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Abstract: Obtaining an initial basic feasible solution to a transport problem – or a corner point in the convex polytope region – 
is extremely important in terms of reaching the optimal solution to the problem in the shortest time. When a transport problem is 
basically accepted as a linear programming problem, a degenerated solution is caused by the structure of the simplex method used 
when modelling with linear programming and located in a corner point sometimes at the optimal solution itself but mostly in close 
proximity to the optimal solution vector. One of the ways to eliminate this degenerated solution is to employ approximation 
methods. The main aim of this paper is to introduce Tuncay Can’s approximation method, which was developed as an alternative 
to the approximation methods in the literature for a balanced transport problem. Tuncay Can’s approximation method usually has 
less iterations than other approximation methods. In this paper, the Tuncay Can approximation method is introduced as an 
alternative to The North West Corner Rule, Minimum Cost Method, and the RAM and VAM methods. 
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1. Introduction 

The most generic statement of a transport problem as a 
linear programming problem can be stated mathematically as 
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�� ≥ 0 ;  (� = 1, 2, … , �, � = 1, 2, … , �) 

In this model, m is the number of production centres and n 

is the number of consumption centres; 
��  gives the cost of a 
product that will be transported from � production centre to � 
consumption centre, while 
�� gives the number of products 
to be transported from � to �. When ��  represents the supply 

from the production centre �  and ��  represents the demand 
from to the consumption centre �, then 
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shows � number of supply constraints and  

	 
��
�

��� = ��  ;    � = 1, 2, … , � 

shows n number of demand restraints. Therefore, there are a 
total of (! + #) supply and demand restraint conditions in 
the �  transport problem. If 
��  (≥ 0) , !#  number of 
unknowns or decision variables are defined, called 
‘obligatory restraints’. In this case the number of equations is (! + #) and the number of variable is !#. 

A transport problem is generally represented with a 
transport tableau.  
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Table 1. Transport Tablesu. 
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A transport problem where total supply is equal to total 

demand is called a balanced transport problem; otherwise, it 
is an unbalanced transport problem. Definitions, theorems for 
transport models, in other words, the internal dynamics of a 
transport problem, are built on balanced transport problems; 
thus, the Tuncay Can approximation method, which will be 
explained and introduced in this paper, will be shown for a 
balanced transport problem. The principle assumed is that 
every unbalanced transport problem can always be converted 
to a balanced transport problem by adding an artificial 
production centre or consumption centre.  

In the system defined with (1), each of the !# decision 
variables in the 
��  ≥ 0 (� = 1, 2, … , �; � = 1, 2, … , �) 
inequality represents closed half-space in ℝ!#/�  when the 
transport model is handled in its entirety and the region 
shown by the closed half-space mentioned is a non-negative 
region. This generally shows the region where the convex 
polytope region consists, which is the geometric picture of a 
transport problem in general. The 
��  ≥ 0 (� = 1, 2, … , �; � = 1, 2, … , �)  constraints handle 
the region to be studied in the transport problem. For this 
reason, leaving these constraints aside, there is a constraint in 
the form of (! + #)  number of equations in system (1), 
where each constraint is hyperplane.  

In order to solve system (1) with the simplex method, that 
is, to start iteration – in other words to obtain a basic feasible 
solution (a corner point) – the rank of the matrix consisting 
of the coefficients of 
�� unknowns created by the supply and 
demand constraint in system (1) has to be (! + #). This 
rank being (! + #)  guarantees the existence of (! + #) 
linear independent equations, which means that (! + #) 
basic variables are non-zero and positive and all other non-
basic variables are zero. As a result of this, instead of a non-
basic feasible solution vector with infinite numbers (solution 
without corner point) in the convex polytope region that 
emerges in the relevant dimension, a basic feasible solution 
with finite numbers (corner points) is obtained. However, in a 
balanced transport problem, as a result of the equation of 
total supply to total demand, a lack of necessity for any 
equation in system (1) emerges, and it becomes clear that the 
rank of the coefficients matrix cannot be (! + #) . This 
means that (! + #)  linear independent equations cannot 

exist in the relevant equation system, which knocks out the 
starting condition of iteration in a solution with the simplex 
method. In other words, the (! + #) basic variables must be 
non-zero and positive, and the other, non-basic variables 
must be zero, which is a condition for starting corner point 
location for a journey between convex points in a corner 
polytope region – and this leads to more basic variables than 
when (! + #) is zero, which is degeneration.  

Definition:  
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��� = ��   ;      � = 1, 2, … , � 
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The rank of the above system is exactly (! + # − 1) . 
The number of 
�� ≥ 0 (� = 1, 2, … , �; � = 1, 2, … , �) basic 
variables is exactly (! + # − 1) . [1] 

In that case, since a degenerated solution consists, instead 
of the simplex method, which generally solves linear 
programming problem in the most effective manner, it is 
guaranteed as expressed in the definition that (! + # − 1) 
basic variables be non-zero and positive and other non-basic 
variables be zero, taking into consideration supplies and 
demands in a balanced transport problem; thus, the initial 
basic feasible solution or initial distribution plan is obtained 
with approximation methods.  

The geometric picture of the initial basic feasible solution 
��  ≥ 0 (� = 1, 2, … , �; � = 1, 2, … , �)  reveals a corner 
point that is not optimal but relatively remote or close to the 
optimal solution according to approximation methods 
generally in the emerging convex polytope region when 
obligatory constraints are neglected, constraint conditions 
which are hyperplanes and, again, the hyperplane objective 
function is taken into consideration – which means that 
transport problem is considered in its entirety.  

In order to obtain the basic feasible solution, the most 
widely known methods in the literature may be listed as 
North West Corner Rule, Minimum Cost Method, and the 
RAM and VAM methods. 
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2. Literature Search 

Recently, a consideration of the effectiveness of 
approximation methods in the literature and efforts to 
develop new methods have been witnessed. Clearly, Vogel’s 
Approximation Method (VAM) is effective in terms of 
proximity to optimal result. For this reason, newly developed 
techniques have been introduced, especially  related to VAM. 
Kırca and Satır [2] compared the total opportunity costs 
intuitive method that they developed and VAM for 480 
examples in their 1990 dated paper ‘A Heuristic for 
Obtaining an Initial Solution for the Transport Problem’, and 
in 134 examples the developed method reached optimal 
result directly while VAM could not, and it used computer 
time 34-45% more effectively. In 2009, Krishnaswamy et al. 
developed an intuitive method which was based on this [3], 
and this improved VAM (IVAM) method produced even 
more optimal results. 

Korukoğlu and Ballı, compared Krishnaswamy et al.’s 
IVAM and VAM for 1000 examples that they developed and 
also found that this IVAM was more effective than VAM in 
terms of performance and usage of computer time [4]. Sood 
and Jaid compared VAM with the Maximum Differences 
method that they developed and found out in their study that 
in some examples their proposed method had advantages 
over VAM and that it produced results that were more 
feasible to the optimal [5]. 

However, the most criticized aspect of such comparative 
advantage-finding problems is the low number of examples. 
In particular, simple examples and those with single-tests are 
insufficient to determine the advantages of one technique 
over another. Singh et al. compared VAM with IVAM 
variants in their 2012 research, performing example tests at 
12 different sizes to determine the IVAM advantages [6].  

In his 1990 dated study, Balakrishnan developed the VAM 
method for unbalanced transport problems and concluded 
that it is a more effective method [7]. Juman and Hoque 
developed a more effective initial solution method with the 
help of a Minimum Total Cost Solution method that they 
developed in 2015 [8].  

In this paper, the Tuncay Can Approximation Model will 
be introduced as an alternative to the above mentioned 
approximation methods.  

3. Tuncay Can’s Approximation Method  

Below is the algorithm of the approximation method 
developed in early 2015 by Tuncay Can with the purpose of 
obtaining an initial basic feasible solution vector (a corner 
point) so as to reach an optimal solution in a balanced 
transport problem [1]: 

Step 1: In a balanced transport problem, assuming that 
there are ! production centres and # consumption centres, 
the unit transport costs of one unit good to be transported 
from each centre of production to each centre of consumption 
��  ( � = 1, 2, … , �;  � = 1, 2, … , � ), the geometric mean of 
unit transport costs is  

Λ2 = 34 4 
��
#

���
!

5��
!.#

 

The transport cost that is the closest unit to the value found 
with this geometric mean in terms of absolute value is 
determined. If the closest unit transport costs are equal, then 
one of them is chosen randomly. The cell including the 
mentioned unit transport cost is filled with the maximum 
load, taking into account the supply (rows) and demand 
(columns). If the supply is exactly met, the relevant row is 
deleted from the transport tableau; if the demand is met, the 
relevant column is deleted from the transport tableau. In 
certain conditions, however, both of these are not deleted at 
the same time. 

Step 2: As each term of the objective function is one of the 
dynamics of the transport problem – in other words, as the 
decision variables that employ the terms and relevant unit 
transport costs are independent from one another – the 
geometric mean of unit transport costs applied in Step 1 is 
taken and relevant cell is loaded. As a result of this, either the 
supply (row) or demand (column) will be met totally and the 
relevant row or column is deleted from the tableau; then, the 
geometric mean of the remaining unit transport costs is taken 
again and the procedure given in Step 1 is applied. 

Step 3: If there are only two unit transport costs remaining, 
there is no problem with taking geometric mean for the 
mentioned costs; however, the maximum possible 
distribution is made taking into consideration the supply 
(row) and demand (column) for that with the smallest unit 
transport cost. 

Step 4: Steps 1, 2 and 3 are applied until an initial basic 
feasible solution to the balanced transport problem is 
obtained. 

In Tuncay Can’s approximation method, which is based on 
Cauchy’s inequality, the preference for the geometric mean is 
due to the fact that relative deviations around the central 
tendency in the geometric mean are symmetric and that it is 
less affected by extreme values than is the arithmetic mean. 
Again, in the introduced approximation method, unit 
transport costs being the coefficients of decision variables in 
the terms of the objective function of a transport problem will 
ensure that the geometric mean is located in a closer area to 
the optimal corner point of the hyperplane created with the 
value attached to the objective function relevant to the 
geometric mean of coefficients. 

The algorithm provided for Tuncay Can’s approximation 
method can also be applied to unbalanced transport 
problems. As noted (above), an unbalanced transport 
problem can be converted to the form of a balanced 
transport problem by adding an artificial production or 
consumption centre, depending on the deficiency. As the 
unit transport cost of artificial centres is zero, when Tuncay 
Can’s approach is applied to unbalanced transport 
problems, the fact that the initial geometric mean is zero 
and that making the maximum distribution possible taking 
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into account the supply (row) and demand (column) to this 
cell does not pose a problem for the algorithm can be seen 
as an advantage, since it operates against the possibility that 
the cost in a relevant cell can be made zero and cause a 
reduction in total cost. 

In order to ensure that the algorithm introduced for Tuncay 
Can’s approximation method is valid, which means that an 
initial solution vector thus obtained be secured to correspond 
to a corner point in the convex polytope region (which is the 
geometric picture of transport problem), it needs to be shown 
that (i) the point obtained with Tuncay Can’s approximation 
method is the feasible solution vector, and that (ii) this 
indicates a corner point. In order to obtain such proof, the 
general structure of the transport problem is considered 
again. 

Let us take into consideration the structure of the linear 
programming problem of a balanced transport problem, as 
defined with (1). When the coefficients of decision variables 
in supply and demand constraints are organized in harmony 
with their indices, it can be seen that they consist of only the 
numbers ‘0’ and ‘1’. With matrices that correspond to the 
coefficients matrix generated by the integers ‘0’ and ‘1’, 
every transport problem can be organised in upper triangular, 
lower triangular or triangular forms. In addition, as the rank 
of the mentioned matrix is (! + # − 1), it can be proved 
with the Basic Triangularity Theorem that every basic 
solution of the transport problem is triangular: 

3.1. Theorem 1 (Basic Triangularity Theorem) 

Every basic solution of transport problem is triangular �9�.  
The Basic Triangularity Theorem is not a structure 

shaped according to the algorithm of approximation 
methods, but it emphasises the structure at the core of the 
transport problem. Generally, ‘basic solutions’ is a general 
term covering all the corner points inside and outside the 
convex polytope region. For this reason, a feasible solution 
that includes the corner points in the convex polytope 
region should be ensured. A feasible solution and Tuncay 
Can’s approximation method can be combined to give the 
following theorem and its proof.  

3.2. Theorem 2 

The solution obtained with Tuncay Can’s approach always 
has a feasible solution. 

Proof [1]: Generally, a balanced transport problem has 
always a feasible solution. For this effect, because 

	 ��
�

��� = 	 �� = -�
���  

then for each �, 7  


�� = ����-    ;   0 ≤ 
�� ≤ ���9�� , ��: 

variables generate a feasible solution.  
In reality, when the equation system 
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��
�

��� = ��    ;   � = 1, 2, … , � 

is taken into consideration, it must be shown that the 
following variables emphasised as a feasible solution  
�� = ����-  

provide the equation system for each �  and 7 . Under the 
assumption 
�� ≥ 0, the following equation is verified. Then,  
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��� = 	 ����-�
��� = 1- 	 ����
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��� = 1- �� 	 �� = 1- ��- = ��
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so the accuracy of the following relation is shown:  
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Again, taking into account the assumption 
�� ≥ 0,   the 
following equation is also verified: 

	 
��
�

��� = 	 ����-�
��� = 1- 	 ����

�
��� = 1- �� 	 �� = 1- ��- = ��

�
���  

Therefore, as this relation is also verified, 

	 
��
�

��� = ��    ;     � = 1, 2, … , �  
it follows that the balanced transport problem always has a 
feasible solution.  

Then, as every balanced transport problem has a feasible 
solution regardless of the approximation method employed, 
the solution obtained with Tuncay Can’s approximation 
method is naturally a feasible one and located in the convex 
polytope region in the space with the relevant dimension. 

If there is a feasible solution, there also is an optimal 
solution [1]. It is important that the obtained solution vector 
is located in the feasible solution zone. However, what is 
much more important is to prove that the relevant solution 
vector is the feasible solution, meaning that it is a corner 
point in the convex polytope region with relevant dimension. 
Before giving the last theorem and its proof related to the 
foregoing, the triangularity algorithm rule [9] must be 
mentioned.  

The triangularity rule is an algorithm that was developed 
in order to obtain an initial basic feasible solution to a 
transport problem in the simplest manner. In this algorithm, a 
variable is selected as the candidate for the first feasible basic 
variable and, taking into consideration the relevant supply 
and demand (column and row), the maximum possible 
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distribution is made to the cell with the chosen basic variable. 
If the supply is totally met, the relevant row is deleted from 
the tableau, and if the demand is totally met, the relevant 
column is deleted. The steps of the algorithm continue until a 
basic feasible solution is found. The triangularity rule is a 
general one. All approximation methods are special forms of 
the triangularity rule, with their unique algorithms. Naturally 
Tuncay Can’s approximation method is based on the 
geometric mean in its algorithm, and it is also a special form 
of the triangularity rule. 

3.3. Theorem 3 

The solution obtained with Tuncay Can’s approximation 
method is an initial basic feasible solution, which means that 
it is a corner point of the convex polytope. 

Proof: From Theorem 2, the solution obtained with Tuncay 
Can’s approximation method always has a feasible solution. 
As (! + # − 1) basic variables in the system denoted with 
(1) in a balanced transport problem are non-zero and positive, 
in every balanced transport problem a basic feasible solution, 
meaning a corner point, is obtained. Every solution 
determined with the triangularity rule is a basic feasible 
solution [9] and Tuncay Can’s approximation method is also 
a basic feasible solution, meaning that it is a corner point of 
the convex polytope region. 

4. Conclusion 

Obtaining an initial basic feasible solution for a balanced 
transport problem is extremely important as the simplex 
method provides degenerated solutions and the algorithms 
written to avoid this degenerated solution are so long that 
emerges as a problem in reaching the optimal solution. 
Approximation methods test whether or not the convex 
polytope in a transport problem has a corner point. If it is 
optimal then, there is no problem, but if the relevant corner 
point is not optimal, then the journey between corner points 
includes an optimality test at each instance and continues 
until an optimal point is found.  

The main aim of this paper is to introduce Tuncay Can’s 
approximation method, which was developed as an 
alternative to the approximation methods in the literature for 
a balanced transport problem. Tuncay Can’s approximation 
method usually has less iterations than other approximation 
methods, which derives from its following algorithm steps 
and placement in the corner point in the convex polytope 
region, which is the geometric reflection of a transport 
problem in the form of linear programming, until the optimal 
point is reached. A comparison between approximation 
methods is outside the scope of this paper; this comprises the 
subject of another article. 
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