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Abstract: Coloring problem is a classical difficult problem of graph theory. It is a fundamental problem in scientific 

computation and engineering design. In recent years, a variety of graph coloring problems frequently appeared and solved 

many problems in production. It is a difficult problem to discuss the chromatic number of a given graph class. In the paper, we 

introduce several kinds of chromatic numbers of graphs such as adjacent-vertex-distinguishing total chromatic number, 

adjacent-vertex-distinguishing proper edge chromatic number, smarandachely-adjacent-vertex-distinguishing edge chromatic 

number, and the multi-fan graphs are considered. 
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1. Introduction 

Graph theory is an important branch of Applied 

Mathematics. Colouring problems originated in the four 

colour conjecture 150 years ago. In recent years, many 

interesting and useful results have been obtained on the study 

of colouring problems. It is widely used in chemistry, 

computer, communication and other fields. There for they are 

widely discussed in graph theory. In this paper, we introduce 

several kinds of chromatic numbers of graphs such as the 

adjacent -vertex -distinguishing total chromatic number, the 

adjacent –vertex-distinguishing proper edge chromatic 

number, the smarandachely-adjacent-vertex-distinguishing 

edge chromatic number. And the Multi-fan graphs are 

considered in this paper. In the end, the paper abtained the 

chromatic numbers of graphs the paper considered. 

The graphs considered in this paper are connected, finite, 

undirected and simple graphs. The multi-fan graphs are joint 

graphs that jointed by and , which

 denotes the path graphs with order ( 1≥kn ). We 

denote for all , 

( ), and  denotes the 

graph which has only one vertex . The symbol is the 

maximum degree of the graph we discussed. 

The paper use apagoge, construction method and direct 

proving method. 

2. Adjacent-vertex-distinguishing Proper 

Total Coloring Number 

Defenition 1 [1] A k-proper total colouring of a graph G is 

a mapping from to such 

that: 

1) , if , then ; 

2) , , if have a common end 

vertex, then ; 

3) , if is the end vertex of , 

then . 

Let be a k-proper-total-colouring of .Denote 

for 

every , if , we have

, then is called a 

k-proper-adjacent-vertex-distinguishing proper total coloring, 

short for k-AVDTC. 
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The number has a k-proper-adjacent 

vertex-distinguishing total coloring} is called the adjacent –

vertex-distinguishing proper total chromatic number and 

denoted by
. 

The adjacent –vertex-distinguishing proper total chromatic 

number was first put forward by Zhang Zhong-fu, and he 

show a conjecture such that: 

Conjecture 1 [11] For every connected graph with 

order at least 2, we have . 

Lemma 1 If two arbitrary distinct vertices of maximum 

degree in are not adjacent, then ; If has 

two distinct vertices of maximum degree which are adjacent, 

then  

Theorem 1:  

Proof. Because there is only one vertex whose degree(=

) is the maximum degree, so concluded by Lemma 1, 

we get the result such that 

. 

Then we let be a mapping from  

to 

as follows : 

  
 

 

 

 
 

 

 

 

 
At this time, we have 

 

 

 

 

 

 

 

 

 

As defined in definition 1, obviously, is a

-AVDTC. 

There for  

 

Corollary 1 

 

The proof of Corollary 1 can be easy done. 

3. Adjacent-vertex-distinguishing Proper 

Edge Chromatic Number 

Defenition 2 [2] A k-proper-edge-colouring of a graph G is 

a mapping from to such that: 

1) , , if have a common end 

vertex, then ; 

Let be a k-proper-edge-colouring of .Denote 

for every

, if , we have

, then is called a k-proper-adjacent- 

vertex-distinguishing-edge coloring, short for k-AVDPEC. 

The number has a k-proper-adjacent- 

vertex-distinguishing edge colouring} is called the adjacent –

vertex-distinguishing edge chromatic number and denoted by

.
 

For graphs , denote the number of the vertex whose 

degree= , denote the minimum degree and the 

maximum degree of the graph. Then, define number  

such that  

 

Then a conjecture was put forward by [12] 

Conjecture 2 For graphs without isolated edge and the 

number of the isolated vertex is no more than one, then  

 

Lemma 2: For all graphs , . 

Theorem 2:  

Proof. There is only one vertex  whose degree(=

) is the maximum degree, so concluded by Lemma 2, 

we get the result such that 
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to as 

follows : 

 
 

 

 

 

 
At this time, we have 

 

 

 

 

 

 

 

 

As defined in definition 2, obviously, is a

-AVDPEC. 

There for  

. 

Corollary 2  

. 

The proof can be easy copied from the proof of Theorem 

2. 

4. Smarandachely 

Adjacent-vertex-distinguishing Proper 

Edge Chromatic Number 

Defenition 3 [3] Let be a k-proper-edge-colouring of

.Denote 

for every , if , we 

have and ,then is called a 

smarandachely adjacent-vertex-distinguishing proper edge 

colouring, short for k-SA. 

The number has a k smarandachely adjacent- 

vertex-distinguishing proper edge coloring} is called the 

smarandachely adjacent –vertex-distinguishing proper edge 

chromatic number and denoted by . 

Lemma 3: If  is a graph without one degree vertex, 

then . 

Theorem 3:  

i) If and , 

Then . 

ii) 
If or , then 

 

 
Proof. i) Obviously, the maximum degree of

 denotes by , then , 

so 

. 

Then we give the mapping from  

 

to 

 

as below: 
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By listing )(uC of every vertex of the graph, we can see 

that the mapping we give is a smarandachely 

adjacent-vertex-distinguishing proper edge coloring of

, so  

. 

ii) First, we must illustrate that there have no  

-SA for graph . 

Assume that : 

Suppose that -SA for graph 

exist. And , so we 

denote , , 

. 

Because for all ,  

, 

, there is times 

for , but is and odd number, the result is a 

contradiction to handshaking lemma.  

So . 

Then we define a mapping from to

like this: 

 

 

 

 

 

 

By listing )(uC of every vertex of the graph, we can see 

that the mapping we give is a smarandachely 

adjacent-vertex-distinguishing proper edge colouring of

. 

So .
 

5. Conclusion 

Through the paper’s research, conclusions are follows: 

Theorem 1:  

Theorem 2:  

Theorem 3:  

i) If and , 

Then . 

ii) If or ,then 
 

 

Theorem 1 and Theorem 2 are consistent with the 

Conjecture 1 and Conjecture 2. Then in future we can also 

study the upper limit of the smarandachely adjacent –

vertex-distinguishing proper edge chromatic number. 
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