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Abstract: In this paper, differential transformation method is used to find exact solutions of nonlinear delay integro– 

differential equations. Many theorems are presented that required for applying differential transformation method for nonlinear 

delay integro–differential equation. The validity and efficiency of the proposed method are demonstrated through several tests. 
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1. Introduction 

Finding the analytical solutions of functional equations has 

been devoted attention of mathematicians's interest in recent 

years. Several methods are proposed to achieve this purpose, 

such as [1]–[5]. The nonlinear integro–differential equations 

with variable delays reads 

�′(�) = �(�, �(�), �(	
�), �(� − �
), 
  �
��

�(�, �, �(�), �(	��), �(� −
��))��), � ∈ � = [�
, �],              (1) 

subject to initial condition 

�(�) = �(�), � ∈ [−�̃, �
], �̃ = min{�
, ��},       (2) 

where �  and �  are analytical function and the nonlinear 

kernel � is continuous on the domain 

! = {(�, �): � − �̃ ≤ � ≤ �, � ∈ �}, 
Here 	$ ∈ (0,1),  for ' = 0,1,  are the coefficients of 

vanishing delay function ((�) = 	$�, which is used in the 

pantograph equation, and �$ > 0,  for ' = 0,1,  are the 

constants of non-vanishing delay ((�) = � − �$ ,  that is a 

classical case of delay functions. 

This type of equations have widely occurred in many 

biological and control problems (see [6, 7] and their references 

therein). As we know, much work has been done on 

developing and analyzing numerical methods for solving one–

dimensional integral and integro–differential equations 

without delay. But in delay cases, a small amount of work has 

been done. Delay integro–differential equations are usually 

difficult to solve analytically so it is required to obtain an 

efficient approximate solution. Therefore, they have been of 

great interest by several authors. In literature, there exist few 

numerical techniques applied to solving delay integro–

differential equation. The main of these literatures carried out 

by Hermann Burnner, which most of the recent studies belong 

to him [8]-[14]. Asymptotic error expansions for linear 

multistep methods in [15] and Stability properties of a scheme 

for the approximate solution in [16] of a 

delay-integro-differential equation have been discussed by 

Baker and Ford, Brunner in [6], Brunner and et al in [12] 

applied a numerical method based on finite difference method 

and a collocation method to solving (1), and Koto in [17, 18] 

and W. H. Enright and Hu in [19] used Runge-Kutta method 

and ( −method to solving Eq. (1), respectively. In recent 

years, many papers have also studied the convergence and 

stability of numerical methods for (1) or equations of more 

general forms. For the convergence of numerical methods, we 

refer to [8]-[12], and for the stability we refer to [13]-[18] and 

their references therein. 

The method that is developed in this paper depends on 

DTM, introduced by Borhanifar [20, 21] for solution of linear 

and nonlinear problems and Zhou [22] in a study about 
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electrical circuits. It is a semi–numerical–analytical technique 

that formulates Taylor series in a totally different manner. 

With this technique, the given differential equation and related 

initial conditions are transformed into a recurrence equation 

that finally leads to the solution of a system of algebraic 

equations as coefficients of a power series solution. This 

method is useful for obtaining exact and approximate 

solutions of linear and nonlinear differential equations. There 

is no need for linearization or perturbations, large 

computational work and round–off errors are avoided. It has 

been used to solve effectively, easily and accurately a large 

class of linear and nonlinear problems with approximations. It 

is possible to solve system of differential equations [23, 24, 

25], differential–algebraic equations [26], difference 

equations [27], differential difference equations [28], partial 

differential equations [29, 30, 31, 32], Nonlinear partial 

differential equations [33], fractional differential equations 

[34, 35], time-fractional diffusion equation [36], pantograph 

equations [37], vibration problems of circular Euler-Bernoulli 

beams [38], Axisymmetric vibrations and buckling analysis 

[39], projectile motion in a quadratic resistant medium [40], 

one– dimensional Volterra integral and integro–differential 

equations [41, 42, 43] by using this method. In this work, we 

will extend one–dimensional differential transformation 

method (DTM), by presenting and proving some new 

theorems, to solve a class of nonlinear delay integro–

differential equation which it's kernel function is also involve 

delay (vanishing and non–vanishing delays). 

The remainder of this paper is organized as follows: The 

structure of differential transformation method is stated in 

Section 2. Hereby, some theorems are presented and proved. 

In Section 3, the proposed method is applied to solve several 

delay integro–differential equations. A conclusion is presented 

in Section 4. 

2. Basic Idea of Differential 

Transformation Method 

In this section, the basic definitions of differential 

transformation are introduced as follows: 

An arbitrary function *(�) that is analytical function can 

be expanded in Taylor series about a point � = 0 as 

�(�) = ∑  ,-.

(�/��)0

-! [203(�)
2�0 ]�.�� .        (3) 

If 5(6) is defined as 

Y(6) = �
-! [203(�)

2�0 ]�.�� , where 6 = 0,1, . . , ∞   (4) 

then Eq. (3) reduces to 

y(t) = ∑  ,?.
 Y(k)(t − t
)?.           (5) 

The Y(k)  defined in Eq. (4), is called the differential 

transform of function y(t). The following theorems that can 

be deduced from Eqs. (4) and (5) are given below; 

Theorem 1 Assume that A(6), B(6) and C(6), are the 

differential transforms of the functions D(�), *(�) and E(�), 

respectively, then 

(1-a) If D(�) = *(�) ± E(�), then A(6) = B(6) ± C(6). 
(1-b) If D(�) = G*(�), then A(6) = GB(6). 
(1-c) If D(�) = 2HI(�)

2�H , then A(6) = (-JK)!
-! B(6 + M). 

(1-d) If D(�) = *(�)E(�), then A(6) = ∑  -ℓ.
 B(ℓ)C(6 − ℓ). 
(1-e) If D(O) = OK then A(6) = P(6 − M) = Q1 6 = M,

0 R�ℎTUD'�T 

(1-f) If D(�) = *(� + V), then A(6) = ∑  Wℓ.- Qℓ
6X Vℓ/-B(ℓ), for Y → ∞. 

(1-g) If D(�) = 2[
2�[ [*(� + V)], then A(6) = (-J\)!

-! ∑  Wℓ.-J\ Qℓ
6 + ]X Vℓ/-/\B(ℓ), for Y → ∞. 

Proof. See ([26], and their references). 

Now we state the fundamental theorem of this paper. 

Theorem 2. Assume that ^(_), `a(_) and `b(_), are the differential transforms of the functions c(d), ea(fad) and 

eb(fbd), respectively, and fa, fa ∈ (g, a), then 

(2-a) If D(�) = *�(	��)*h(	h�), then A(6) = ∑  -ℓ.
 	�ℓ	h-/ℓB�(ℓ)Bh(6 − ℓ). 
(2-b) If D(�) = *(	�)E(� − �), then for Y → ∞ 

A(6) = i  
-

ℓ.

i  

W

j.-/ℓ
Q�

6 − ℓX 	ℓ(−�)j/-JℓB(ℓ)C(�). 

(2-c) If D(�) = *�(� − ��)*h(� − �h), then for Y → ∞ 

A(6) = i  
-

ℓ.

[( i  

W

jk.ℓ
Q��

ℓ X (−��)jk/ℓB�(��))( i  
W

jl.-/ℓ
Q�h

6 − ℓX (−�h)jl/-JℓBh(�h))]. 

Proof. (2-a) By using Leibnitz formula, we get 



144 Mohammad Bagher Moghimi and Abdollah Borhanifar:  Solving a Class of Nonlinear Delay Integro–differential 

Equations by Using Differential Transformation Method 

�-D(�)
��- = �-

��- [*�(	��)*h(	h�)] = i  
-

ℓ.

Q6

ℓX 	�ℓ
�ℓ

��̃ℓ *�(�̃)	h-/ℓ �-/ℓ

��̂-/ℓ *h(�̂), 

where �̂ = 	��, and �̃ = 	��, therefore 

[�-D(�)
��- ]�.�� = i  

-

ℓ.

Q6

ℓX [	�ℓℓ! B�(ℓ)][	h-/ℓ(6 − ℓ)! Bh(6 − ℓ)] = i  
-

n.

6! 	�ℓ	h-/ℓB�(ℓ)Bh(6 − ℓ), 

then from (6), we get 

A(6) = 1
6! [�-D(�)

��- ]�.�� = i  
-

ℓ.

	�ℓ	h-/ℓB�(ℓ)Bh(6 − ℓ). where 6 = 0,1, . . , ∞ 

(2-b) Analogously from to previous Theorems we get 

�-

��- D(�) = �-

��- [*(	�)E(� − �)] = i  
-

ℓ.

Q6

ℓX 	ℓ �ℓ

��̃ℓ *(�̃) �-/ℓ

��-/ℓ E(� − �), 

where �̃ = 	�, therefore 

[ 20
2�0 D(�)]�.�� = ∑  -ℓ.
 Q6

ℓX 	ℓ ℓ! (6 − ℓ)!  B(ℓ)C(6 − ℓ) = ∑  -ℓ.
 6! 	ℓB(ℓ)C(6 − ℓ),               (6) 

where from Theorem 1-f: 

C(6 − ℓ) = ∑  Wj.-/ℓ Q�
6 − ℓX (−�)j/-JℓC(�).                           (7) 

By substituting the (7) in (6), we get 

[ �-

��- D(�)]�.�� = 6! i  
-

ℓ.

i  

W

j.-/ℓ
Q�

6 − ℓX 	ℓ(−�)j/-JℓB(ℓ)C(�), 

and therefore substituting these value in (4), the proof of (2-b) is completed. 

(2-c) Analogously to part (2-a), we have 

�-

��- D(�) = �-

��- [*�(� − ��)*h(� − �h)] = i  
-

ℓ.

Q6

ℓX �ℓ

��ℓ *�(� − ��) �-/ℓ

��-/ℓ *h(� − �h), 

therefore 

[ 20
2�0 D(�)]�.�� = ∑  -ℓ.
 Q6

ℓX ℓ! (6 − ℓ)! o�(ℓ)oh(6 − ℓ) = 6! ∑  -ℓ.
 o�(ℓ)oh(6 − ℓ),            (8) 

where 

o�(ℓ) = i  
W

jk.ℓ
Q��

ℓ X (−��)jk/ℓB�(��), and oh(6 − ℓ) = i  
W

jl.-/ℓ
Q�h

6 − ℓX (−�h)jl/-JℓBh(�h). 

by substituting these value in (8), and using (4), the result of (3-b) is obtained, and therefore the proof is completed. 

Theorem 3. Assume that r, 	 ∈ (0,1), and ��, �h > 0 then for 6 = 1,2, . . . , Y, 
(3-a) If D(�) = 
  �

�� E�(	�)Eh(� − �h)��, then for Y → ∞ 

A(6) = 1
6 i  

-/�

ℓ.

i  

W

j.-/ℓ/�
Q�

6 − ℓ − 1X 	ℓ (−�h)j/-JℓJ�C�(ℓ)Ch(�), 

(3-b) If D(�) = *(r�) 
  �
�� E�(	�)Eh(� − �h)��, then for Y → ∞ 
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A(6) = i  
-

ℓ.

i  

-/ℓ/�

ℓ�.

i  

W

j.-/ℓ/ℓ�/�
Q�

6 − ℓ − ℓ
 − 1X 1
6 − ℓ rℓ	ℓ�  (−�h)j/-JℓJℓ�J�B(ℓ)C�(ℓ
)Ch(�). 

(3-c) If D(�) = *(� − ��) 
  �
�� E�(	�)Eh(� − �h)��, then A(6) = ∑  -ℓ.
 o(ℓ)t(6 − ℓ), where for Y → ∞, 

o(ℓ) = i  
W

j�.ℓ
Q�


ℓ X (−��)j�/ℓB(�
).

t(6 − ℓ) = 1
6 − ℓ i  

-/ℓ/�

ℓ�.

i  

W

j.-/ℓ/ℓ�/�
Q�

6 − ℓ − ℓ
 − 1X 	ℓ� (−�h)j/-JℓJℓ�J�C�(ℓ
)Ch(�).
 

Proof. (3-a) Analogously, for 6 = 1,2, . . . , Y, we have 

�-

��- D(�) = �-/�

��-/� [E�(	�)Eh(� − �h)] = i  
-/�

ℓ.

Q6 − 1

ℓ X 	ℓ �ℓ

��̂ℓ E�(�̂) �-/ℓ/�

��-/ℓ/� Eh(� − �h), 

where �̂ = 	�, therefore 

[ 20
2�0 D(�)]�.�� = ∑  -/�ℓ.
 Q6 − 1

ℓ X 	ℓ ℓ!  C�(ℓ)(6 − ℓ − 1)! uh(6 − ℓ − 1),                (9) 

where using Theorem. 1-(f) 

uh(6 − ℓ − 1) = ∑  Wj.-/ℓ/� Q�
6 − ℓ − 1X (−�h)j/-JℓJ�Ch(�).                   (10) 

by substituting (10) in (9), and using (4), we get 

A(6) = 1
6! [ �-

��- D(�)]�.�� = 1
6 i  

-/�

ℓ.

i  

W

j.-/ℓ/�
Q�

6 − ℓ − 1X 	ℓ (−�h)j/-JℓJ�C�(ℓ)Ch(�), 

and therefore the result of (4-a) is obtained. 

(3-b) Let �(�) = 
  �
�� E�(	�)Eh(� − �h)��, then 

�-

��- D(�) = �-

��- [*(r�)�(�)] = i  
-

ℓ.

Q6

ℓX rℓ �ℓ

��̂ℓ *(�̂) �-/ℓ

��-/ℓ �(�), 

where �̂ = r�, therefore 

[ 20
2�0 D(�)]�.�� = ∑  -ℓ.
 Q6

ℓX rℓ ℓ!  B(ℓ)(6 − ℓ)!  t(6 − ℓ),                     (11) 

where using previous part (4-a), we have 

t(6 − ℓ) = �
-/ℓ ∑  -/ℓ/�ℓ�.
 ∑  Wj.-/ℓ/ℓ�/� Q�

6 − ℓ − ℓ
 − 1X 	ℓ� (−�h)j/-JℓJℓ�J�C�(ℓ
)Ch(�),           (12) 

by substituting (12) in (11), and using (4), we get 

A(6) = i  

-

ℓ.

i  

-/ℓ/�

ℓ�.

i  

W

j.-/ℓ/ℓ�/�
Q�

6 − ℓ − ℓ
 − 1X 1
6 − ℓ rℓ	ℓ�  (−�h)j/-JℓJℓ�J�B(ℓ)C�(ℓ
)Ch(�). 

(3-c) Similar on (4-b), let �(�) = 
  �
�� E�(	�)Eh(� − �h)��, then 

�-

��- D(�) = �-

��- [*(� − ��)�(�)] = i  
-

ℓ.

Q6

ℓX �ℓ

��ℓ *(� − ��) �-/ℓ

��-/ℓ �(�), 

then 
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[ �-

��- D(�)]�.�� = i  
-

ℓ.

Q6

ℓX ℓ! (6 − ℓ)! o(ℓ)t(6 − ℓ), 

therefore A(6) = ∑  -ℓ.
 o(ℓ)t(6 − ℓ), where o(ℓ) obtained from Theorem. (1-f) as follow 

o(ℓ) = i  
W

j�.ℓ
Q�


ℓ X (−��)j�/ℓB(�
), 

and t(6 − ℓ) is same as (12), and therefore the proof is completed. 

3. Applications and Numerical Examples 

In this section, we present the prototype examples to clarify 

the accuracy of the presented method. In these examples, we 

first obtain a recurrence relation for the differential transform 

of an integral equation and solve it by programming in 

MAPLE environment. These prototype examples are chosen 

such that there exist exact solutions for them. 

Example 1. In the first example, consider the following 

non–linear integro–differential equation with multi 

proportional delays 

*′(�)*(�) − *(�
h) − v

h *(�
h) 
  �


 *(�)*(j
h)�� = 0, � ≥ 0,  (13) 

subject to initial condition *(0) = 1. 
From initial condition, we get *′(0) − 1 = 0,  then 

*′(0) = 1, therefore differential transform version of initial 

conditions *(0) = 1, *′(0) = 1  are B(0) = 1, B(1) = 1 

respectively, and the differential transform version of Eq. (13) 

for 6 = 1,2, . . . , Y is 

∑  -/�ℓ.
 (ℓ + 1)B(ℓ + 1)B(6 − ℓ) − (�
h)-B(6) − v

h ∑  -/�ℓ.
 ∑  -/ℓ/�j.

�

-/ℓ (�
h)-/j/�B(ℓ)B(�)B(6 − ℓ − � − 1) = 0,    (14) 

where B(6) is the differential transform of *(�). 

Using Eqs.(14), by taking Y = 5, the following system is obtained: 

2B(2) − 1 = 0,
��
y B(2) + 3B(3) − �{

| = 0,
v�
| B(3) + 2B(2)h + 4B(4) − �v

�~ − B(2) = 0
��
�~ B(4) + 5B(2)B(3) + 5B(5) − v�

~y B(3) − �
| B(2) − �

| = 0,
���
vh B(5) + 6B(2)B(4) + 3B(3)h + 6B(6) − vv

|
 B(4) − ~�
�h| B(3) − v�

�~
 B(2)h − �v
~y B(2) = 0,

       (15) 

Solving the above system and using the inverse 

transformation rule (5), we get the following series solution 

*(�) = 1 + � + 1
2 �h + 1

6 �v + 1
24 �y + 1

120 �{. 
Note that when Y → ∞ by solving the obtained system, we 

get the following series solution 

*(�) = 1 + � + 1
2! �h + 1

3! �v + 1
4! �y+. . . + 1

Y! �W. 
The closed form of above series solution is *(�) = T� , 

which is the exact solution of Eq. (13). 

Example 2. In the second example, consider the following 

nonlinear delay integro–differential equation 

*′(�) − *(� − 1) − |
v *(� − �

h) 
  �

 *(� − 1)�� = � − �


v �v +
y
v �y − |

� �{, � ≥ 0,             (16) 

subject to initial condition *(�) = 1, for � ∈ [− �
h , 0]. 

From initial condition, we get *(0) = 1,  therefore by 

substituted � = 0, in Eq.(16) we get 

*′(0) − *(−1) = 0,             (17) 

Similar on previous example, the differential transform 

version of Eq. (16) for 6 = 1,2, . . . , � and for Y → ∞ is 

(6 + 1)B(6 + 1) − ∑  Wℓ.- Qℓ
6X (−1)ℓ/-B(ℓ) − |

v ∑  -/�ℓ.
 ∑  Wj�.ℓ ∑  Wj.-/ℓ/� Q�

ℓ X Q�

6 − ℓ − 1X (− �
h)j�/ℓ(−1)j/-JℓJ�B(�
)B(�)

 = P(6 − 1) − �

v P(6 − 3) + y

v P(6 − 4) − |
� P(6 − 5),

     (18) 

and the differential version of initial condition (17) is 

B(1) − ∑  �-.
 (−1)-B(6) = 0,                                  (19) 

where B(6) is the differential transform of *(�). 

Using Eqs.(17), by taking � = 5, and Y = 3, the following system is obtained: 
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h
v B(2) + 3B(1) − ��

v − y
v B(1)h + 2B(1)B(2) − {

v B(1)B(3) − h
v B(2)h + B(2)B(3) − �

v B(3)h = 0,
�v
v B(2) − 4B(1) + �


v B(1)h − 7B(1)B(2) + y�
~ B(1)B(3) + �


v B(2)h − 6B(2)B(3) + {
h B(3)h = 0,

4B(4) + ��
v B(3) − vh

� B(2) + ~y
� B(1)B(2) − v�

v B(1)B(3) − {

� B(2)h + �h�

� B(2)B(3) − hh
v B(3)h − y

v B(1)h + �

v = 0,

5B(5) − E �

v B(3) + hv

v B(1)B(3) − |{
~ B(2)B(3) + yv

y B(3)h − h

� B(1)B(2) + vh

� B(2)h − y
v = 0,

6B(6) − 2B(1)B(3) + hh
v B(2)B(3) − ��

h B(3)h − |
� B(2)h + |

� = 0,

  (20) 

and using (19), we get 

2B(1) − B(2) + B(3) − B(4) + B(5) − 1 = 0,   (21) 

Solving the system (20) and differential transform version 

of initial condition (19), simultaneously, and using the inverse 

transformation rule (5), we get the following series solution 

*(�) = 1 + � + �h. 
Note that for � > 5 and Y → ∞ we evaluate the same 

solution, which is the exact solution of Eq.(16) with the initial 

conditions (17). 

Example 3. Finally, consider the following nonlinear delay 

integro–differential equation 

*′(�)*(�) + *(� − �
h) − 4 
  �


 *(�)*(� − �
h)�� = {

y − ��
h �h +

�v + 3�y − {
y �{, � ≥ 0,             (22) 

subject to initial condition *(�) = 1, for � ∈ [− �
h , 0]. 

From initial condition, we get *(0) = 1,  therefore by 

substituted � = 0, in Eq. (22) we get 

*′(0) − *(− �
h) = {

y,               (23) 

Similar on previous examples, the differential transform 

version of Eq. (22) for 6 = 1,2, . . . , � and for Y → ∞ is 

∑  -ℓ.
 (ℓ + 1)B(ℓ + 1)B(6 − ℓ) + ∑  Wℓ.- Qℓ
6X (− �

h)ℓ/-B(ℓ) − y
- ∑  -/�ℓ.
 ∑  Wj.-/ℓ/� Q�

6 − ℓ − 1X (− �
h)j/-JℓJ�B(ℓ)B(�)

 = {
y P(6) − ��

h P(6 − 2) + P(6 − 3) + 3P(6 − 4) − {
y P(6 − 5),

  (24) 

and the differential version of initial condition (23) is 

B(1) − ∑  �-.
 (− �
h)-B(6) = {

y,                                   (25) 

where B(6) is the differential transform of *(�). 

Using Eqs.(23), by taking � = 5, and Y = 3, the following system is obtained: 

B(1)h + 3B(1) + {
y B(3) − v

y B(4) − 4 = 0,
{
h B(1)B(2) + 3B(2) + {

h B(4) − 4B(1) + B(1)h + �
y B(1)B(3) − �

| B(1)B(4) + ��
h = 0,

3B(1)B(3) + {
v B(2)h + 3B(3) − |

v B(2) − y
v B(1)h + 2B(1)B(2) + h

v B(1)B(4) + �
~ B(2)B(3)

 − �
�h B(2)B(4) − 1 = 0,

�
h B(1)B(4) + 4B(2)B(3) + 5B(5) + 3B(4) − 2B(3) − 2B(1)B(2) + 2B(1)B(3) + B(2)h

 + �
h B(2)B(4) + �

| B(3)h − �
�~ B(3)B(4) − 3 = 0,

6B(1)B(5) + hv
{ B(2)B(4) + �h

{ B(3)h + 6B(6) − |
{ B(4) − |

{ B(1)B(3) + 2B(1)B(4) − y
{ B(2)h

 +2B(2)B(3) + �
h B(3)B(4) − �

h
 B(4)h + y
{ = 0,

       (26) 

and using (25), we get 

�
h B(1) + �

y B(2) − �
| B(3) + �

�~ B(4) − �
vh B(5) − �

y = 0, (27) 

Solving the system (26) and differential transform version 

of initial condition (25), simultaneously, and using the inverse 

transformation rule (5), we get the following series solution 

*(�) = 1 + � − �h. 
Note that for � > 5 and Y → ∞ we evaluate the same 

solution, which is the exact solution of Eq.(22) with the initial 

conditions (23). 

4. Conclusions 

In this paper, we have shown that the differential 

transformation method can be used successfully for solving 

the nonlinear delay integro–differential equations. New 

theorems were presented with their proofs and as application 

some prototype examples were carried out. It is worth noting 

that DTM does not require complex computational work such 

as Adomian polynomials in Adomian decomposition and 
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Lagrange multipliers by solving stationary equations in 

variational iteration method. 
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