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Abstract: The present investigation provides an insight in the steady, incompressible and electrically conducting boundary 

layer flow of viscoelastic nanofluid flowing due to a moving, linearly stretched surface. The governing system of nonlinear 

partial differential equations is simplified by considering Boussinesq and boundary layer approximations. An analytical 

solution of the resulting nonlinear ordinary differential equations for momentum, energy and concentration profiles is obtained 

using the homotopy analysis method (HAM). 
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1. Introduction 

Enhancement of thermal conductivity in the base fluid due 

to the presence of nano sized solid particles is studied 

vigorously by different researchers in the recent past. The 

properties and behavior of base fluid are exceedingly 

dependent upon the solid particles size, shape and their 

associated dispersion features [1, 2]. Presence of 

nanoparticles resembles to a significant alteration in the 

viscosity and the specific heat of the base fluids [3]. Khan et 

al. [3] have deliberated the effects of thermal radiation, heat 

generation and chemical readtion over the magneto-

hydrodynamic laminar boundary layer flow of a nanofluid 

past a wedge. Nadeem and Rehman [4] have presented an 

analytical solution for the finite radial domain, axisymmetric 

stagnation flow of a nanofluid flowing between the annular 

region formed by two concentric cylinders, when the inner 

cylinder is translating along and rotating about the axial 

direction with constant linear and angular velocities. Further, 

Rehman et al. [5] have debated the problem of non-

Newtonian couple stress fluid containing nanoparticles 

flowing over a stretching surface when the stretching velocity 

varies exponentially with the distance from the stagnation 

point. The magneto-hydrodynamic boundary layer flow of a 

nanofluid flowing through some porous medium over an 

exponentially stretching surface was studied by Ferdows et 

al. [6]. Khan et al. [7] have analyzed the time dependent 

boundary layer flow of nanofluid flowing along a stretced 

surface and is under the influence of a magnetic field with 

viscous dissipation and thermal radiation. They [7] observed 

that the boundary layer concentration of nanoparticles is 

highly dependent upon their size and shape. Few other 

motivating studies about the flow behavior of nanofluids are 

cited in [8-13]. 

The purpose of the present study is to analyze the effects 

of nanoparticles over the heat transfer and viscoelastic non-

Newtonian second grade, steady incompressible, electrically 

conducting boundary layer fluid flow due to a moving, 

linearly stretched sheet. The governing system of nonlinear 

partial differential equations and the associated boundary 

conditions describing the problem are first shortened by 

applying Boussinesq and boundary layer approximations. 

The resulting nonlinear system of partial differential 

equations is then creamed into a nonlinear syste of ordinary 

differential equations using a proper similarity 

transformation. An analytic solution of the resulting system 

of nonlinear ordinary differential equations for momentum, 

energy and concentration profiles is obtained using the 
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homotopy analysis method (HAM). Convergence of the 

solutions and the physical behavior of the important involved 

parameters are discussed at the end. 

2. Formulation 

Let us consider a steady, two dimensional, incompressible 

flow of an electrically conducting viscoelastic nanofluid 

flowing over a stretched moving surface in a porous medium. 

The stretching velocity of the surface is assumed to be 

wu bx= . Assuming magnetic Reynolds number is very 

small, and applying the Boussinesq and the boundary layer 

approximations, the boundary layer equations are 
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where u  and v  are the velocity components along the x  and y  directions, ρ  is density, ν  is the kinematic viscosity, g  is 

the gravitational acceleration, β  is the coefficient of thermal expansion, 0k  is the viscoelastic fluid parameter, σ is the electric 

conductivity, 0B  is the external magnetic field acting in y direction, T  is the temperature, k  is the thermal diffusivity, pc  is 

the specific heat of the viscoelastic fluid at constant pressure, ρ∗  is the nanoparticle mass density, pc
∗

 is the effective heat of 

nanoparticles, BD  is the Brownian diffusion coefficient, TD  is the thermophoretic diffusion coefficient and ϕ  is the 

nanoparticle concentration function. The corresponding boundary conditions for the problem are 
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Using the stream function ψ  as introduced by Rashidi et al. [14] and the other similarity variables 
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With the help of transformations in Eq. (8), the governing boundary layer equations can be written as 

( ) ( )( )2 2 *
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in which 1 0 /k k b ν=  is the viscoelastic parameter, 

2
0 /Mn B bσ ρ=  is the magnetic parameter, 2/Gr g A b lβ=  

is the Grashof number, 

( )( ) ( )( )/ 1w wNr T Tρ ρ ϕ ϕ ρβ ϕ∗ ∗
∞ ∞ ∞= − − − −  is the 

buoyancy ratio, Pr /pc Kµ ∞=  is the Prandtl number, 

316 / 3Nr T K Kσ ∗ ∗
∞ ∞=  is the thermal radiation parameter, 
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( ) /p B wNb c D Kρ ϕ ϕ∗ ∗
∞ ∞= −  is the Brownian motion 

parameter, ( ) /p T wNt c D T T T Kρ∗ ∗
∞ ∞ ∞= −  is the thermophoresis 

parameter and / BSc Dν=  is the Schmidt number. The 

boundary conditions in nondimensional form can be written 

as 

( ) ( ) ( ) ( )0 0,   0 1,  0 1, 0 1,f fη θ= = = Ψ =  (12) 

0,    0,  0, 0,  as .f fη ηη θ η→ → → Ψ → → ∞  (13) 

Further the problem is solved using the analytic technique 

the homotopy analysis method. 

3. Solution of the Problem 

To obtain the solutions of Eqs. (10) and (11) subject to the 

boundary conditions in Eqs. (12) and (13) by homotopy 

analysis method choose the initial guesses as  
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The associated linear operators for the velocity, 

temperature and concentration profiles are 
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where ci (i=1, 2,…, 7) are arbitrary constants. The zeroth-

order deformation equations are  
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Further details about the HAM procedure can be found in 

[14-26].  

4. Convergence of the HAM Solutions 

Figures (1), (2) and (3) are comprised to survey the 

convergence of the homotopy solutions for the velocity, 

temperature and concentration profiles. Figure (1) exhibits 

the boundary derivatives corresponding to the convergence 

arcs for the nondimensional velocity profiles 'f  schemed 

against the different values of the magnetic parameter Mn 

plotted for the 20
th
 order approximation of the HAM 

solutions, considering the other parameters fixed at the 

0.02% level of the nanoparticle concentration inside the 

second grade base fluid. Figure (1) Certifies that the 

convergence pattern is agreeable. From the sketch it can be 

perceived that for different combinations of the magnetic 

field strength Mn an appropriate choice of the homotopy 

parameter ħ may be selected from the interval -1<ħ<-0.5. 

Figure (2) demonstrates the convergence loops presented by 

the nondimensional temperature function θ  schemed against 

dissimilar values of the Prandtl numbers Pr plotted for the 

20
th

 order approximation of the HAM solutions. From Figure 

(2) convergence is observed but the interval of convergence 

reduces with increasing Prandtl numbers Pr. Figure (3) 

shows the ħ - curves associated with the nondimensional 

concentration profile ψ  for different values of the Schmidt 

number Sc plotted for the 20
th

 order approximation of the 

HAM solutions. From Figure (3) a suitable convergence 

region is obtained.  

 

Figure 1. ħ - Curves for the velocity function f  against different values of 

the magnetic parameter Mn plotted for the 20th order approximation of the 

HAM solutions when 1k  = 0.2, Gr = 0.5, Nr = 0.2, Pr = 0.71, * 0.2Nr =  Nt 

= 0.5, Nb = 0.25, Sc = 1. 

 

Figure 2. ħ - Curves for the temperature function θ  against different values 

of the Prandtl number Pr plotted for the 20th order approximation of the 

HAM solutions when 1k  = 0.5, Gr = 1, Mn = 0.5, Nr = 0.2, * 0.2Nr = , Nt 

= 0.5, Nb = 0.25, Sc = 1. 
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Figure 3. ħ - Curves for the concentration function ψ  against different 

values of the Schmidt number Sc plotted for the 20th order approximation of 

the HAM solutions when 1k  = 0.5, Gr = 1, Mn = 0.5, Nr = 0.2, Pr = 1, 

* 0.2Nr = , Nt = 0.5, Nb = 0.2. 

5. Results and Discussion 

The governing nonlinear partial differential equations of 

boundary layer flow of a second grade fluid flowing over a 

stretching surface such that the fluid contains nanoparticles 

and is under the action of a uniform magnetic field is studied 

analytically and the solutions are obtained through the 

homotopy analysis method. The problem is simplifying under 

boundary layer assumptions and utilizing a suitable similarity 

transformation. The impact of different important physical 

parameters such as the viscoelastic second grade fluid 

parameter, Prandtl number, Schmidt number, Grashof 

number, the radiation parameter, the Brownian and the 

thermophoresis parameters over the nondimensional fluid 

velocity, heat transfer and the nanoparticle concentration 

outlines are presented in Figures. (4) to (9). Figure (4) shows 

the behavior of the nondimensional velocity profile f΄ (η) 

plotted against different combinations of the viscoelastic 

fluid parameter and the magnetic field parameter Mn at the 

0.01% of the nanoparticle concentration keeping the other 

parameters fixed. From the plot it is noted that by increasing 

both the magnetic field parameter Mn and the viscoelastic 

second grade fluid parameter the nondimensional velocity 

profile f΄(η) decreases. The behavior is consistent with the 

fact that increasing viscoelastic parameter corresponds to an 

increase in the tensile stress between the fluid layers that in 

return reduces the fluid velocity. Figure (5) displays the 

impact of the Grashof number Gr and the magnetic field 

parameter Mn over the nondimensional velocity profile f΄(η). 

From the sketch it is noted that the nondimensional velocity 

profile f΄(η) increases. The behavior of temperature profile θ 

(η) for different values of the Prandtl number Pr is shown in 

Figure (6). From the figure a decline in the temperature 

profile and in the thermal boundary layer is exhibited with an 

increasing pattern of Prandtl number Pr. Figure (7) offers the 

manners adopted by the temperature profile θ (η) for different 

combinations of the thermal radiation parameter Nr and the 

Brownian motion parameter Nb. From the sketch it is evident 

that the nondimensional temperature profile θ (η) increases 

with increase in both the Brownian motion parameter Nb and 

the thermal radiation parameter Nr. Figure (8) expresses the 

influence of the thermophoresis parameter Nt and the Prandtl 

number Pr over the nanoparticle concentration profile ψ (η). 

From the plot it is noted that an increase in the 

thermophoresis parameter Nt increases the nanoparticle 

concentration function ψ (η). Figure (9) presents the behavior 

of the Schmidt number Sc and the Brownian motion 

parameter Nb. From the sketch it is conveyed that increase in 

the Schmidt number Sc decrease the nanoparticle 

concentration function ψ (η). This observation is due to the 

fact that higher Schmidt numbers corresponds to an enhanced 

mass transfer rate in the infinite half plane that decreases the 

concentration at a particular control volume.  

 

Figure 4. Behavior of velocity profile f΄(η) for different values of the 

viscoelastic fluid parameter 1k  and magnetic field parameter Mn when Gr 

= 0.5, Nr = 0.2, Pr = 0.71, * 0.2Nr = , Nt = 0.5, Nb = 0.25, Sc=1. 

 

Figure 5. Behavior of velocity profile f΄(η) for different values of the Grashof 

number Gr and the magnetic field parameter Mn when 1k  = 0.5, Nr = 0.2, 

Pr = 1, * 0.2Nr = , Nt = 0.5, Nb = 0.5, Sc = 1. 

 

Figure 6. Behavior of temperature profile θ (η) for different values of 

Prandtl number Pr when 1k  = 0.5, Nr = 0.2, Gr = 1, Mn = 0.5, * 0.2Nr = , 

Nb = 0.5, Nt = 0.5, Sc = 1. 
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Figure 7. Behavior of temperature profile θ (η) for different values of the 
thermal radiation parameter Nr and the Brownian motion parameter Nb 

when, 1k  = 0.5, Gr = 1, Mn = 0.5, Pr = 0.7, * 0.2Nr = , Nt = 0.5, Sc = 1. 

 
Figure 8. ehavior of nanoparticle concentration profile ψ (η) for different 

values of the Prandtl number Pr and the thermophoresis Nt when, 1k  = 0.5, 

Gr = 1, Mn = 0.5, Sc = 1, * 0.2Nr = , Nb = 0.2, Nr = 0.2. 

 
Figure 9. Behavior of nanoparticle concentration profile ψ (η) for different 

values of the Schmidt number Sc and the Brownian motion parameter Nb 

when, 1k  = 0.5, Gr = 1, Mn = 0.5, Pr = 1, * 0.2Nr = , Nt = 0.5, Nr = 0.5. 

6. Conclusion 

The problem of steady incompressible boundary layer flow 

of a non-Newtonian second grade fluid flowing over a 

linearly stretched sheet is analyzed analytically by means of 

the homotopy analysis method. The fluid is assumed to be 

under the influence of a uniform magnetic field. The main 

findings of the study are listed hare 

1. A suitable convergence for the nondimensional 

velocity, temperature and concentration profiles is 

achieved through the ħ-curves for a notable choice of 

the involved parameters. 

2. The nondimensional velocity profile is a decreasing 

function of the viscoelastic and the magnetic 

parameters while the velocity profile increases by 

increasing the Grashof number. 

3. The nondimensional temperature profile is a decreasing 

function of the Prandtl numbers. 

4. The concentration profile increasing by increasing the 

thermophoresis parameter, while the concentration 

function decreases with an increase in the Prandtl 

number, the Schmidt number and the Brownian motion 

parameter. 
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