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Abstract: In this paper the theoretical model of glucose–oxidaise loaded in chitosan-aliginate microsphere and hydrogen 

peroxide production is discussed. The glucose and oxygen in the medium diffuse into the microsphere and react, as a catalyst 

by glucose oxidase, to produce gluconic acid and hydrogen peroxide. The model involves the system of nonlinear nonsteady-

state reaction-diffusion equations. Analytical expressions for the concentrations of glucose, oxygen, gluconic acid and 

hydrogen peroxide are derived from these equations using homotopy perturbation and the reduction of order method. A 

comparison of the analytical approximation and numerical simulation is also presented. An agreement between analytical 

expressions and numerical results is observed. The effect of various parameters (glucose concentration in the external solution, 

particle size, enzyme loading and Michaelis constant etc.) on the concentration of gluconic acid and hydrogen peroxide release 

is discussed. Sensitivity analysis of parameters is also discussed. 

Keywords: Mathematical Modeling, Enzyme–Encapsulated Polymer, Microspheres, Hydrogen Peroxide Generation, 

Release Kinetics 

 

1. Introduction 

Reactive oxygen species (ROS) are chemically reactive 

molecules containing oxygen. Examples include peroxides, 

superoxide, hydroxyl radical and singlet oxygen. Reactive 

oxygen species and cellular oxidants tress have long been 

associated with cancer. [1] suggest that cancer cells normally 

produce more ROS than do normal cells. A mathematical 

model including simultaneous diffusion and enzymatic 

reaction was developed by [2] Also [3] discuss the theoretical 

and experimental model of glucose sensitive membrane. [2] 

have developed a mathematical model to describe a dynamic 

process of diffusion of reactants, coupled with an enzymatic 

reaction inside a glucose composite membrane containing an 

ionic nano particles, glucose oxidase and catalase embedded 

in a hydrophobic polymer. [4] analyzed the theoretical model 

describing the process of reaction and diffusion in glucose-

responsive composite membranes. Recently, insulin-delivery 

system contain a glucose membrane has been studied [4-6] 

More recently [7, 8] derived the mathematical equation to 

describe the release kinetics of enzymes, generated hydrogen 

peroxide from polymeric matrix with spherical geometry. 

However, to the best of author’s knowledge, no general 

analytical expressions for the concentrations glucose, 

oxygen, gluconic acid and hydrogen peroxide for all values 

of reaction/diffusion parameters. The purpose of the present 

study is to derive simple approximate analytical expression 

for concentrations profiles of various species inside the 

GOX-MS for steady and non-steady state conditions. This 

model can be used to predict the system performance and 

determine the appropriate combination of material and 

geometries that can yield useful devices. 
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2. Mathematical Formulation of the 

Problem 

Building upon earlier study, [8] presented a concise 

discussion and derivation of the mass transport nonlinear 

second-order differential equation which gives the 

concentration profiles of each species with in the 

microsphere membrane, is summarized briefly below. The 

schematic diagram illustrating the structure of a glucose 

oxidase loaded chitosan–aliginate microsphere and hydrogen 

oxide production is represented in Fig. 1 [8]. The reaction of 

glucose oxidation to produce the gluconic acid and hydrogen 

peroxide in polymeric microspheres can be written as 

follows: 

Glucose+��
������	�
��
�	

������������Gluconicacid+����         (1) 

 
Figure1. Schematic diagram illustrating the structure of a glucose oxidase 

loaded chitosan–aliginate microsphere and hydrogen oxide production 

(Abdekhodaie, ChengandWu (2015)). 

Using mass conservation law by neglecting convection, the 

nonlinear reaction-diffusion equation in spherical coordinate 

are given as follows: 
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Where i denotes individual species, e.g. i=g for glucose, 

i=OX for oxygen, i=a for gluconic acid and i=h for hydrogen 

peroxide; the stoichiometric coefficients
i

v , are 1gv = − ,

0.5
OX

v = − , 1
a

v = and 1
h

v =  [8]; C is the concentration, D 

is the diffusion coefficient, r is the length parameter, and ℜ is 

the overall reaction rate which is given by 
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For non steady–state Eq. 2 becomes 
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where , ,g OX a hD D D and D are the diffusion coefficients of 

glucose, oxygen, gluconic acid and hydrogen peroxide 

respectively , ,g OX a hC C C and C are the corresponding 

concentrations, r is the spatial coordinate; and
max

V is the 

maximal reaction velocity that is proportional to the 

concentration of enzyme ( )enzC in the microspheres.
gK

 
and

OXK denotes the Michaelis-Menton constants for glucose and 

glucose oxidase, respectively. The initial and boundary 

conditions are [8] 

0 , 0 , 0 , 0 , 0g OX a ht C C C C= = = = =              (8) 
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r S= ,
* *, ,g g OX OXC C C C= = 0,aC = ' 0

h
C =           (10) 

Where S is radius of the microsphere, r=0 is the center of 

the microsphere, and
*

OXC and
*

gC are the concentration of 

oxygen and glucose in the external solution, respectively. We 

can assume that the diffusion coefficient of glucose, oxygen, 

gluconic acid and hydrogen peroxide are equal

( ).g OX a hD D D D D= = = = Using the following 

dimensionless variables 
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Eqs. 4-7 can be written in the following dimensionless 

form: 
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Here u, v, w and H are the dimensionless concentrations of 

glucose, oxygen, gluconic acid and hydrogen peroxide 

respectively, and 
g andγ γ  are the corresponding Thiele 

modulus. andα β are the dimensionless rate constants. The 

corresponding initial and boundary conditions(8-10)becomes 

0, 0, 0, 0, 0T u v w H= = = = =                (16) 

0, 0, 0, 0, 0
u v w H

R
dR dR dR dR

∂ ∂ ∂ ∂= = = = =           (17) 

1, 1, 1, 0, 0R u v w H= = = = =                  (18) 

3. Approximate Analytical Expression 

for the Concentrations Using HPM 

Many problems in natural and engineering sciences are 

modeled by non-linear partial differential equations. In the 

last two decades with the rapid development of nonlinear 

science, there has appeared ever increasing interest of 

physicists and engineers in the analytical techniques for non 

linear problems. It is well-known, that perturbation methods 

provide the most versatile tools available in nonlinear 

analysis of engineering problems [9-13]. The perturbation 

methods, like the nonlinear analytical techniques, have their 

own limitations [14, 15]. These facts have motivated to 

suggest alternate techniques, such as variational iteration [16, 

17] Adomain decomposition [18-21] and exp function [22]. 

In order to overcome these drawbacks, combining the 

standard homotopy and perturbation method, which is called 

the homotopy perturbation, modifies the homotopy method. 

The basic principle of this method is described in 

Appendix A. We have obtained the analytical expressions of 

the concentrations of glucose, oxygen and gluconic acid and 

hydrogen peroxide be solving the non-linear equations (12) 

to (15) using new approach of homotopy perturbation method 

[23, 24] as follows: 
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where 

/ ( 1 )
g

k γ α β= + +  

Detailed derivations of the dimensionless concentration of glucose, oxygen, gluconic acid and hydrogen peroxide are 

described in Appendix B-E. During steady state condition (t → ∞ ), from the above results, the analytical expression for 

concentrations become 
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The concentration of glucose, oxygen, gluconic acid / hydrogen peroxide at the centre of microsphere is given in Table 1. 
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Table 1. Concentration of Glucose, Oxygen, Gluconic Acid and Hydrogen Peroxide at the Centre of the Microsphere. 

Concentration Non steady state Steady state 
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4. Numerical Simulation 

The non linear reaction diffusion equations (12) to (15) for 

the corresponding boundary conditions (16) to (18) are also 

solved numerically by using Scilab program (AppendixF). 

The numerical solutions are compared with our analytical 

results in Tables 2 to 3 and in Figure 2. The maximum 

average error between our analytical results and simulation 

results for the concentration of glucose, oxygen, gluconic 

acid (or hydrogen peroxide) are1.64%, 0.21%  and 1.26 %. 

Table 2. Comparison of normalized non-steady-state concentration of glucose u with simulation results for various values of gγ and for some fixed values of

2β = , 10α =  and 0.5T = . 

R 

Concentration of glucose u 

when 
gγ =20 when 

gγ =30 when 
gγ =40 

Eq.(19) Simulation 
% of error 

deviation 
Eq.(19) Simulation 

% of error 

deviation 
Eq.(19) Simulation 

% of error 

deviation 

0 0.7890 0.7800 1.14 0.7023 0.6900 1.75 0.6283 0.6100 2.91 

0.2 0.7966 0.7880 1.07 0.7128 0.7012 1.62 0.6410 0.6236 2.71 

0.4 0.8200 0.8125 0.91 0.7451 0.7356 1.27 0.6803 0.6654 2.19 

0.6 0.8604 0.8542 0.72 0.8012 0.7948 0.79 0.7491 0.7385 1.41 

0.8 0.9195 0.9148 0.51 0.8845 0.8820 0.28 0.8530 0.8478 0.60 

1 1.0000 0.9962 0.38 1.0000 1.0015 0.15 1.0000 1.0006 0.06 

 Average error  0.788% Average error 0.976 % Average error1.646 % 

Table 3. Comparison of normalized non-steady-state concentration of glucose u with simulation results for various values of gγ and for some fixed values of

2β = , 10α = and 0.8T = . 

R 

Concentration of glucose u 

when
gγ =20 when

gγ =30 when
gγ =40 

Eq.(19) Simulation 
% of error 

deviation 
Eq.(19) Simulation 

% of error 

deviation 
Eq.(19) Simulation 

% of error 

deviation 

0 0.7834 0.7800 0.43 0.6987 0.6900 1.24 0.626 0.6100 2.55 

0.2 0.7913 0.7884 0.36 0.7094 0.7012 1.15 0.6388 0.6235 2.39 

0.4 0.8158 0.8139 0.23 0.7424 0.7354 0.94 0.6785 0.6653 1.94 

0.6 0.8575 0.8574 0.01 0.7994 0.7943 0.63 0.7480 0.7380 1.33 

0.8 0.9182 0.9203 0.22 0.8836 0.8807 0.32 0.8525 0.8467 0.68 

1 1 1.0045 0.45 1.0000 0.9988 0.12 1.0000 0.9983 0.17 

 Average error 0.283% Average error 0.733 % Average error 1.510 % 

Table 4. Comparison of normalized non-steady-state concentration of glucose u with simulation results for various values of gγ and for some fixed values of

2β = , 10α = and 1T = . 

R 

Concentration of glucose u 

when
gγ =20 when

gγ =30 when
gγ =40 

Eq.(19) Simulation 
% of error 

deviation 
Eq.(19) Simulation 

% of error 

deviation 
Eq.(19) Simulation 

% of error 

deviation 

0 0.7832 0.7800 0.40 0.6986 0.6900 1.23 0.6259 0.6100 2.54 

0.2 0.7914 0.7886 0.35 0.7096 0.7015 1.14 0.6391 0.6239 2.37 

0.4 0.8164 0.8147 0.20 0.7433 0.7364 0.92 0.6796 0.6665 1.92 

0.6 0.8590 0.8591 0.01 0.8015 0.7965 0.62 0.7506 0.7408 1.30 

0.8 0.9210 0.9233 0.23 0.8877 0.8849 0.31 0.8576 0.8520 0.65 

1 1.0000 1.0040 0.40 1.0000 0.9988 0.12 1.0000 0.9983 0.17 

 Average error 0.265% Average error 0.723% Average error1.491% 
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Table 5. Comparison of normalized non-steady-state concentration of oxygen v  with simulation results for various values of γ  and for some fixed values of,

2β = , 10α = , 1T =  and 20gγ = . 

R 

Concentration of oxygen v  

when γ =50 when γ =60 when γ =80 

Eq.(20) Simulation 
% of error 

deviation 
Eq.(20) Simulation 

% of error 

deviation 
Eq.(20) Simulation 

% of error 

deviation 

0 0.7314 0.7300 0.19 0.6776 0.6800 0.35 0.5701 0.5700 0.01 
0.2 0.7391 0.7400 0.12 0.6869 0.6920 0.73 0.5825 0.5856 0.52 

0.4 0.7696 0.7703 0.09 0.7235 0.7285 0.68 0.6313 0.6333 0.31 

0.6 0.8218 0.8222 0.04 0.7862 0.7909 0.59 0.7149 0.7152 0.04 
0.8 0.8977 0.8974 0.03 0.8772 0.8818 0.52 0.8363 0.8349 0.16 

1 0.9999 0.9987 0.12 0.9999 1.0046 0.46 0.9999 0.9975 0.24 

 Average error 0.555% Average error 0.098% Average error 0.213% 

Table 6. Comparison of normalized non-steady-state concentration of gluconic acid w / hydrogen peroxide H with simulation results for various values of γ

and for some fixed values of 2.5β = , 12α = , 20gγ = and 1T = . 

R 

Concentration of gluconic acid w/hydrogen peroxide H 

when γ =1 when γ =2 when γ =10 

Eq.(21) Simulation 
% of error 

deviation 
Eq.(21) Simulation 

% of error 

deviation 
Eq.(21) Simulation 

% of error 

deviation 

0 0.0093 0.0096 3.12 0.0186 0.019 2.10 0.0933 0.095 1.78 

0.2 0.0089 0.0092 3.26 0.0179 0.0182 1.64 0.0898 0.0913 1.64 
0.4 0.0079 0.0081 2.46 0.0158 0.0160 1.25 0.0791 0.0804 1.61 

0.6 0.0061 0.0062 1.61 0.0122 0.0123 0.81 0.0610 0.0619 1.45 

0.8 0.0034 0.0035 2.85 0.0069 0.0070 1.42 0.0349 0.0353 1.13 
1 0 0 0.00 0 0 0.00 0 0 0.00 

 Average error 2.217% Average error 1.203% Average error1.268% 

5. Relation Between Glucose, Oxygen, Gluconic Acid and Hydrogen Peroxide 

Equations (20) and (21) represents the relation between glucose and oxygen (Appendix D), glucose and gluconic acid 

(Appendix E) for all value at time. In the case of steady state, the relation between glucose, oxygen and gluconic acid is 

( )( , ) 1 ( , ) ( , ) 1
2 g

u R v R w R
γ
γ

 
∞ − + ∞ + ∞ =  

 
                                                                 (25) 

6. Determination Flux and Release of Kinetics of Hydrogen Peroxide 

The flux of hydrogen peroxide from the surface is defined by Fick’s first law: 

*
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The cumulative amount of hydrogen peroxide can be obtained as follows: 
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Cumulative amount of hydrogen peroxide release for unit volume of microsphere (Mt/V) is 
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+∑ ∑  is very small, the above equation becomes 
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( )
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3
coth

gt
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T k k T
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                                                         (29) 

When k (<0.01) is very small, / 0
t

M V → . The eqn (29) represent the new simple analytical expression of cumulative amount 

of hydrogen peroxide release per unit volume. 

7. Determination of pH Profile Inside the 

Microspheres 

The pH in the presence of gluconic acid is determined by 

the concentration of buffer ions and gluconic acid in the 

microsphere. 

( )

( )

1 1

1
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10 1 10
[ ]

log

1 1 10
[ ]
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C
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Using the equation (21), we obtain the pH in the presence of 

gluconic acid as follows: 
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[ ]
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          (31) 

8. Results and Discussion 

Eqns. (19) to (21) represent the new approximate 

analytical expressions for the concentrations of glucose, 

oxygen and gluconic acid for all values of the parameters 

which satisfy the initial and boundary conditions given by the 

eqns.(10) to (12). 

From Fig. 2 (a) and (b), it is observed that the 

concentrations of glucose and oxygen are depleted at the 

centre of the microsphere (R=0) as they are consumed by the 

enzyme reaction. The slope of this decrease in glucose and 

oxygen increase with the increase in thiele moduli or radius 

of the microsphere. Since glucose and oxygen together forms 

gluconic acid at the centre of the microsphere gluconic acid’s 

concentration increases with the increase in the thiele 

modulus or enzyme concentration. 

 

Figure 2. Dimensionless concentration of glucose, oxygen and gluconic acid/hydrogen peroxide versus dimensionless radius of microsphere R, calculated for 

(a) 10, 2 1.and Tα β= = = (b) 10, 2, 20 1.g and Tα β γ= = = = (c) 12, 2.5, 20 1 .g and Tα β γ= = = = Doted lines represent the analytical solution and 

solid lines the numerical solution. 
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8.1. Influence of Radius of Microsphere over the 

Concentration of Glucose ( )u
 

The radius of chitos analginate microsphere plays a crucial 

role as the dynamic process involving diffusion of reactants 

and product is coupled with an enzymatic reaction inside the 

microsphere. The concentration of glucose depends on the 

permeability of reactants and products through the 

membrane. From Fig. 3 it is inferred that when the thiele 

modulus g orγ γ  which depends on the radius of microsphere 

or enzyme concentration is increased, the concentration of 

glucose ( )u  decreases. The thicker radius of microsphere is 

the lower the concentration of glucose. The concentration of 

glucose drops towards to 0.3 when the value of thiele 

modulus 70gγ ≥  or the 100γ ≥ . The analytical expression 

of concentration of glucose, oxygen, gluconic acid and 

hydrogen peroxide versus radius of microsphere is compared 

with simulation results in Fig. 3, for steady state condition. 

Satisfactory agreement is noted. 

 

Figure 3. Comparison of steady state concentration of glucose, oxygen and gluconic acid/hydrogen peroxide for various values of(a) 10 2andα β= = (b)

10, 2 30.gandα β γ= = = (c) 10, 2 30.gandα β γ= = = Doted lines represent the analytical solution and solid lines the numerical solution. 

8.2. Influence of the Maximal Reaction Velocity (Vmax) on 

the Concentration of Oxygen ( )v  

Increasing the substrate (glucose) concentration in 

definitely does not increase the rate of an enzyme-catalyzed 

reaction beyond a certain point. This point is reached when 

there are enough substrate molecules to completely fill 

(saturate) the enzyme's active sites. The maximal velocity, 

or Vmax, is the rate of the reaction under these conditions. 

Vmax reflect show fast the enzyme can catalyze the reaction. 

In this enzymatic reaction diffusion process, the maximal 

reaction velocity
max

V is proportional to the concentration of 

the enzyme in the microsphere and the overall kinetics are 

determined by the maximal reaction rate. From Figs.2 and 3, 

it is clear that as the reaction diffusion parameter 
g orγ γ

(which depends on the maximal reaction velocity
max

V or 

concentration of enzyme) increases, the concentration 

decreases gradually and becomes zero for higher values of 

the reaction velocity. 
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8.3. Influence of Concentration of Glucose in the External 

Solution over the Concentration of Gluconic Acid ( )w  

The concentration of gluconic acid is determined by the 

concentration of glucose, the permeability of reactants and 

products through the membrane and the rate of enzymatic 

reaction. 

From Fig.5, it is evident that the concentration of gluconic 

acid keeps increasing by decreasing the thiele moduli 
gγ

which depends on the initial concentration of glucose 
*

gC . 

 

Figure 4. Plot of concentration profiles of glucose, oxygen, gluconic acid and hydrogen peroxide versus radius of microsphere for (a )non steady state and (b) 

steady state conditions. The values of the parameters are (a) 0.4, 0.39, 30, 40, 0.1g Tα β γ γ= = = = = ( ) 0.4, 0.39, 30, 40, 1.gb Tα β γ γ= = = = ≥  

 

Figure 5. Plot of concentration profiles of glucose u(R,T) versus dimensionless distance R calculated using eqn (19 )for values (a) T=0.1 and for various 

values of Thiele modulus k. Plot of Steady state concentration of glucose versus dimensionless radius R calculated using eqn(22) for values

( ) 0.1, 0.39b α β= = and various values of the thiele modulus gγ ( ) 0.39, 30gc β γ= = and various values of parameter .α ( ) 0.1, 30gd α γ= = and various 

values of parameter .β  
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8.4. Influence of Michaelis-Menten Constants on the 

Concentration of Glucose ( )u
 

Michael is constant (Kg) describes the substrate 

concentration at which half the enzyme's active sites are 

occupied by substrate. A large Kg indicates the need for high 

substrate concentrations to achieve maximum reaction 

velocity. A small Kg indicates that the enzyme requires only a 

small amount of substrate to become saturated. Hence, the 

maximum velocity is reached at relatively low substrate 

concentrations. Figs. 5-7 shows the plot of the dimensionless 

concentration of glucose, oxygen and gluconic acid versus 

dimensionless radius of microsphere for various values of 

reaction parameter and Michaelis-Menten constant. From 

these figures it is observed that the concentration glucose and 

oxygen at the centre of microsphere is decreases when Kg or 

Kox decreases. Increase in Michael is constant value indicates 

that oxygen also binds with the enzyme. 

 

Figure 6. Plot of concentration profiles of oxygen v(R,T) versus dimensionless radius of microsphere R calculated using eqn(20) for the values

( ) 1, 30, 10ga T γ γ= = = for various values of k. Steady state concentration of oxygen versus radius of microsphere R calculated using eqn(23) for the values 

(b )k=1 various values of thiele modulus / gγ γ (c) 0.01, 30 60g OXandβ γ γ= = = various values of α (d) 1, 30, 60gα γ γ= = = and for various values of 

parameter .β
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Figure 7. Plot of concentration profiles of gluconic acid w(R,T )versus dimensionless distance R calculated using eqn(21 )for values (a) 1, 30, 10gk γ γ= = =

and various values of time parameter T. (b) 1, 30, 10gT γ γ= = = for various values of k. steady state concentration of gluconic acid versus dimensionless 

distance R calculated using eqn (25) for values(c)k=1andvariousvaluesofthielemodulus / gγ γ .(d) 0.39 30, 10gβ γ γ= = = and various values of parameter .α

(e) 0.1, 30, 10gα γ γ= = = and various values of parameter .β
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8.5. Influence of Time Parameter on the Glucose, Oxygen, 

Gluconic Acid 

Figs. 4(a)-(b) and Fig. (7) represent the normalized 

concentration profiles of glucose, oxygen and gluconic acid 

for various values of time parameter T .From this figures it is 

inferred that concentration of glucose & oxygen are at centre 

of the microsphere decreases when time increases. This is 

due to consumption of glucose and production of hydrogen 

peroxide at the centre of the microsphere. From Fig. 7(a) it is 

observed that when time is increases gluconic acid also 

decreases because of consumption of oxygen. From Fig. 4(b) 

it is observed that the concentration of glucose, oxygen and 

gluconic acid for steady state condition at any point of the 

microsphere is approximately equal to 2 i.e 2u v w+ + ≈ . 

 

Figure 8. Surface concentration of (a) glucose ( 0.4, 0.39 30gandα β γ= = = ) and (b)oxygen ( 0.4, 0.39, 30, 40)gα β γ γ= = = = . 

 

Figure 9. The normalized three dimensional concentration profiles of glucose, oxygen and gluconic acid or hydrogen peroxide (a )for the values of

0.4, 0.39, 30.gα β γ= = = (b)for the values of 0.4, 0.39, 30 60.g andα β γ γ= = = = (c) for the values of 0.4, 0.39, 30 20.g andα β γ γ= = = =
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The new analytical expression of concentration of glucose 

and oxygen, at the centre of the microsphere is given in 

Table-1. Figs. 8 a-b contains plots of glucose and oxygen 

concentration profiles versus time T. From these graphs, 

several important observation can be made. The centre of the 

sphere glucose and oxygen concentration increases from its 

initial value and reaches the maximum level when

0.1T = .And then decreases smoothly from the bulk value. A 

steady state distribution of both glucose and oxygen is 

achieved when a dimensional time T=0.2. This is due to the 

constant balance between diffusional supply and enzymatic 

consumption of oxygen and glucose. In Figs. 9 (a)-(c) all the 

above discussed results are confirmed. 

8.6. Influence of Various Parameter on the Release of 

Hydrogen Peroxide 

Figs. 10 shows cumulative release of hydrogen peroxide 

versus time for various values concentration of glucose in the 

external solution, different microspheres sizes and varies 

dimensional parameters k. From this Fig. 10(a) it is observed 

that the glucose concentration in the external solution 

increases the hydrogen peroxide release rate. This is due to 

decrease of internal pH and less hydrogen peroxide 

permeability. 

 

Figure 10. Plot of Cumulative release of hydrogen peroxide versus time for various values of concentration of glucose in the external solution, dimensionless 

parameter k and microsphere sizes when the other parameters are (a) 6 2 -46.75 10 cm /s,k 0.45,S 100 10D cm−= × = = × (b)

6 2 * 3 3 -4

g6.75 10 cm /s, 5.5 10 / ,S 100 10D C mol cm cm− −= × = × = × (c)
6 2 * 3 3

g6.75 10 cm /s,  5.5 10 / , 0.45D C mol cm k− −= × = × = . 

The dimensionless parameter k depends upon thiele 

modules and Michaelis constants. Thiele modules are directly 

proportional to maximum reaction rate and radius of the 

microsphere where as it is inversely proportional to diffusion 

coefficients and concentration of glucose and oxygen in the 

external solution. From this Fig. 10(b) it is inferred that as 

the maximum reaction rate or radius of the microsphere 

increases the hydrogen peroxide release rate increases. Fig. 

10(c), represent cumulative release of hydrogen peroxide for 

various values radius of microspheres. From the Fig. 10(c), it 

is observed that the radius of microsphere or particle size 

decreases, the release rate of hydrogen peroxide increases. 

Since when size of the microsphere is small, more glucose 

and oxygen molecules diffuse. In Fig. 12 the experimental 

results and analytical results of cumulative release of 

hydrogen peroxide are compared. Satisfactory agreement is 

noted. Fig. 11 represents
2

exp( )pH pK− versus 
a

C /[buffer]. 

From this figure it is observe that
2

exp( )pH pK−  is uniform 

when 
a

C /[buffer] 0.2≥ . From the figure it is inferred that 

when / [ ]
a

C buffer approaches zero when pH of a buffer in 

the presence of gluconic acid is equal to pH in the absence of 

gluconic acid. 
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Values are1.1,1.3,1.5 in the gluconic acid buffer solution. 

Figure 11. Plot of 2exp( )pH pK− versus / ([ ])aC buffer for three different 

values 1pH pK− . 

9. Differential Sensitivity Analysis of 

Parameters 

One approach to sensitivity analysis is local sensitivity 

analysis, which is derivative based (numerical or analytical). 

Mathematically, the sensitivity of the cost function with 

respect to certain parameters is equal to the partial derivative 

of the function with respect to those parameters. The term 

local refers to the fact that all derivatives are taken at a single 

point. For simple functions, this approach is efficient. We 

have found the partial derivate of the concentrations

( , ), ( , )u R T v R T and ( , )w R T  (dependent variables) with 

respect to the reaction diffusion parameters ,α β and Thiele 

modulus ,gγ γ (independent variables). At some fixed 

experimental values of the parameters, numerical value of 

rate of change of concentrations can be obtained. From this 

value we can obtain the percentage of change in the 

concentrations with respect to the parameters involved. 

Sensitivity analysis of the parameters is given in figures Fig. 

12 (a) to (c). The reaction and diffusion parameters ,α β
 
has 

more impact in the concentrations of glucose, oxygen and 

gluconic acids when it’s varied. In contrast the parameter

,gγ γ accounts for only small changes in the concentrations 

of glucose, oxygen and gluconic acid. 

 
Figure 12. Comparison of the experimental results and analytical results of 
cumulative release of hydrogen  peroxide. The numerical values of parameters 

are
* 2 3 2 3 26.45, 100 10 / , 10 10 , 12.5 10 /gk C mol cm S cm D cm s− − −= = × = × = ×  

 
Figure 13. Sensitivity analysis for evaluating the influence of the parameters in the concentration of (a) glucose u(R,T) using equation(19).(b)oxygen v(R,T) 

using equation(20).(c) gluconic acid w(R,T)=hydrogen peroxide H(R,T)using equation(21). 
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10. Conclusion 

A mathematical model of glucose oxidase-loaded 

microsphere is discussed. This model describes the release 

kinetics of generated H2O2 from GOX-loaded spherical 

polymeric matrix. 

A system of non-linear reaction diffusion equations for 

non-steady state conditions depicted in this model has been 

solved analytically and from the obtained analytical results 

the time and position dependent concentrations and 

diffusivity of glucose, oxygen and gluconic acid have been 

predicted. By comparing the numerical results with analytical 

results the accuracy has been verified. The influence of 

various parameters (glucose concentration in the external 

solution, particle size, enzyme loading, Michaelis constant 

etc) on the concentration of gluconic acid and hydrogen 

peroxide release are discussed. Also this theoretical model is 

useful for optimizing the performance of hydrogen peroxide 

delivery system and to obtain the parameters required for 

improving the design of the system. 

Nomenclature 

symbols Description Units symbols Description Units 

gC  Concentration of glucose mol/cm
3
 t  Time S 

OX
C  Concentration of oxygen mol/cm

3
 *

gC  
Concentration of glucose in 

the external solution 
mol/cm

3
 

a
C  Concentration of gluconic acid mol/cm

3
 *

OXC  
Concentration of glucose in 

the oxygen solution 
mol/cm

3
 

h
C  Concentration of hydrogen peroxide mol/cm

3
 S Radius of the microsphere mµ  

gD  Diffusion coefficient of glucose cm
2
/s u 

Dimensionless 

concentration of glucose 
None 

OX
D  Diffusion coefficient of oxygen cm

2
/s v 

Dimensionless 

concentration of oxygen 
None 

a
D  Diffusion coefficient of gluconic acid cm

2
/s w 

Dimensionless 

concentration of gluconic 

acid 

None 

h
D  

Diffusion coefficient of hydrogen 

peroxide 
cm

2
/s H 

Dimensionless 

concentration of hydrogen 

peroxide 

None 

gK  Michaelis-Menten constant for 

glucose 
mol/cm

3
 R Over all reaction rate None 

OX
K  

Michaelis-Menten constant for 

oxygen 
mol/cm

3
 T Dimensionless time None 

max
V  Maximal reaction velocity cm/s 

, , ,

, ,

g OX a

h

γ γ γ
γ α β

 
Dimensionless reaction 

diffusion parameters 
None 

 

Appendix A: Basic Concepts of the HPM 

The HPM method has overcome the limitations of 

traditional perturbation methods. It can take full advantage of 

the traditional perturbation techniques, so a considerable deal 

of research has been conducted to apply the Homotopy 

technique to solve various strong non-linear equations [12-

15]. To explain this method, let us consider the following 

function: 

0
( ) ( ) 0,D u f r r− = ∈ Ω                          (A1) 

With the boundary conditions of 

0 ( , ) 0,
u

B u r
n

∂ = ∈Γ
∂

                            (A2) 

Where 0D is a general differential operator, 0B is a 

boundary operator, f(r) is a known analytical function and Γ
is the boundary of the domain Ω . Generally speaking, the 

operator 0D  can be divided into a linear part L and non-

linear part N. Eq.(A1) can therefore be written as: 

( ) ( ) ( ) 0L u N u f r+ − =                             (A3) 

By the Homotopy technique, we construct a Homotopy

( , ) : [0,1]v r p RΩ× → that satisfies: 

0 0( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0H v p p L v L u p D v f r= − − + − =      (A4) 

0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0H v p L v L u pL u p N v f r= − + + − =      (A5) 

Where [0,1]p ∈ is an embedding parameter, and
0u is an 

initial approximation of Eq.(A1) that satisfies the boundary 

conditions. From Eqs.(A4) and (A5),we have 

0( ,0) ( ) ( ) 0H v L v L u= − =                        (A6) 
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0
( ,1) ( ) ( ) 0H v D v f r= − =                       (A7) 

When 0p = ,Eqs.(A4) and (A5) become linear equations. 

When 1p = ,they become non-linear equations. The process 

of changing p from zero to unity is that of
0

( ) ( ) 0L v L u− = to

0
( ) ( ) 0.D v f r− = we first use the embedding parameter p as a 

“small parameter” and assume that the solutions of Eqs. (A4) 

and (A5) can be written as a power series in p: 

2

0 1 2 ...v v p v p v= + + +                               (A8) 

Setting 1p =
 
results in the approximate solution of Eq. (A1): 

0 1 2
1

lim ...
p

u v v v v
→

= = + + +                    (A9) 

This is the basic idea of the HPM. 

Appendix B: Approximate Analytical 

Solution Eqn (12) using HPM Method 

We construct the new homotopy for the eqn (12) as 

follows (Rajendran and Anitha (2013)): 

2

2

2

2

2

(1 )
( 1)

( 1) ( 1) ( 1) ( 1)

2
0

)

g

g

u u u

T R RR
p

u v x

v x u x v x u x

u vu u u
p

T R R v uvR

γ
α β

γ
α β

 ∂ ∂ ∂− − − ∂ ∂∂ −
 =
 

= + = = + =  

 ∂ ∂ ∂+ − − − = ∂ ∂ + +∂ 

           (B1) 

When is ]1,0[∈p is an embedding parameter. Now assume that 

the solution of the eqns (12)and(13)are 

2 3

0 1 2 4 ...u u pu p u p u= + + + +                    (B2) 

2 3

0 1 2 4
...v v pv p v p v= + + + +                    (B3) 

Substituting the above eqn (B2) & (B3) in eqn (B1) and 

equating the coefficient 0
p  on both side we get 

2

0 0 0 0

02

2
: 0

1

gu u u
p u

T R RR

γ
α β
 ∂ ∂ ∂

− − − = ∂ ∂ + +∂  
      (B4) 

In Laplace plane this equation becomes 

2

02

2
( ) 0

d u du
k s u

R dRdR
+ − + =                      (B5) 

where
1

g
k

γ
α β

=
+ +

ands is Laplace variable. The boundary 

conditions become 

00, 0
du

R
dR

= =                                (B6) 

0

1
1,R u

s
= =                                       (B7) 

To illustrate the basic concepts of reduction of order, we 

consider the equation 

2

0 0

02

d u du
P Qu R

dRdR
+ + =                                (B8) 

Where P, Q, R are function of R. Using reduction of order, 

from eq(B1),we have 

2
; ( ); 0P Q k s and R

R
= = − + =                (B9) 

Let 0u vw=                             (B10) 

Be the general solution of eq(B4). If v is so chosen that 

2 0
dv

Pv
dR

+ =                             (B11) 

Substituting the value of P in the above eq(B11),we get 

1
v

R
=                                     (B12) 

Then eq (B8) reduces to 

"

1 1w Q w R+ =                              (B13) 

Where 

2

1 1

1
;

2 4

dP P R
Q Q R

dR v
= − − =                        (B14) 

From eqs (B9) and B (8) reduces to 

" ( ) 0w k s w− + =                                 (B15) 

Integrating eq(B10) twice, we obtain 

1 2exp( ) exp( )w C k s R C k s R= + + − +            (B16) 

Substituting (B8) and B(12) in (B6),we have 

( ) ( )0 1 2

1
, exp( ) exp( )u R s C k s R C k s R

R
= + + − +   (B17) 

Using the boundary conditions eqs (B2) and (B3),we can 

obtain the value of the constants 

1 2

1 1

2 sinh( ) 2 sinh( )
C and C

s k s s k s
= = −

+ +
   (B18) 

Substituting (B14) in eq(B13),we obtain 

0

1 sinh( )
( , )

sinh( )

k s R
u R s

R s k s

 +=   + 
                 (B19) 
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Appendix C: Inverse Laplace Transform 

of Eqn (B19) Using Complex Inversion 

Formula 

In this appendix we indicate how equation (B15) may be 

inverted using the complex inversion formula. If ( )y s

represents the Laplace transform of a function ( )y τ ,then 

according to the complex inversion formula we can state that 

1 1
( ) exp[ ] ( )

22 exp[ ] ( )
c i

c
c i

y s y s ds
ii s y s ds

τ τ
ππ τ

+ ∞

− ∞

= = ∫
∫

�     (C1) 

Where the integration in equation (B1) is to be performed 

along a line cs = in the complex plane where .iyxs +=
The real number c is chosen such that s c= lies to the right of 

all the singularities, but is otherwise assumed to be arbitrary. 

In practice, the integral is evaluated by considering the 

contour integral presented on the right-hand side of equation 

(C1), which is then evaluated using the so-called 

Bromwichcontour.Thecontourintegralisthenevaluatedusingth

eresiduetheoremwhichstatesforanyanalyticfunction ( )F z
 

0
( ) 2 Re [ ( )]z z

nc

F z dz i s F zπ == ∑∫�                   (C2)
 

Where the residues are computed at the poles of the function

).(zF
 
Hence from eq C2, we note that 

( ) Re [exp[ ] ( )]
ns s

n

y s s y sτ τ ==∑                    (C3) 

From the theory of complex variables we can show that the 

residue of a function ( )F z at a simple pole at z a=  is given 

by 

Re [ ( )] {( ) ( )}limz a
z a

s F z z a F z=
→

= −             (C4) 

Hence in order to invert equation (B15), we need to 

evaluate 

( )
( )

sinh
Re

sinh

k s R
s

s k s

 +
 
 +
   

The poles are obtained from sinhs k s+ =0. Hence there

is a simple pole at s  =0 and there are infinitely many poles 

given by the solution of the equation sinh k s+ =0 and so
2 2( )

n
s n kπ=− + where n=0,1,2,……. 

Hence we note that 

( )
( )

( )
( )

0

sinh
( , ) Re

sinh

sinh
Re

sinh
n

s

s s

k s R
u R T s

s k s

k s R
s

s k s

=

=

 +
 =
 +
 

 +
 +
 +
 

              (C5) 

The first residue in equation (C5) is given by 

( )
0

Re sinh
s

s s k s
=

 +
 

=
( )

( )0

exp( )sinh
lim

sinhs

sT k s R

s k s→

 +
 
 +
   

=
sinh

sinh

kR

k
                           (C6) 

The second residue in equation (C5) is given by 

( )Re sinh
ns s

s s k s
=

 +
  =

( )
( )

exp( )sinh
lim

sinhns s

sT k s R

s k s→

 +
 
 +
 

 

=
( )

( )
exp( ) sinh

lim

sinh
ns s

sT k s R

d
s k s

ds

→

 
+ 

 
 +
 

 

=

2 2

2 2

2exp[ ( ) ]( )sinh( )
, 1, 2...

( )cosh( )

n k T in in R
n

n k in

π π π
π π

− + =
− +

    (C7) 

Using cosh( ) cos( )iθ θ= and sinh( ) sin( )i iθ θ=  

2 2

2 2
1

sinh( )

sinh( )

sin( )
2 ( 1) exp[ ( ) ]

n

sT

s s

n

n

k sR
Lt e

k s

n n R
n k T

n k

ππ π
π

→

∞

=

+ =
+

 − × − + + 
∑

   (C8) 

From (C6), (C7) and (C8) we conclude that 

( , )u R T = sinh( ) 2

sinh( )

k R

RR k

π+  

2 2( )

2 2
0

( 1) sin( )

( )

n n k T

n

n n R e

n k

ππ
π

− +∞

=

 −
 

+  
∑                (C9) 

Appendix D: Approximate Analytical 

Solution of v Using the Relation Between 

the Concentrations u and v 

From the equations (12) and (13), we can obtain the 

following equation. 
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2

2

2
0

2 2 2
g g g

u u u
v v v

R R TR

γ γ γγ γ γ∂ ∂ ∂     − + − − − =     ∂ ∂∂      
  (D1) 

Let 

2 g

u
M v

γ γ = − 
 

                                (D2) 

Then (D1) becomes 

2

2

2
0

M M M

R R TR

∂ ∂ ∂+ − =
∂ ∂∂

                      (D3) 

By using the boundary conditions in eqns (17) and (18), 

the boundary condition for M becomes 

0M =  when 0T =                                 (D4) 

0
M

R

∂ =
∂

 when 0R =                             (D5) 

1
2

gM when R
γ γ= − =                                  (D6) 

Now by applying Laplace transform in this eqn (D3) and 

by using complex inversion formula and proceeding as in 

Appendix C, the solution of (D3) will be 

1 2 2

0

( , ) 1 2 ( 1) sin( ) exp( )
2

n

g

n

M R T n n R n T
γ γ π π π

∞
+

=

  = − + − −   
   

∑    (D7) 

From (D2), we have 

1
( , ) ( , ) ( , )

2 g g

v R T u R T M R T
γ
γ γ

 
= − 
 
 

                (D8) 

Appendix E: Approximate Analytical 

Solution of w Using the Relation Between 

u and w 

From the equations (12) and (14) we get 

( ) ( ) ( )
2

2

2
0g g gu w u w u w

R R TR
γ γ γ γ γ γ∂ ∂ ∂+ + + − + =

∂ ∂∂
  (E1) 

Let 

( )
g

N u wγ γ= +                              (E2) 

Then (E1) becomes 

2

2

2
0

N N N

R R TR

∂ ∂ ∂+ − =
∂ ∂∂

                            (E3) 

By using the boundary conditions in (16) to (18), the 

boundary condition for N  will be 

0 0N when T= =                              (E4) 

0 0
N

when R
R

∂ = =
∂

                            (E5) 

1aN when Rγ= =                             (E6) 

Now by applying Laplace transform in the eqn (E3) and 

using the boundary extension (E4) to (E6) and by using 

complex inversion formula, the solution of (E3) becomes as 

( ) 1 2 2

0

( , ) 1 2 ( 1) sin( )exp( )n

n

N R T n n R n Tγ π π π
∞

+

=

 = + − − 
 

∑    (E7) 

From (D2), we have 

1
( , ) ( , ) ( , )

g g

w R T N R T u R T
γ

γ γ
= −               (E8) 

Appendix F: Scilab Program to Find the 

Numerical Solution of Eqns. ((12)-(15)) 

function pdex2 

m=2; 

x=linspace(0,1); 

t=linspace(0,100); 

sol =pdepe(m,@pdex2pde,@pdex2ic,@pdex2bc,x,t); 

u1=sol(:,:,1); 

u2=sol(:,:,2); 

u3=sol(:,:,3); 

%------------------------------------------------------------------ 

figure 

plot (x,u1(end,:)) 

title('u1(x,t)') 

xlabel ('Distance x') 

ylabel('u1(x,1)') 

%------------------------------------------------------------------ 

figure 

plot(x,u2(end,:)) 

title('u2(x,t)') 

xlabel('Distance x') 

ylabel('u2(x,2)') 

%----------------------------------------------------------------- 

figure 

plot(x,u3(end,:)) 

title('u3(x,t)') 

xlabel('Distance x') 

ylabel('u3(x,3)') 

%------------------------------------------------------------------ 

function[c ,f, s]=pdex2pde(x ,t, u, Du Dx) 

c=[1;1;1]; 

f=[1;1;1].*Du Dx; 

a=10; 

b=2; 

g=30; 

l=100; 
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F=(-g*u(1)*u(2))*((a*u(2)+u(1)*u(2)+u(1)*b)^(-1)); 

F1=(-0.5*l*u(1)*u(2))*((a*u(2)+u(1)*u(2)+u(1)*b)^(-1)); 

F2=(l*u(1)*u(2))*((a*u(2)+u(1)*u(2)+u(1)*b)^(-1)); 

s=[F;F1;F2]; 

%----------------------------------------------------------------- 

function u0=pdex2ic(x) 

u0=[1;0;0]; 

%----------------------------------------------------------------- 

function[pl,ql,pr,qr]=pdex4bc(xl, ul, xr, ur, t) 

pl=[ul(1)-0;ul(2)-0;ul(3)-0]; 

ql=[1;1;1]; 

pr=[ur(1)-1;ur(2)-1;ur(3)-0]; 

qr=[0;0;0]; 
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