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Abstract: In this paper we study the Hopf bifurcation control problem of a Internet Model with Time-delay. The stable region 

and stability condition of the congestion control model are given by use of the linear stability analysis. When the system gain 

passes through a critical value, the system loses the stability and Hopf bifurcation occurs. Considering the negative influence 

caused by Hopf bifurcation, we apply Proportional - Derivative (PD) controller to postpone the onset of undesirable Hopf 

bifurcation. Numerical simulation results and figures confirm that the control strategy is efficient in controlling the Hopf 

bifurcation. 
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1. Introduction 

Congestion control is a topic that has been dealt with for a 

long time, and it has also become a facet of daily life for 

Internet users. Network congestion in data networking and 

queueing theory is the reduced quality of service that occurs 

when a network node is carrying more data than it can handle. 

Typical effects include queueing delay, packet loss or the 

blocking of new connections. A consequence of the latter two 

effects is that an incremental increase in offered load leads 

either only to a small increase or even a decrease in network 

throughput [4]. 

FAST TCP is a TCP congestion avoidance algorithm 

especially targeted at long-distance for high speed networks 

with large bandwidth-delay products and uses the queuing 

delay as congestion measure, which enables FAST TCP to 

detect congestion without packet loss [5]. Many research 

efforts have been devoted to the analysis of the stability 

property of FAST TCP. Wang and his colleagues have 

introduced a new discrete-time link model that fully captures 

the effect of self-clocking and compared it with the 

traditional continuous-time model and Showed that FAST 

TCP is globally stable on a single link in the absence of 

feedback delay [8]. In [6, 10, 13], authors have studied 

global asymptotically stability of FAST TCP based on a 

continue model. they prove that the system is always 

asymptotically stable for general networks in the absence of 

feedback delay. Zhang and Liu have proved that FAST TCP 

is locally asymptotically stable in the homogeneous 

networks on condition that the round trip propagation delay 

is smaller than the queuing delay [7]. FAST TCP network is 

in a structure of feedback inteconnection of two 

input-to-state stable systems, and have proved that the 

composite total system is also input-to-state stable and 

globally asymptotically stable by applying the Razumikhin 

type nonlinear small gain theorem. This result shows that 

FAST TCP is inherently globally asymptotically stable 

without any constraint on the tuning parameter a or update 

gain b [9]. 

By using communication delay as a bifurcation parameter 

in a fair dual algorithm of an Internet congestion control 

system, was shown that when the communication delay of the 

system passes through a critical value, a Hopf bifurcation 

occurs in such a dual model of one-order time-delay 

congestion control system [2]. The author in [12] has 

proposed a state feedback method to control the bifurcation 

for a novel congestion control model. In [11], an impulsive 

control strategy has been applied to the FAST TCP and RED 

model for controlling bifurcation. And paper [3] has proposed 

a PD controller to controll the Hopf bifurcation in a complex 
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networks model. Proportional-Integral-Derivative (PID) 

controller is a widely used control method for dynamics 

control in nonlinear system for its superior performance. A 

PID-controller consists of a PI control portion connected in 

serial with a PD control portion. PI control can improve the 

steady-state error at the expense of an increasing response 

time while PD control can improve the speed of response of a 

control system. In this paper, PD controller applied to FAST 

TCP and RED model, for postponing the occurrence of Hopf 

bifurcation. The PD control strategy can be applied to any 

component of a several-dimensional dynamical system and is 

still effective even when the system becomes chaotic. 

The organization of this paper is as follows. Some results 

in uncontrolled system are concluded in Section 2. In Section 

3, we study the Hopf bifurcation of Control system. In the 

next section, by the normal form method and the center 

manifold theory introduced by Hassard et al. [1], the 

direction of Hopf bifurcation and the stability of bifurcating 

periodic solutions are determined. In addition, the main 

results illustrated by examples with numerical simulations. 

2. Existence Hopf Bifurcation in 

Uncontrol FAST TCP Model 

The model can be described by the following nonlinear 

differential equations: 

���
��x��t	 = a � 
��������	 − ������	���	���������	��� 

y� �t	 = �� � ������	�����������	 − c!           (1) 

Where 

x (t): denotes congestion window of the source, 

c: the transmission capacity, 

y (t): the queuing delay, "�: the forward delay from source to link, "#: the backward delay in the feedback path from link to 

source, 

d: represents the constant round trip propagation time 

defined as the minimum achievable round trip delay. 

b (b>0): the number of the packets that each source attempts 

to maintain in the network buffers at equilibrium point, 

a: the source control parameter with $ ∈ �0, 1]. 
The congestion window x(t) and the queuing delay y (t) are 

nonnegative. Let " = "� + "# equation (1) can bewritten 

+x��t	 = a � 
�������	 − �����	���	��������	���
y� �t	 = �� � ���	�������	 − c!          (2) 

And the equilibrium point is �,-, .-	 = �/0 + 1, 23!. 

With the linearizing system (2) about �,-, .-	 and transfer 

critical point of origin we have: 

4x� �t	 = −abcα#x�t	 − c7daα#y�t − τ	 y� �t	 = αx�t	 − cαy�t − τ	     (3) 

Where α = ����
 and the characteristic equation (3) is 

λ# + abcα#λ + �abc#α7 + cαλ + c7daα7	e�<� = 0   (4) 

We assume = = >? is a purely imaginary root of (4), then 

we can obtained 

?@ + �$#1#0#A@ − A#0#	?# − B$10#A7 + 07/$A7]# = 0   (5) 

So the equation (4) has a solution = = >?- that ?- > 0. 

Let =D�"	 = ED�"	 + >FD�"	  denote a root of equation (4) 

such that =D�"D	 = >?-. Then 

τH = �IJ �Arcsin PQ�IJR�S�
��RQTIJ�S�
�U�QTIJ�S
��QR��R�SQR	��Q���IJ� V + 2XY	  (6) 

X = 0, 1, 2, … 

We still need to check the following transversal condition in 

order to verify the onset of Hopf bifurcation. 

Lemma 1. In the equation of (4) 

Re �dλdτ	\�]�^ > 0 

Proof. Let _ = 0A, ` = $1A and a = $/ then 

�<�� = �b�c<�b<��bRd<�efgh#<�bc���b�c��b�b<��bRd�	efgh      (7) 

Re ��<��	i�]�^ = j��j��jRjU           (8) 

That M� = B2Aω-# + A7B#ω- + A@BCω-]sinω-τH  o# = B2_#`?-# + 2_7a?-7 − _#`?-]0pq?-"D o7 = _#`"D + _7a"D − _ − _#`"D?- − _7a"D?-  o@ = B_`0pq?-"D − 2?-q>r?-"D − _#`"D +_ −_7a"D]# + B_`q>r?-"D2?-0pq?-"D − _?-"D]# 

Thus, according to 

���
�� cosω-τH = IJ�tb�c�bRdu�b�cIJ�Bb�c�bRd]��b�IJ�  

sinω-τH = bcIJtb�c�bRdu�bIJRBb�c�bRd]��b�IJ�  2ω-# = A# − A#B# + vBA#B# − A#]# + 4BA#B + A7C]#
  (9) 

The proof is completed. ∎ 

Therefore, the transversal condition for Hopf bifurcation in 

the system (2) is satisfied. We conclude above analyzes in 

following Theorem. 

Theorem 2. For the system (2), there exists a Hopf 

bifurcation emerging from its equilibrium �,-, .-	 when the 

positive parameter " passes through the critical value "D . 
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3. Hopf Bifurcation in Controlled Model 

Based on PD Controller 

In this section, we focus on designing a controller to control 

the Hopf bifurcation in model based on the PD control strategy. 

Apply the PD control to system (2) then: 

���
��x��t	 = a � 
�������	 − �����	���	��������	��� + kz�x�t	 − x-	 + k�x��t	 y� �t	 = �� � ���	�������	 − c! + kz�y�t	 − y-	 + k�y� �t	   (10) 

Where X{: proportional control parameter,−1 < X{ < 1 X~: derivative control parameter,−1 < X~ < 1 

Let ���	 = ,��	 − ,-, ���	 = .��	 − .- . Linearizing 

system (10) about the equilibrium point, we get 

�p� �t	 = ���H� t�kz − abcα#�p�t	 − c7daα#q�t − τ	u q� �t	 = ���H� Bαp�t	 + �kz − cα�q�t − τ	]   (11) 

The characteristic equation of which is 

λ# + �bc�H���H� ! + ��H��bc��H��b��bRd���H�	� + b�H���H� λ	e�<� =  0 (12) 

Let = = >? is root equation (12). So 

ω@ + ��bc�H���H� !# − �b�H���H� !#� ω# − ��H��bc��H��b��bRd���H�	� !# = 0 (13) 

Then the equation (13) has a solution = = >?-∗  that ?-∗ > 0 and also 

� 2ω-∗ # = M�kz, k�� + N�kz, k�� τH∗ = �IJ∗ �Arcsin ���H�,H����H�,H��� + 2kπ	        (14) 

Where 

��
��
�
��
�� M�kz, k�� = ��Q�H���H� !# − �S
�Q��H���H� !# 

N�kz, k�� = �M#�kz, k�� + 4 ��H��S
�Q���H���Q����Q	RS����H�	� !# 
P�kz, k�� = ��Q�H���H� ! ω-∗ 7 + �S
�Q���H� ! ��H��S
�Q���H���Q����Q	RS����H�	� ! ω-∗  

Q�kz, k�� = ��Q�H���H� ! ω-∗ # + ��H��S
�Q���H���Q����Q	RS����H�	� 	# 
               (15) 

According to what was described in section 2, the 

controlled system (10) undergoes Hopf bifurcation at �,-, .-	 

when " = "D∗ , X = 0, 1, 2, … 

4. Stability and Direction of Bifurcating 

Periodic Solutions 

In this section, by using normal form theorem and center 

manifold theory, we analyze the direction and the stability of 

bifurcating periodic solutions when " = "D∗  and present 

numerical simulations to verify theoretical analysis obtained 

in the previous sections. 

Let .���	 = ,��	 − ,-, .#��	 = .��	 − .-. The expansion 

of equation (10) about the equilibrium point is 

��
�
�� y���t	 = a�y��t	 + a#y#�t − τ	 + a7y��t	y#�t − τ	 + a@y##�t − τ	 + a�y��t	y##�t − τ	 + a�y#7�t − τ	 + ⋯  y� #�t	 = b�y��t	 + b#y#�t − τ	 + b7y��t	y#�t − τ	 b@y##�t − τ	 + b�y��t	y##�t − τ	 + b�y#7�t − τ	 + ⋯  (16) 

Where 

���
��
���
� a� = H��S
�Q���H� , a# = �S�R�Q���H� , a7 = SQR���
��R�	��H�a@ = @S�U�QR��H� , a� = SQU�@�U��#�R
	��H� , a� = ���S�U�QU��H� b� = H��Q��H� , b# = ��Q��H� , b7 = ��Q���H� 

b@ = #��Q���H� , b� = #��QR��H� , b� = ���RQR��H�

  (17) 

According to what is described in [13] we define: 

ρ = � 1ρ�� = � 1�IJ∗ �S�
�ef��J∗ h∗̂ � , ρ∗ = �ρ#1 ! = � �
��IJ∗ �S�1 � 

D = B�ρ���� + ρ#	 + ρ�����ρ#a# + b#	τH∗ e��IJ∗ �∗̂ ]�� 

k�� = a7ρ�e��IJ∗ �∗̂ + a@ρ�#e�#�IJ∗ �∗̂
 k�# = a7�ρ����e��IJ∗ �∗̂ + ρ�e��IJ∗ �∗̂ � + 2a@ρ�ρ���� 

k�7 = a7ρ����e�IJ∗ �∗̂ + a@ρ����#e#�IJ∗ �∗̂
 k#� = b7ρ�e��IJ∗ �∗̂ + b@ρ�#e�#�IJ∗ �∗̂

 k## = b7�ρ����e�IJ∗ �∗̂ + ρ�e�IJ∗ �∗̂ � + 2b@ρ�ρ���� 
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k#7 
 b7ρ����e�IJ� ��̂ * b@ρ����#e#�IJ� ��̂
 g#- 
 2D��ρ#���k�� * k#�	 g�� 
 D��ρ#���k�# * k##	 g#- 
 2D��ρ#���k�7 * k#7	 

E� 
 �
�H���S�H��S�
��S�
�S�H���
�H��S�
��S�
�
� 

E# 
  
¡ �#S�H���#
�H��	ef���J� h�̂ �@�H��IJ��S�
��S�
��#�
�IJ� �ef���J� h�̂ �#�S�IJ� �@IJ� �#
�H���#S�H���@�H��IJ��S�
��S�
��#�
�IJ� �ef���J� h�̂ �#�S�IJ� �@IJ� �¢

£ 

¤W���	�θ	W��#	�θ	§ 
 � ig��ω-� ρe�IJ� ¨ * ig������ω-� ρ
�e��IJ� ¨ * E� 

¤W#��	�θ	W#�#	�θ	§ 
 � ig#-ω-� ρe�IJ� ¨ * ig#-����3ω-� ρ
�e��IJ� ¨ * E#e#�IJ� ¨ 

k�@ 
 a7B12 W#��	�0	ρ����e�IJ� ��̂ * W���	�0	ρ�e��IJ� ��̂ * 12 W#�#	��τH� 	 * W��#	��τH� 	) * a@BW#�#	��τH� 	ρ����e�IJ� ��̂
* 2ª��#	��"D�	«�¬�­®J� ¯°� ) * $�B«�#¬�#­®J� ¯°� * 2«�«���� * 3$�«�#«����¬�­®J� ¯°�      

k#@ 
 b7B12 W#��	�0	ρ����e�IJ� ��̂ * W���	�0	ρ�e��IJ� ��̂ * 12 W#�#	��τH� 	 * W��#	��τH� 	) * b@BW#�#	��τH� 	ρ����e�IJ� ��̂
* 2ª��#	��"D�	«�¬�­®J� ¯°� ) * 1�B«�#¬�#­®J� ¯°� * 2«�«���� * 31�«�#«����¬�­®J� ¯°�  

±#� 
 2²��«#���X�@ * X#@	 

We have the following theorem for the controlled model 

based on the conclusions in [1]. 

Theorem 3. For the controlled system (10), the Hopf 

bifurcationis determined by the parameters ³#, #́ and µ#, the 

conclusions are summarized asfollows: 

Parameter ³#  determines the direction of the Hopf 

bifurcation. If ³# C 0, the Hopf bifurcation is supercritical, 

the bifurcating periodic solutions exist for " C "D� , If ³# } 0 

the Hopf bifurcation is subcritical, the bifurcating periodic 

solutions exist for " } "D� . 

Parameter µ#  determines the stability of the bifurcating 

periodic solutions. If µ#<0, the bifurcating periodic solutions 

is stable; if µ# > 0, the bifurcating periodic solutions is 

unstable. 

Parameter #́  determines the period of the bifurcating 

periodic solution. If #́> 0, the period increases; If  #́< 0, the 

period decreases. ³#; #́and µ# are given as follows: 

���
��
���
�∆
 i2ω-� ·±��±#- � 2|±��|# � |±-#|#3 ¹ * ±#�2³# 
 Reº∆»Re=��"D�	 

#́ 
 Imº∆» * ³#F¾=��"D�	ω-�  µ# 
 2Reº∆» 
 

Proof. Detailed proof and calculation of ±­¿ are shown in 

[1], [13]. 

In the following, we present numerical simulation to verify 

the analytic results and the control effects of algorithm. We 

use the same parameters as those in [13]: a = 0.8; b = 1120; c = 

50000 and d = 0.05, then we have: 

Table 1. Numerical simulation of uncontrol system. 

uncontrol system ω- 16.32463278151223 τ- 0.07241795255088493 

 

Figure 1. "-� dependence on X~ with X{ 
 0.9. 

Table 2. Numerical simulation of control system. 

control system  ω-�  15.483689051929085 27.20616359747526 τ-�   0.07825427250568502 0.043454498972068996 

Now we verify the performance of the controlled model 

with PD controller. The comparison tables will be determined 

by choosing X{  
 0.9, X~ 
 0.00003 , the onset of Hopf 
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bifurcation delayed and advanced via choosing X{ 
0.001, X~ 
 0.4. 
From figure 1, we can see, by decreasing X~, "-� increases. 

The dynamical behaviors of the uncontrolled and controlled 

model are illustrated in figure 2-5. Figure 2, 4 shows the 

system (2) in " = 0.07241795255088493 and " = 0.07. In 

order to compare controlled system with the uncontrolled 

system, we choose the parameters of Figure 3, 5 same as 

shown in Figure 2, 4. From Figure 2, 3 and tables we know the 

bifurcation value of uncontrolled system is "-  = 

0.07241795255088493 but in the controlled system is "-�= 

0.07825427250568502, that shows the onset of Hopf 

bifurcation has been delayed obviously. Results show that the 

value of equilibrium point of controlled system is equal to that 

of uncontrolled model, which confirms that the equilibrium 

does not change under PD controller. 

 

Figure 2. Waveform plot and phase plot of uncontrolled system (2) with " = 0.07241795255088493. 

 

Figure 3. Waveform plot and phase plot of controlled system (10) with " = 0.07241795255088493, X{ 
 0.9 and X~= 0.00003. 
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Figure 4. Waveform plot and phase plot of uncontrolled system (2) with " = 0.07. 

 

Figure 5. Waveform plot and phase plot of controlled system (10) with " = 0.07, X{= 0.0001 and X~= 0.4. 

Criterion function and Boundary constraint of the control model is 

+Max "-� 
 �IJ� _Á0q>r ���H�,H����H�,H��� kz % ��1, 1	 k� % ��1, 1	                                  (18) 

By proper selection of the parameters ( X{ 
  0.999991, X~ 
 �0.999998). We obtained o$, "-� 
 0.157867 and this is 

emphasized, by the appropriate controller the Hopf bifurcation is delayed. 
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Figure 6. "-� dependence on X{ and X~. 

5. Conclusions 

In this paper, the problem of Hopf bifurcation control for an 

FAST TCP model with RED gateway was studied. In order to 

control the Hopf bifurcation, a PD controller is applied to the 

model. This PD controller can successfully delay or advance 

the onset of an inherent bifurcation. The end theoren helped to 

improve model. 
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