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Abstract: Time optimal control problems of ordinary differential equations have been of great interest for decades due to 

their practical applications. There are mainly two ways to compute optimal times. The first one is the Switching Time 

Optimization method, where the switching time is taken as extra unknowns and the optimization problems is solved by 

nonlinear programming technique. The second one is based on the first order necessary condition for optimal control. In this 

paper, we extend the numerical method given in [1] for the computation of the optimal time for the time optimal control 

problems. In the end some examples are provided to show the efficiency of the numerical method. 

Keywords: Numerical Method, Ordinary Differential Equation, Time Optimal Control Problems 

 

1. Introduction 

Time optimal control problems of ordinary differential 

equations have been of great interest for decades due to their 

practical applications [1-6]. There are a lot of literatures on 

this issue (see for instance [7-16]). For a time optimal control 

problem, how to compute the optimal time should be an 

important and interesting subject. To the best of our 

knowledge, there are mainly two ways to compute optimal 

times. The first one is the Switching Time Optimization 

method, where the switching time is taken as extra unknowns 

and the optimization problems is solved by nonlinear 

programming technique. The second one is based on the first 

order necessary condition for optimal control. In [1], Lu, 

Wang and Yan provided a different way to compute the 

optimal time. First, they obtained a necessary and sufficient 

condition for the optimal time. Then they applied a bisection 

method to solve the nonlinear equation. 

In this paper, we extend the method given by Lu, Wang 

and Yan in [1] for the computation of the optimal time for the 

linear ordinary differential equation. The rest of the paper is 

organized as follows: Section 2 presents the numerical 

method for the computation of the optimal time for the time 

optimal control problems governed by a linear ordinary 

equation. Section 3 gives some examples to show the 

efficiency of the new method. Section 4 is the conclusion of 

this paper. 

2. Main Results 

Let �  and �  be two matrix in ��×�  and ��×� 

respectively, where �,	 ∈ � . Consider the following 

controlled ordinary differential equation: 

�
′(�) + �
(�) = ��(�),


(0) = 
� .           (1) 

Here 
� ∈ ��\{0}  and �  is a control function in the 

following admissible set: 

�� = ��:  0, +∞) → �� , ∥ �(�) ∥$%≤ '(,   (2) 

where ' is a positive constant. Throughout this paper, we use 

(�, �)  to denote the linear differential system given by 

equation (1). Clearly, when 
�  is given, for each 	� ∈
*+(�,, ��), (1) has a unique solution which will be denoted 

by 
(�, �). 

In this paper, we will extend the numerical method given in 

[1] for the computation of the optimal time for the following 

time optimal control problem: 

	(-�)	min{1 > 0: 
(�, �) = 0, � ∈ ��}.   (3) 

In this problem, the number 
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�∗(') ≡ min{1 > 0: 
(�, �) = 0, � ∈ ��}.    (4) 

is called the optimal time; a control ��∗ ∈ �� is called an 

optimal control when 
(	�∗('); ��∗ ) = 0  and �∗(∙) = 0 

over (�∗('),∞); a control � ∈ �� is called an admissible 

control for Problem (-�), if there exists a time 1 > 0 such 

that 
(1, �) = 0 and �(∙) = 0 over (1,∞). At the same 

time, we introduce the following norm optimal control 

problem for each 1 > 0: 
(�-)7	'∗(1) ≡ 	8��∥ � ∥9:(�,7;$;): 
<1; = �,7)�> = 0(,  (5) 

where 
<1; = �,7)�> satisfies equation (1) for � ∈ (0, 1). 
In [1], Lu, Wang and Yan obtained the following results. 

We provide their proofs for the purpose that the readers can 

easily read the paper. 

Lemma 1 Let 1,' > 0 , then 1 = �∗<'∗(1)>  and 

' = '∗<�∗(')>. Consequently, 

(1) Problems (�-)7  and (-�∗(7))  are equivalent, i.e., 

they have the same optimal control; 

(2) Problems (-�) and (�-)?∗(�) are equivalent. 

Proof. We first show that 

1 = �∗<'∗(1)>, ∀1 ∈ (0, +∞).          (6) 

Indeed, let � be an optimal control to (�-)7. Then 

	∥ � ∥9:(�,7;$;)= '∗(1) and 
(1, �) = 0.      (7) 

By the optimality of �∗<'∗(1)> to 	(-�∗(7)), we get that 

	�∗<'∗(1)> ≤ 1.                    (8) 

If 	�∗<'∗(1)> ≤ 1,	then there would be a positive number 

'A < '∗(1)  such that 1 = �∗('A) . Let ��C
∗ be the 

optimal control to (-�C). Then we have that 

	∥ ��C
∗ ∥9:(�,?∗(�C);$;)= 'A < '∗(1),          (9) 

and 

	
(1; ��C
∗ ) = 
<�∗('A); ��C

∗ > = 0.          (10) 

The latter indicates 	∥ �%C
∗ ∥9:(�,7;$;)≥ '∗(1) , which 

contradicts with (9). Hence (8) holds. 

Next, by (8), we have that �∗(') = �∗('∗(�∗('))) . 

Since	�∗(∙) is strictly monotone, we get that 

' = '∗(�∗(')),	∀' > 0.               (11) 

Finally, by (8) and (11) and by the definition of optimal 

controls to (-�) and (�-)7, one can easily verify the desired 

equivalences. 

Lemma 2 The function '∗(∙) is strictly decreasing and 

continuous. In addition, it holds that E8	7→,+ '∗(1)=0 and 

E8	7→�F '∗(1) = +∞. 

Proof. From Lemma 1, it follows that '∗(∙) is the inverse 

function of �∗(∙). This completes the proof. 

A necessary and sufficient condition for the optimal 

time	�∗(') will be given through using the above equivalence 

theorem. To this end, for each 1 > 0, we introduce a function 

G7(∙): �� → � as follows: 

G7(�) = C
H(∫�

7 ∥ J(�, 1)� ∥ K�)L+< MNO7
�, � > 0,  (12) 

where J(�, 1) = �7MOP(?N7). 
Lemma 3 Let 1 > 0. Then '8�QR$SG7(�) has at least one 

minimizer. Furthermore, 

	'∗(1) = ∫�
7 ∥ J(�, 1)�7∗ ∥ K�.          (13) 

Lemma 4 Let ��∗  be an optimal control for (-�) , 

Then	∥ ��∗ ∥= ' for a.e.	� ∈ (0, �∗(')). 

Lemma 5 Let ' > 0 . Then, 	1T  is the optimal time to 

Problem (-�) , i.e. 1T = �∗(') , if and only if for each 

minimizer �7∗  of 	G7(∙), 	1U > 0  solves the following 

nonlinear equation: 

' = ∫�
7 ∥ J(�, 1)�7∗ ∥ K�, 1 > 0.          (14) 

Moreover, when �7∗  is a minimizer of 	G7(∙), the above 

equation has a unique solution. 

Proof. Clearly, �∗(') > 0. From (11) and Lemma 3, it 

follows that for each minimizer �7∗  of 	G7(∙), �∗(')	solves 

equation (14). 

Conversely, suppose that 	1U > 0 is a solution to equation 

(14) for some minimizer �7∗  of 	G7(∙). Then, by (13) with 

1 = 1T , it holds that 	' = 	'∗<	1U>. Since '∗<�∗(')> =M, 

'∗<	1U > = '∗<�∗(')> . This, along with the strict 

monotonicity of '∗(∙), indicates that 1T=�∗('). 

Finally, we show the uniqueness. Let �7∗  be a minimizer of 

	G7(∙) . By Lemma 3, Equation (14) is equivalent to the 

equation: 

	' = 	'∗(1),	1 > 0.               (15) 

By Lemma 2, the above equation has a unique solution, so 

is Equation (14). This completes the proof. 

Based on the lemmas given above, we will build up the 

following theorem for the computation of the optimal time for 

the linear ordinary differential equation: 

�
′(�) + V
(�) = W�(�),

(0) = 
�,             (16) 

where 
� ≠ 0, V > 0 and W ≠ 0. 

Theorem Let �∗(') be an optimal control for the linear 

ordinary differential equation (16), then 

�∗(') = − A
Z E� �|\|

�|\|,Z|]^|.            (17) 

Proof. For the system (16), the function 	G?∗(�): � → � 

now reads: 

	G?∗(�)(�) = C
H(∫�

?∗(�) ∥ J(�, 1)� ∥ K�)L+< MNO7
� , � > 0,                          (18) 

i.e., 



 Applied and Computational Mathematics 2017; 6(4): 185-188 187 

 

	G?∗(�)(_) = C
H(∫�

?∗(�)|WMZ(?N?∗(�))_|K�)L + MNZ?∗(�)
�_.                    (19) 

Case 1. When V > 0, it holds that 

	G?∗(�)(_) = `H
HaH(1 − MNZ?∗(�))L_L + MNZ?∗(�)
�_.   (20) 

By solving 	(G?∗(�)(_))′ = 0,          (21) 

we can easily obtain the following unique minimizer of 

	G?∗(�)(∙) : 

	_∗ = ZHcdae∗(%)]^
\H<ANcdae∗(%)>H.              (22) 

Then by Lemma 4, we have 

' = ∫�
?∗(�)fWMZ<?N?∗(�)>_∗fK�.          (23) 

Then it is obvious that 

' = Z|]^|
|\| ( A

ANcdae∗(%) − 1).            (24) 

Then it is easy to obtain 

�∗(') = − A
Z E� �|\|

�|\|,Z|]^|.            (25) 

Case 2. When V = 0, by the same method, we can get 

	�∗(') = |]^|
�|\|.                  (26) 

This completes the proof. 

3. Applications 

In this section we provide several examples to show the 

efficiency of the above-mentioned method. 

Example 1. Let 

�y′(t) + 2y(t) = 2u(t),
y(0) = 1,               (27) 

and ' = 1, we aim to compute	�∗(1). 

Solution. In this example, V = 2 > 0, W = 2 > 0, 
� =
1,' = 1, according to case 1 in the theorem in section 2, it is 

easy to obtain 

�∗(1) = − A
Z E� �|\|

�|\|,Z|]^| =
k� L
L .          (28) 

Example 2. Let 

�
′(�) + 
(�) = �(�),

(0) = 1,              (29) 

and ' = 2, we aim to compute 	�∗(2). 

Solution. In this example, V = −1 < 0, W = 1 > 0, 
� =
1,' = 2, according to case 1 in the theorem in section 2, it is 

easy to obtain 

�∗(2) = − A
Z E� �|\|

�|\|,Z|]^| = E�2.          (30) 

Example 3. Let 

�

l(�) + 
(�) = −�(�),


(0) = 1,           (31) 

and ' = 3, we aim to compute 	�∗(3). 

Solution. In this example, V = 1, W = −1 < 0, 
� =
1,' = 3, according to case 1 in the theorem in section 2, it is 

easy to obtain 

�∗(3) = − A
Z E� �|\|

�|\|,Z|]^| = 2E�2 − E�3.      (32) 

Example 4. Let 

�
′(�) = 2�(�),

(0) = 1,              (33) 

and ' = 1, we aim to compute 	�∗(1). 

Solution. In this example, V = 0, W = 2 > 0, 
� =
1,' = 1, according to the theorem in section 2, it is easy 

to obtain 

�∗(1) = |]^|
�|\| =

A
L.              (34) 

Example 5. Let 

�

l(�) = −2�(�),


(0) = 1,              (35) 

and ' = 2, we aim to compute 	�∗(2). 

Solution. In this example, V = 0, W = −2 < 0, 
� =
1,' = 2, according to the theorem in section 2, it is easy to 

obtain 

�∗(2) = |]^|
�|\| =

A
n.              (36) 

Example 6. Let 

�

l(�) = −�(�),

(0) = −1,              (37) 

and ' = 3, we aim to compute 	�∗(3). 

Solution. In this example, V = 0, W = −1 < 0, 
� =
−1,' = 3, according to the theorem in section 2, it is easy to 

obtain 

�∗(3) = |]^|
�|\| =

A
o.              (38) 

4. Conclusion 

This paper extends the numerical method given in [1] for 

the computation of the optimal time for the time optimal 

control problems. Section 2 presents the numerical method for 

the time optimal control problems governed by a linear 

ordinary equation. Section 3 gives some examples to show the 

efficiency of the new method. Section 4 is the conclusion of 

this paper. This method can also be used in other linear 

ordinary differential systems. 
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