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Abstract: Cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. 

Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we 

present analytical relation between the concentration at the electrode surface and the current for quasi-reversible reaction.A 

new semi analytic description ofquasi-reversible cyclic voltammetry at a electrode is obtained, assuming equal diffusion 

coefficients. It provides rigorous and complete expression for the voltamettric current, in the form of the integral or the integral 

equation.This solution method can be extended to cases that are more general and may be useful for benchmarking purposes. 
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1. Introduction 

Cyclic voltammetry is one of the main tools used to 

characterize electrochemical systems and has a broad range 

of applications. This method is frequently used for analyzing 

electroactive species and surfaces and for the determination 

of reaction mechanisms and rate constants. Investigators over 

the years have sought analytical expressions and 

relationships to enable a theoretical interpretation and 

understanding of experimentally recorded cyclic 

voltammograms and other electrochemical characterization 

techniques [1–6]. Bortels et al. [7] found analytical solutions 

for the one dimensional steady state transport of ions in an 

electrolyte between two planar electrodes. Molina et al. [8] 

derived analytical expressions for the current or potential 

response and concentration profiles for the reversible ion 

transfer at the interface between two immiscible electrolyte 

solutions. 

Berzins and Delahay [9] derived an equation for 

oscillographicpolarographic waves corresponding to the 

reversible deposition of an insoluble substance and compared 

their results with experimental data. White and Lawson [4] 

presented a solutions for the voltammetric deposition and 

dissolution of a metal from an electrode accounting for 

spherical effects as well as kinetics, uncompensated cell 

resistance, and submonolayer metal deposition. Lantelme and 

Cherrat [3] explored the analytical solutions to the cyclic 

voltammetry process.Oldham and Myland [10] derived 

mathematical solutions for the cyclic voltammetry of strong 

adsorption such that the redox pair is confined to the 

surface.In addition, Oldham and Myland [11], developed a 

semi-analytical method for describing the current in cyclic 

voltammetry. 

Eswari and Rajendran [12] reported the closed-form 

analytical expressions for the concentration in an EC reaction 

for limiting cases of small and large reaction rates at the 

electrode and small and large time intervals. In that 

investigation, the authors employed the equation in planar 

geometry to describe the mass transport and the Butler-

Volmer equation at the electrode surface to account for the 

kinetics. The asymptotic expressions for the normalized 

current were derived by using the Laplace transformation. 

Furthermore, Eswari and Rajendran [13] explored 

analytical solutions for the EC2 cyclic voltammetry model 
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[13] using He’s homotopy perturbation method.Samin, and 

Jinsuo Zhang [14] derive analytical solutions to the planar 

cyclic voltammetry model which describes mass transport of 

species through the equations and the kinetics at the electrode 

surface through the Nernst and Butler-Volmer equations. In 

this study we have obtained the relation between the 

concentration ferrocyanideat the electrode surface and the 

current for quasi-reversible reaction. 

Table 1. Nomenclature. 

Symbols Definitions 

redc  The concentration of redox species 

oxc  The concentration of oxidised species 

redD  Diffusion coefficient of redox species 

oxD  Diffusion coefficient of oxidised species 

ek  EC rate constant 

(0, ), (0, )red oxc t c t  
The concentrations of the reacting species at 

the electrode surface 

, ,,red oxc c∞ ∞  
The concentrations of the reacting species in 

the bulk of the solution 

E Electrode potential 

Er The equilibrium electrode potential 

β symmetry factor 

F
 

Faraday constant 

R
 

The universal gas constant 

T The thermodynamic temperature 

/red red
a C C ∗=  Dimensionlessconcentration of redox species 

/ ox
ox

red

C
b C

C ∗

=  Dimensionlessconcentration of oxidised 

species 

/tFv RTτ =  Dimensionless time 

/ redX Z FV RTD=  Dimensionless distance 

/red

red

Ke
RTD FV

D
ξ =  Dimensionless parameter 

2. Mathematical Formulation of the 

Problem 

Consider  the EC reaction 

4 3

6 6[ ( ) ] [ ( ) ]Fe CN Fe CN e
− − −↔ +                    (1) 

The concentration profiles of the red and ox forms can 

beobtained by solving the diffusion equation, which can be 

simplified in the case of a rotating disk electrode (RDE) to 

the following one dimensional form. 

2

2

( , ) ( , )
red red

red

c z t c z t
D

t z

∂ ∂
=

∂ ∂
                         (2) 

2

2

( , ) ( , )
ox ox

red

c z t c z t
D

t z

∂ ∂
=

∂ ∂
                           (3) 

Where ,
red ox

c c  are the concentration of redox and 

oxidisedspecies.
red

D  and 
ox

D  are the corresponding 

diffusion coefficient.The initial and boundary conditions for 

the aboveequationsaregiven by [15]. 

* *
c z,0 c , c z,0 c , 0red red ox ox( ) ( ) when t= = =          (4) 

0

( , ) ( )
( )i

i

z

c z t i t
D r t where or

z nFA=

∂
= = ± + −

∂
sign stands for 

i red or ox=                                   (5) 

1/3 1/6 1/2

D,i D,
(δ ,t) δ 1.61

i i i r
c c where D v ω−

∞= =         (6) 

In the case of Butler- Vomer kineticsreaction rater(t) is 

given by 













−−−−−=
∞∞

)/))(()1(exp(
),0(

)/))((exp(
),0(

)(
,,

RTEtEF
c

tc
RTEtEF

c

tc
ktr r

ox

ox
r

red

rede ββ          (7) 

Where 
ek  is the EC rate constant, 

, ,(0, ), (0, ), ,red ox red oxc t c t c c∞ ∞  are the concentrations of the 

reacting species at the electrode surface and in the bulk of the 

solution, respectively.E is the electrode potential, Er is the 

equilibrium electrode potential, and β is a symmetry factor, 

whereas f = F/RT, where F is the Faraday constant, R is the 

universal gas constant, and T is the thermodynamic 

temperature. The EC constant k
e
 is defined as follows: 

* *

, ,exp( ( )) exp( (1 ) ( ))
e

red red r ox ox rK K c f E K C f Eβ β∗ ∗
∞ ∞= = − −    (8) 

We introducethe following set of dimensionless variables: 

, , ,

,

red ox

red red

red

red red

C C tFv
a b

C C RT

RTDFV Ke
X Z

RTD D FV

τ

ξ

∗ ∗

= = =

= =
                          (9) 

Using the above dimensionless variables the diffusion 

equations (1) and (2) are expressed in the following 

dimensionless form: 

2

2

a a

Xτ
∂ ∂=
∂ ∂

                                     (10) 

2

2

b b

X
ξ

τ
∂ ∂=
∂ ∂

                                   (11) 

The dimensionless initial and boundary conditions are 

1, 0 0;a b when τ= = =                       (12) 

,, D i

red red

C C FV
a b when X

C C RT
δ γ

∗ ∗

∞ ∞= = = =    (13) 
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1 1 2 2

0

exp[ ) (0, ) exp[ ) (0, )
X

da
K l a K l b

dX
βτ τ ατ τ

=

= + − +       (14) 

3 1 4 2

0

exp[ ) (0, ) exp[ ) (0, )
X

db
K l a K l b

dX
βτ τ ατ τ

=

= − + − +   (15) 

Where

1

1

1

21 1

,

( )
1 , ,

( 1) ( )
,

r

er

red red

F E E
l

RT

k RTF E E
l K

RT C D FV

βα β

β
∞

−
= − =

− −
= =

 

2 3

, ,

4

,

e e

ox red red ox

e

ox ox

k RT k RT
K K

C D FV C D FV

k RT
K

C D FV

∞ ∞

∞

= =

=
       (16) 

We get the following relation between the surface 

concentration and current (Appendix A) 

2

0

1 ( )
(0, ) 1 [1 2exp( / 4( )] )

i
a t d

m t

τ ττ γ τ τ
π τ
 

= − − − − 
− 

∫   (17) 

Similarly we get 

2

0

1 ( )
(0, ) [1 2exp( / 4( )] )

i
b t d

m t

τ ττ γ τ τ
π τ
 

= − − − 
− 

∫   (18) 

Where 

1

red red
red

m
FV

D C nFA
RTD

∗

=
                     (19) 

This is the new analytical expression of surface 

concentration in terms of current. When 0γ =  from Eqn. 

(17 ) and (18) we get 

0

1 ( )
(0, ) 1 )

i
a d

m t

τ ττ τ
π τ
 

= +  
− 

∫                    (20) 

0

1 ( )
(0, ) )

i
b d

m t

τ ττ τ
π τ
 

=  
− 

∫                          (21) 

Which is the wel known analytical expression of surface 

concentration which is obtained from convolution 

transformation[16]. 

In the case of dimension variable the above Eqn. (20) and 

(21) becomes 

* 2

0

( )
(0, ) {[1 / ( / )]{ [1 2exp( / 4( )] )}}red red red

i
C C D nFRA FV RT t d

t

τ ττ γ τ τ
τ

= − − − −
−∫                           (22) 

2

0

( )
(0, ) [1 / ( / )][ [1 2exp( / 4( )] )]ox red

i
C D nFRA FV RT t d

t

τ ττ γ τ τ
τ

= − − −
−∫                                  (23) 

The above equation can be rewritten as 

* ( )
(0, )

/
red red

red

I
C C

D nFRA FV RT

ττ = −                (24) 

( )
(0, )

/
ox

ox

I
C

D nFRA FV RT

ττ =                   (25) 

Under few diffusion control condition (0, ) 0
red

C τ =  and 

thereforeI(t) reaches the limit value 
L

I  

( )
(0, )

/

L

red

red

I I
C

D nFRA FV RT

ττ −
=                   (26) 

Where 

2

4( )

0

( )
( ) (1 2 )ti

I e d
t

τ γ
τττ τ

τ
− −  = − 

−  
∫

 and 

* /L red redI C D nFRA FV RT=                     (27) 

3. Conclusions 

We have derived the analytical relation between the 

cocentration of the species at the electrode surface and 

currentfor quasi-reversible reactions. From this result we can 

also obtain the concentration ofof the species at the electrode 

surface and currentfor reversible reactions. The extension of 

the procedure to other convection difussion process in 

rotating disc, rotating ring-disc electrodes,etc apart from the 

stydy of nonlinear convection difussion process in all 

hydronynamicelectrodes seems possible. 
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Appendix A: Analytical relation between the surface 

concentration and the current. 

The dimensionless form of one dimensional plannar 

diffusion are described by the following equations: 
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2

2

a a

Xτ
∂ ∂=
∂ ∂

                             (A1) 

2

2

b b

X
ξ

τ
∂ ∂=
∂ ∂

                              (A2) 

The initial and boundary conditions are 

1, 0 0a b when τ= = =                  (A3) 

, D

red red

C C FV
a b when X

C C RT
δ

∗ ∗

∞ ∞= = =         (A4) 

1 1 2 2

0

exp[ ) (0, ) exp[ ) (0, )
X

da
K l a K l b

dX
βτ τ ατ τ

=

= + − +    (A5) 

0 3 1 4 2exp[ ) (0, ) exp[ ) (0, )x

db
K l a K l b

dX
βτ τ ατ τ= = − + − +   (A6) 

Taking the Laplace transform of Eqn. (A1), we get

 

1 2

1
( , ) sX sXa X s c e c e

s

−= + +                   (A7) 

Using the boundary conditionEqns. (A3)-(A6) we get 

1

1
(0, ) [2 ]

s
a s c e

s

γ= − +                     (A8) 

Now current becomes 

0

( ) ( , )
red red

Xred

i FV da X s
D c

nFA RTD dX

τ
∗

=

=                (A9) 

Taking Laplaceonboth sides 

0

( ) ( , )
red xred

red

i s FV da X s
D c

nFA RTD dX
∗ ==             (A10) 

From Eqn. (A8),we get 

0

1

( , )

X

sa X s
c s e

X

γ

=

∂ =
∂                          (A11) 

Using Eqns. (A10) and (A11) 

*

( ) ( , )

0 1

red red

i s d a X s s
c s e

xdX
FV

D C nFA
RTD

red

γ= ==
  (A12) 

The above equation can be written as 

0 1

( ) ( , ) s

x

i s da x s
c s e

m dX

γ
== =               (A13) 

Where 

1

red red
red

m
FV

D C nFA
RTD

∗

=
                       (A14) 

Now the constant c1 becomes 

1

( )
s

i s
c

m s e
γ

=                                         (A15) 

Using this constant the Eqn. (A8) beomes 

( ) 1 2 ( ) ( ) 1
(0, ) [2 1]

s
si s i s i s

a s e e
s m sm s m s

γ γ− −= − + = − +   (A16) 

Taking laplace inverse on bothsideswe get 

 
2

0

1 ( )
(0, ) 1 { [1 2exp( / 4( )] )}

i
a t d

m t

τ ττ γ τ τ
π τ

= − − − −
−∫  (A17) 

Which is the equation (17) in the text.
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