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Abstract: This paper presents a new way to justify the controllability of linear ordinary systems. This way is based on the 

maximum geometric multiplicity of eigenvalues for the coefficient matrix of the linear ordinary equation. This method is 

equivalent to other discrimination laws for controllability. 
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1. Introduction 

The controllability problems of ordinary differential 

equations have been a great interest for decades due to their 

practical applications [1-5]. There are a lot of literatures on 

this issue ( see for instance [6-15]). The current paper presents 

a new way to justify the controllability of linear ordinary 

systems. This way is based on the maximum geometric 

multiplicity of eigenvalues for the coefficient matrix of the 

linear ordinary equation. 

The rest of the paper is organized as follows: Section 2 

presents a necessary and sufficient condition for justifying the 

controllability of the linear ordinary differential system. 

Section 3 gives several examples to show the efficiency of the 

new method. Section 4 is the conclusion of this paper. 

2. Main Results 

Let �  and �  be two matrix in ��×�  and ��×� 

respectively, where �, 	 ∈ � . Consider the following 

controlled ordinary differential equation: 

�
′(�) + �
(�) = ��(�),
(0) = 
� .             (1) 

Here 
� ∈ ��\{0}  and �  is a control function in the 

following admissible set: �� = ��:  0, +∞) → �� , ∥ �(�) ∥$%≤ '(,  (2) 

where ' is a positive constant. Throughout this paper, we use 

(�, �)  to denote the linear differential system given by 

equation (1). The main result of the paper is as follows: 

Theorem The linear differential system (�, �) is 

controllable if and only if the number of columns of the 

matrix � is no less than the maximum geometric multiplicity 

of eigenvalues for the matrix �. 

Proof. Suppose the system (�, �)  is controllable, and *+, *,, ⋯ *.
 
are the eigenvalues of the matrix  �  with the 

geometric multiplicity 	+, 	,, ⋯ 	. and algebraic 

multiplicity  �+, �,, ⋯ �. . Then there exists an invertible 

matrix / such that 

�0 ≜ /2+�/ = 3
45+ 5, ⋱ 5. 7

8,          (3) 

where 

59 = 3
4:+9 :,9 ⋱ :�9 7

8 , (; = 1,2, ⋯ , >).  (4) 

In equation (4) :?9  represents the Jordan’s block 

corresponding to *9, (; = 1, 2, ⋯ , >). 

Suppose the order of the Jordan block :?9 is @?9, and 

@+9 + @,9 + ⋯ @�A9 = �9 , (; = 1,2, ⋯ , >).      (5) 

Let �B ≜ /2+�.  We use (/+)  to represent the system 
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(�, �)  is controllable and (/,)  to represent the 

system CAE, �BF is controllable, then the problems (/+) and (/,) are equivalent. 

Suppose (AE, �B) is controllable, then for any eigenvalues  λ, take  *+ for example, we have 

C*+ − �0, �BF = I*+J − 5+ 0 �B+0 *+J − K �B,L,   (6) 

where rank(*+J − �0+, 0, �B+) = �+.           (7) 

It is obvious that the number of nonzero rows for equation 

(6) is 	+, where 	+ ≤ �+. Then from equation (6) we can 

see that the number of linearly independent rows of the matrix �B+ must be no less than 	+. So the number of columns for 

equation �  must be no less than 	+ . Because *+  is any 

eigenvalue for the matrix �, so the necessity of the theorem 

has been proved. 

On the other hand, if the number of columns for equation � 

is no less than 	9, (; = 1, 2, ⋯ , >), then for any eigenvalues *9, we have rank(*9J − �0, �B+) = �9.               (8) 

So rank(*J − �0, �B) = �+ + �, + ⋯ + �9.   (9) 

From equation (9) we can obtain that all the rows of the 

matrix (�,E �0�B, ⋯ �0�2+�B)  are linearly independent, which 

completes the proof of the sufficiency of the theorem. 

3. Applications 

In this section we provide several examples to show the 

efficiency of the above-mentioned method. 

Example 1. Let 

� =
3
QQ4

4 −5 2 0 0 06 −7 3 0 0 06 −9 4 0 0 00 0 0 0 1 00 0 0 −4 4 00 0 0 −2 1 27
XX8 , � =

3
QQ4

1 0 10 1 43 5 22 1 −14 3 2−2 6 3 7
XX8.  (10) 

We aim to proof that system (10) is controllable. 

Proof. Let 

�+ = Y4 −5 26 −7 36 −9 4Z , �, = Y 0 1 0−4 4 0−2 1 2Z,       (11) 

then the system (10) can be simplified as 

� = [�+ 00 �,\.                (12) 

It is easy to obtain 

*] − �+ = Y1 0 00 1 00 0 *,(* − 1)Z,          (13) 

*] − �, = Y1 0 00 * − 2 00 0 (* − 2),Z.       (14) 

So the Jordan’s normal form of matrix � is as follows 

� =
3
QQ4

^0 10 0_ 1 2 ^2 10 2_7
XX8.      (15) 

From equation (15), it is obvious that the maximum 

geometric multiplicity of the eigenvalues of the matrix � is 2, 

and the number of the non-zero columns of the matrix � is 3. 

According to the given method in section 2, system (10) is 

controllable. 

Example 2. Let 

� = `a+ a, ⋯ a�0 a+ ⋯ a�2+⋮ ⋮ ⋮ ⋮0 0 ⋯ a+
c

�×�
, � = `1 00 1⋮ ⋮0 0c

�×,
.  (16) 

Our aim is to proof that system (16) is controllable. 

Proof. For d(*) = |*] − �| = (* − a+)�,        (17) 

then the minimum polynomials of the matrix � is 	f = (* − a+)9, (1 ≤ ; ≤ �).        (18) 

Let g(*) = (* − a+)�2+,                (19) 

then 

g(�) = (� − a+])�2+ = ` 0 ⋯ ⋯ a,�2+⋱ ⋮⋱ ⋮0 c ≠ 0. (20) 

So 	f = (* − a+)�.                  (21) 

From equation (21), it is easy to obtain 

*] − � ≃ ` 1 ⋱ 1 (* − a+)�c
�×�

.  (22) 
So the elementary divisors of the matrix � is (* − a+)�.                   (23) 

Then the Jordan’s normal form of the matrix �  is as 

follows 
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`a+ 1⋱ ⋱⋱ 1a+
c.            (24) 

From equation (24), it is easy to obtain the maximum 

geometric multiplicity of the eigenvalues of the matrix  � is 1, 

and the number of the non-zero columns of the matrix � is 2. 

So according to the given method in section 2, system (16) is 

controllable. 

Example 3. Let 

� = Y −5 1 4−12 3 8−6 1 5Z ,   � = Y100Z.      (25) 

Our aim is to proof that system (25) is non-controllable. 

Proof. For |*] − �| = (* − 1)k,            (26) 

and the minimum polynomials of the matrix � is 	f = (* − 1),,                 (27) 

then the invariant factors of the matrix � is l+(*) = 1, l,(*) = * − 1, lk(*) = (* − 1),.  (28) 

So the Jordan’s normal form of matrix � is as follows 

� = Y1 0 00 1 10 0 1Z.                (29) 

From equation (29), it is obvious that the maximum 

geometric multiplicity of the eigenvalue of the matrix � is 2, 

and the number of the non-zero columns of the matrix � is 1. 

According to the given method in section 2, system (25) is 

non-controllable. 

Example 4. Let 

� =
3
QQ4

a 10 a m 10 m n 10 n7
XX8 , � =

3
QQ4

1000007
XX8.     (30) 

Proof. For system (30)， there are different cases: 

Case 1. When a = m = n , the maximum geometric 

multiplicity of the eigenvalue of the matrix � is 3, and the 

number of the non-zero columns of the matrix �  is 1. 

According to the given method in section 2, system (30) is 

non-controllable. 

Case 2. When a = m ≠ n , the maximum geometric 

multiplicity of the eigenvalue of the matrix � is 2 and the 

number of the non-zero columns of the matrix �  is 1. 

According to the given method in section 2, system (30) is 

non-controllable. 

Case 3. When a ≠ b ≠ c , the maximum geometric 

multiplicity of the eigenvalue of the matrix � is 1 and the 

number of the non-zero columns of the matrix  �  is 1. 

According to the given method in section 2, system (30) is 

controllable. 

In (30), if the number of the non-zero columns of the 

matrix � is 2, for example, 

� =
3
QQ4

1 00 10 00 00 00 07
XX8,             (31) 

then in case 1 the system (�, �) is non-controllable; in case 

2 and case 3 the system (�, �) is controllable. 

Still in (30), if the number of the non-zero columns of  

the matrix � is 3, for example, 

� =
3
QQ4

1 0 00 1 00 0 10 0 00 0 00 0 07
XX8,               (32) 

then the number of non-zero columns of the matrix � is 3. 

According to the given method in section 2, whether a, m, n 

are equal or not, the system (�, �) is controllable. 

In fact, as long as the number of non-zero columns of the 

matrix �  is no less than 3, the system (�, �) is always 

controllable. 

4. Conclusion 

This paper presents a new necessary and sufficient 

condition for justifying the controllability of the linear 

ordinary differential system. This way is based on the 

maximum geometric multiplicity of eigenvalues for the 

coefficient matrix of the linear ordinary equation. This method 

is equivalent to other discrimination laws for controllability. 

Section 2 presents a necessary and sufficient condition for 

justifying the controllability of the linear ordinary differential 

system. Section 3 gives several examples to show the 

efficiency of the new method. Section 4 is the conclusion of 

this paper. This method can also be used in other linear 

ordinary differential systems. 
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