations 1 - 5 represent five first order partial differential 

equations for the five unknowns vx, vy, σxx, σyy and σxy. The 

partial derivatives are approximated with a finite difference 

quotient. The particular finite difference scheme is 

equivalent, though not exactly the same, to the rotated 

staggered grid approach (Saenger et al., 2000; Saenger and 

Bohlen, 2004; Kriiger et. al., 2007; Bohlen and Saenger, 

2006; Kurzman et al., 2013). 

Figure 1 shows an example of a spatial indexing scheme 

with index i counting the nodal point (intersections on the 

grid) in x-direction and index j counting the nodal points in 

y-direction. A staggered grid approach is used with so-called 

center points at half - positions. Positions where the velocity 

and stress components are located are also indicated in figure 

1. For getting the two equations for velocity (Equations 1 and 

2) at position (i, j), the following steps have to be performed. 

 

Figure 1. Four elementary cells for the applied staggered grid FDM. All components of one physical property are defined at the same position in the 

elementary cell. Spatial derivatives of all unknowns are defined at positions marked with a cross and have to be arithmetically averaged to nodal or center 

points. 

1. Approximate the spatial derivatives in x-direction of the stress components σxx and σxy at positions (i,j±1/2)(intersection 

of pointers in figure 1) using finite difference quotient:  
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2. Interpolate spatial derivative in x-direction of the stress components cxx and σxy from positions (i,j±1/2)to position (i,j): 
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3. Approximate the spatial derivatives in y-direction of the stress components σyy and σxy at positions (i±1/2,j) using the 

finite difference quotient: 
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4. Interpolate spatial derivatives in y-direction of the stress components σyy and σxy from positions (i±1/2,j) to position (i, j): 
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5. Multiply the spatial derivatives of the stress components with 1/ρ that is defined at position(i,j): 
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For getting the three equations for stress (Equations 3 - 5) at the centre position (i-1/2, j-1/2), a similar procedure has to be 

performed. 

1. Approximate the spatial derivatives in x-direction of the velocity components vx and vy at positions (i-1/2,j-1/2±1/2) 

using a finite difference quotient:  
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2. Interpolate spatial derivative in x-direction of the velocity components vx and vy from positions (i-1/2,j-1/2±1/2)to 

position (i-1/2,j-1/2): 
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3. Approximate the spatial derivatives in y-direction of the velocity components vx and vy at positions (i-1/2±1/2,j-1/2) 

using a finite difference quotient: 
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4. Interpolate spatial derivatives in y-direction of the velocity components vx and vy from positions (i-1/2±1/2,j-1/2)  
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5. Multiply the spatial derivatives of the velocity components with the elastic moduli K and µ that are defined at position(i-

1/2,j-1/2): 
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From equation 24 - 26, it can be seen that the elastic moduli K and µ only need to be defined at the center position of one 

elementary finite difference cell. Elastic moduli do not occur at any other position in the grid. This is different to the widely - 

used fully staggered grid method (Virieux, 1986), where elastic moduli occur at different position within the one elementary 

cell. If material boundaries occur in the numerical domain, the numerical grid is built up in such a way that the approximated 

material boundaries run along boundaries between elementary cells. This way, the center positions of elementary cells always 

lie on either side of a material boundary and never on top of it. However, from equation 14 and 15, it can be seen that the 

density ρ needs to be defined at nodal points of the numerical grids. Nodal points can lie on top of material boundaries. For 

such nodal points, the density has to be arithmetically averaged from the materials of the four surrounding elementary cells. 

The time derivatives in equation 14, 15, 24, 25 and 26 are approximated with an explicit finite difference approach: 
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In equation 27 - 31, the spatial indices i and j are removed 

compared to equations 14, 15, 25 and 26. The time index ti 

denotes any discrete time interval that is calculated in the 

numerical algorithm. Solutions for the stress components are 

calculated at half time increments. This procedure is the so 

called staggered time integration method (Virieux, 1986). 

Solutions of the velocity components (Equations 27 and 28) 

are already used for the solutions of the stress components. 

The time increment has to fulfill the von Neumann stability 

criterion that is calculated from the wave velocity and grid 

spacing of the numerical grid. (Higham., 1996; Seanger and 

Bohlen., 2004). 

3. Results and Discussion 

In this paper, to minimize the grid dispersion, the spatial 

sampling required at least 10 grid points per wavelength. 

Also, widely adopted Perfectly Matched Layer (PML) 

absorbing boundary (Collinos and Tsogka, 2001) is used and 

the source excitation which initializes the wave propagation 

is Gaussian which is implemented by adding a prescribed 

source time function to the source mesh, e. g, an explosion 

point source time function ( Ritcher wavelet, S(t)), such that: 

τxx or zz(source grid) = τxx or zz (FD solution at source grid) + S(t) (32) 

Unlike the conventional finite-difference method, which 

uses a fixed grid-size and time - step for the entire model 
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region, spatially variable grid-size and time-step are used to 

achieve the optimal computational efficiency. In this ongoing 

research, variable grid-size and time-step changes are used to 

achieve both accuracy and efficiency in the simulations 

involving the use of the staggered - grid finite-difference 

schemes providing in addition, optimal computational 

savings. 

 

Figure 2. Ricker wavelet set at frequency 20Hz. 

 

Figure 3. Synthetic seismogram for the elastic wave propagated at input horizontal and vertical dimensions set at nx = nz = 300 (Time step nt =100, f =20Hz). 
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Figure 4. Synthetic seismogram for the elastic wave propagated at input horizontal and vertical dimensions set at nx = nz = 300 (Time step nt = 200, f = 

20Hz). 

 

Figure 5. Synthetic seismogram for the elastic wave propagated at input horizontal and vertical dimensions set at nx = nz = 300 (Time step nt =300, f =20Hz). 
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Figure 6. Synthetic siesmogram for the elastic wave propagated at input horizontal and vertical dimensions set at nx = nz = 300 (Time step nt =400, f = 20Hz). 

 

Figure 7. Synthetic seismogram for the elastic wave propagated at input horizontal and vertical dimensions set at nx = nz = 300 (Time step nt =500, f = 20Hz). 
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layer, after which the wave begins to interact with the 

boundary at approximately 0.75Km (750m). Upon 

interaction with the boundary, part of the wave is 

transmitted through the boundary, the refracted wave, and 

part bounces off the boundary, the reflected wave. From the 

snapshots shown in figure 6 and 7, as the refracted wave 

moves across the layer boundary, it generates a new wave 

type in the layer( head wave) that propagate upward to the 

surface. 

Narrowing down on the effect of the grid-step sizes used 

for computing the synthetic seismogram for the wave 

propagated over an offset of 1500m with vertical and 

horizontal dimensions set at nx = nz = 300. The grid size 

used for the finite-difference is 5m x 5m x 5m having 260 x 

260 x 100 grid points and the time step of 100, 200, 300, 

400 and 500. The wavefield propagating is horizontally 

symmetric. The results of the simulations shows a clearer 

picture of the synthetic seismogram for time - stepping 

ranging from 400 - 500 as seen from figures 6 and 7 for a 

propagation time of 0.5s and 0.625s. 

4. Conclusion 

It is evident that the effect of grid step- sizes on 

computational time involved in the application of finite-

difference scheme is crucial and needed to be properly 

handled to reduce numerically intensive complexity involve 

in seismic modeling as exemplify by the above model 

discussion which requires appropriate choice of having grid 

size 260 x 260 x 100 with data recorded for about 2s. This 

would be equivalent to about 1,000 time steps if done with 

3D finite-difference scheme taking about 6 hours to 

regenerate a shot on parallel computers. In turn, this may 

require about 6,000 hours computing time using ordinary 

high configuration desktop computers with fairly large 

memory. 
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