
 

Applied and Computational Mathematics 
2018; 7(2): 58-70 

http://www.sciencepublishinggroup.com/j/acm 

doi: 10.11648/j.acm.20180702.14 

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

Solving Variable-Coefficient Fourth-Order ODEs with 
Polynomial Nonlinearity by Symmetric Homotopy Method 

Abdrhaman Mahmoud
1, 2

, Bo Yu
1
, Xuping Zhang

1, * 

1School of Mathematical Sciences, Dalian University of Technology, Dalian, China 
2Department of Mathematics, Faculty of Sciences and Technology, Omdurman Islamic University, Omdurman, Sudan 

Email address:  
 

*Corresponding author 

To cite this article: 
Abdrhaman Mahmoud, Bo Yu, Xuping Zhang. Solving Variable-Coefficient Fourth-Order ODEs with Polynomial Nonlinearity by 

Symmetric Homotopy Method. Applied and Computational Mathematics. Vol. 7, No. 2, 2018, pp. 58-70. doi: 10.11648/j.acm.20180702.14 

Received: February 4, 2018; Accepted: February 24, 2018; Published: March 22, 2018 

 

Abstract: In this paper, the eigenfunction expansion method (EEM) is applied to find numerical solutions for variable-

coefficient fourth-order ordinary differential equations (ODEs) with polynomial nonlinearity. The symmetry of the solution set 

for the resulting system of polynomial equations obtained from EEM of the problem is analyzed. The symmetric homotopy 

method is constructed to calculate all solutions of the discretization system for the problem. Due to the exploitation of 

symmetry, the number of computations is reduced. Numerical examples are presented to demonstrate the efficiency of the 

presented homotopy method. 
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1. Introduction 

It is known that the nonlinear differential equations can 

govern many phenomena in nature. Once the nonlinearity 

increases in these equations, the structures of the solutions 

may become complicated. Due to these nonlinearities, the 

ODEs cannot be solved by using analytical methods. 

Therefore, the numerical methods can be used to solve such 

equations. Thus, the approximate solutions are required. 

Boundary value problems (BVPs) for nonlinear higher-

order ODEs have significant applications in applied 

mathematics. Especially, nonlinear fourth-order BVPs are 

commonly used in a wide variety of application fields such as 

physics, chemical phenomena, and engineering; see for 

example [1, 2]. Recently, a great attention has been given to 

solve these problems numerically. 

In this paper, we consider the following type of variable-

coefficient fourth-order ODEs with polynomial nonlinearity 

����� � ������	�	 
 ����� � 
���; ��, � ∈ Ω ≡ �0, 1�,  (1) 

with boundary conditions 

��0� � ��1� � �		�0� � �		�1� � 0, 

where ���� and ���� are given continuous functions on the 

interval �0, 1� . 
���; �� ≔ ����� 
 ������ 
 ������� 
⋯

������� is a polynomial of � with given variable coefficients 

�����, �����, �����, … , ����� and degree �. 

The BVP (1), usually describes the deformation of an 

elastic beam, which has been widely studied by many 

researchers [3-6]. In general, the existence and multiplicity of 

solutions to such kind of BVPs depend on the growth 

conditions of the nonlinearity term 
���; �� [7-10]. 

The EEM is one of the numerical techniques for finding 

multiple solutions of differential equations when some 

analytical methods fail. Hence, in this paper, we use the EEM 

as a discretization method, which is more accurate than other 

numerical methods such as finite difference and finite 

element methods [11]. 

Under the assumptions that ���� and ���� are in  !�0,1�, 
the linear fourth-order operator in BVP (1) has an infinite set 

of real eigenvalues 0 " #� $ #�… $ 	#& $ ⋯ , and the 

corresponding eigenfunctions '(�)�*�!  satisfies, 
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+ (				 � #(,(�0� = (�1� = (		�0� = (		�1� = 	0             (2) 

It can be verified that the eigenfunctions are (���� =,. �./�.0�� , where ,  is an arbitrary constant. After 

normalization, these eigenfunctions are a normalized 

orthogonal base of the Sobolev space 1:= 3��Ω� ∩ 3���Ω� . 

The normalized eigenpairs of BVP (1) are 

(���� = √2	�./�.0��, #� = �.	0�7, . = 1, 2, 3…. 
Let 1& denote the 9-dimensional subspace spanned by the 

first 9 eigenfunctions. The approximate solution of (1) can 

be obtained by the linear combination of '(�)�*�& as follows: 

find �&��� = ∑ ;�(�&�*� ∈ 1&, such that 

<��& , (�� = = ��&		(�		 + �����&	 (�	 + �����&(������ − = 
���; �&�(��� = 0�� , ∀(� ∈ 1&	                   (3) 

The approximation expressed by (3) can be written as; 

?√2@�A;B C��.0���D0��	�./�.0���./�D0�� +�
�

&
B*� �.0��D0�����;E��.0��;E��D0�� + �����./�.0���./�D0�����	 

= √2= 
���; �&��./�.0������ , ∀	1 ≤ ., D ≤ 9                                                            (4) 

From the above expression, we get the following system of polynomial equations with respect to ; = �;�, ;�, … , ;&� F&�;�, c�, … , ;&� ≜ ;�I� 	− = �����(��� − = ������� ?∑ ;B(B&B*� @(� − = ������� ?∑ ;B(B&B*� @�(� 	…− = ������� ?∑ ;B(B&B*� @�(� = 0,	 (5) 

where 

I� = = ��.0���D0��	�./�.0���./�D0�� + �.0��D0�����;E��.0��;E��D0�� + �����./�.0���./�D0������� . 

The integral of �.0���D0��	�./�.0���./�D0��  in (4) can be 

computed explicitly while other integral terms may not be 

computed explicitly. We can compute them by using the 

numerical quadrature. Given that 9  is large, the system of 

polynomial equations (5) will be a complicated system. 

Therefore, we can solve this system by using the numerical 

approximation techniques such as Fixed-point iteration 

method, Newton’s method and Homotopy continuation 

method [12]. 

The main purpose of this paper is to construct a symmetric 

homotopy for solving variable-coefficient fourth-order ODEs 

with polynomial nonlinearity. We construct a simple fourth-

order ODE as a starting system and then discretize it in 

eigensubspaces, where the subsystems have readily available 

solutions. Then, the resulting systems of polynomial 

equations in eigensubspaces are put together in a block-wise 

manner to construct the starting system for a general 

problem. We use the symmetry to reduce the number of 

computations by tracking the representative solution paths of 

the homotopy. For spurious solutions which may appear in 

the solution set of the discretized system of BVPs, we 

removed them by using certain filters. 

The remainder of this paper is organized as follows. In 

section 2, we introduce a homotopy continuation method for 

the resulting system of polynomial equations obtained from 

the discretization of BVPs. In section 3, we address the 

analysis of symmetry group in the solution set of discretized 

problem. Section 4 contains the construction of symmetric 

homotopy for solving variable-coefficient fourth-order ODEs 

with polynomial nonlinearity. In section 5, we provide 

numerical examples to verify the efficiency of the symmetric 

homotopy. Finally, conclusions are summarized in section 6. 

2. Homotopy Continuation Method for 

System of Polynomial Equations 

It is known that Newton’s method may not converge when 

solving a large system of polynomial equations that arise in 

connection with the discretization of BVPs. Sometimes, the 

computation of associated Jacobian matrix is rather 

expensive. Therefore, it is necessary to provide a substitute 

such as a homotopy continuation method, which has global 

convergence properties [13-15]. 

The basic idea of using a homotopy continuation method is 

to deform a simple starting system to a target system and 

track the zero-dimensional (all isolated) solutions of the 

intermediate systems. For a given system of polynomial 

equations, we construct an appropriate start system which 

can be easily solved and then deform these solutions through 

the smooth paths (homotopy paths) to get the desired 

solutions of the target system. From the numerical algebraic 

geometry community, there are some software packages such 

as PHCpack, HOM4PS-2.0, and Bertini [16-18]. These 

software packages can be used to solve the given system of 

polynomial equations. Therefore, the system of polynomial 

equations (5) can be solved by using the following total 

degree homotopy 

3&�;�, c�, … , ;& , J� = �1 − J�K&�;�, c�, … , ;&� + JF&�;�, c�, … , ;&�	                                               (6) 
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where K& 	�;�, ;�, … , ;&�  is the starting system defined as 

follows; 

K&�;�, c�, … , ;&� ≜ L M;��N − 1⋯;O�P − 1Q , �� = deg�F��, 
moreover L ∈ ℂ	 a generic random number is used to avoid 

the singularities [19]. 

Recently, a few studies are dealing with computing the 

solutions of the discretization differential equations by using 

the homotopy continuation method; see, for example [11, 20-

22] and the references therein. 

Allgower et al. suggested a numerical continuation method 

in [20] to compute all solutions for a nonlinear second order 

two-point BVPs by using a finite difference method. They 

performed a homotopy deformation on successively refined 

discretization systems to obtain solutions on the finer level. 

When the system of polynomial equations is large, they 

proposed some filters for removing spurious solutions, which 

leads to an efficient homotopy. These filters depend on the 

information and properties of the solutions of the original 

problem, and there seems no general rule. For the symmetry 

of solution set for the discretized system, a special filter is 

selected. 

Zhang et al. [11], proposed the EEM to obtain multiple 

solutions of semilinear elliptic partial differential equations 

with polynomial nonlinearity. They computed the 

corresponding solutions for the discretized problem on a 

coarse level, then utilize it as initial guesses to calculate 

related solutions of the discretized problem on a finer level. 

The extension homotopy method was constructed to find all 

solutions of the resulting system of polynomial equations 

efficiently. They used the error estimates of EEM to propose 

a filter strategy for removing spurious solutions. The finite 

element Newton method was applied to refine the computed 

solutions more. 

In [21], Zhang et al. designed the symmetric homotopy 

method to find solutions of the system of polynomial 

equations derived from the discretizations of elliptic 

equations with cubic and quintic nonlinearities. They 

analyzed the symmetry of solution set for the system of 

polynomial equations arising from the eigenfunction 

expansion discretization of the problem. This symmetry 

arises from the dihedral symmetry V7  of the unit square. 

They proved that this kind of homotopies could preserve the 

symmetry and reduce the number of computations, because 

only the representative paths have to be traced. 

The homotopy method introduced in [22] is a 

bootstrapping approach, which was applied to compute 

multiple solutions of differential equations. This method used 

a homotopy continuation method based on the domain 

decomposition. That means to decompose the domain into 

subdomains, and then each subdomain is solved 

independently in parallel. Then, the solutions from the 

subdomains are combined to build solutions for the original 

problem. They applied this approach for solving problems 

consisting one and two-dimensional problems. 

3. Symmetry Group for the Solution Set 

of the Discretized Problem 

Throughout this section, we discuss the symmetry of 

discretized problem (1) by using the group actions of the 

dihedral group V� (the point group). The dihedral group V� 

consists of the identity and a reflection about the center of the 

domain; L� ∘ � = �, 	L� ∘ � = 1 − �, ∀	L ∈ V�              (7) 

The symmetry of the discretized solution set is due to the V� symmetry of the domain, and it is passed over through the 

eigenfunctions, the eigen-base and the expansion 

coefficients. We will address them in more details as follows: 

First, recall that the eigenfunctions of the linear fourth-order 

operator with boundary conditions have the following form (���� = √2	�./�.0	��, . = 1, 2, 3…  

For L ∈ V� , the transformation on eigenfunctions can be 

obtained by; 

L ∘ (���� = (��L ∘ ��.                         (8) 

For example, if L ∘ � = 1 − �, we get L ∘ (���� = √2 �./?.0�L ∘ ��@  

= √2 �./?.0�1 − ��@  

= �−1���X��√2	�./�.0	�� = �−1���X��(����  
Therefore, the transformation on eigen-base can be defined 

in 1& as follows; ℊZ ∘ ?(����, … , (&���@ = ?L ∘ (����, … , L ∘ (&���@   (9) 

For example, again if L ∘ � = 1 − �, we get ℊZ ∘ ?(����, (����, ([���, (7���@  = �(����, −(����, ([���, −(7����  
Note that, the representation of ℊZ  is an orthogonal 

matrix. That means for an element in ℝ& as a column vector, 

the transformation ℊZ  corresponds to ]Z  can be written as 

follows; 

MI�I�I[I7Q → ]Z MI�I�I[I7Q = M1 0 0 00 −1 0 000 00 1 00 −1QMI�I�I[I7Q  

Second, the transformation on expansion coefficients. For �& = ∑ ;�(����&�*� ∈ 1&, define  : 1& → ℝ& as;  ��&� 	= �;�, ;�, … , ;&�_.                      (10) 
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The transformation ℊ̀Z  on expansion coefficients induced 

by 

�& → L ∘ �&���  
is defined as 

L ∘ a�(����, (����, … , (&����b;�;�⋮;&de = �(����, (����, … , (&���� aℊ̀Z ∘ b;�;�⋮;&de                              (11) 

This leads to the following result ℊ̀Z 	= 	 L	 f�.  

Since ℊZ is an orthogonal matrix, we have ℊZ ∘ ?(����, (����, … , (&���@ = ?(����, (����, … , (&���@]Z_ = ?(����, (����, … , (&���@]Zf�               (12) 

As a result, we find that 

L ∘ a�(����, (����, … , (&����b;�;�⋮;&de = gℊZ ∘ �(����, (����, … , (&����h ab;�;�⋮;&de = �(����, (����, … , (&���� a]Zf�b;�;�⋮;&de	   (13) 

Again, this leads to the following result; ℊ̀Z 	= 	ℊZf�  

Finally, the transformation on coefficients of the discretized problem with coefficients of nonlinearity 
���; �� can be as; 

= ��′&	 (�		 + ?L ∘ ����@�&	 (�	 + ?L ∘ 	����@�&(���� �� = = ��L ∘ ������ + ?L ∘ �����@�&�� +⋯+ ?L ∘ �����@�&����     (14) 

= ��&		(�		 + ?��L ∘ ��@�&	 (�	 + ?��L ∘ 	��@�&(���� �� = = �����L ∘ ��� + ?���L ∘ ��@�&�� +⋯+ ?���L ∘ ��@�&����     (15) 

The symmetry in the solutions of system of polynomial equations F&�;�, ;�, … , ;&� defined in (5) can be stated as follows; 

Let �̅ 	= L ∘ 	� and define �k��� = L ∘ 	���� 	≜ 	��L ∘ 	�� = 	���̅�, ∀	L ∈ 	V�                                                    (16) 

Then, 

C��k&		���(k�		��� + �����k&	 ���(k�	��� + �����k&���(k��������
� 	= C��&		��̅�(�		��̅� + �����&	 ��̅�(�	��̅� + �����&��̅�(���̅�����

�  

= Cg?L ∘ �&		���@. �L ∘ (�		���� + �����L ∘ �&	 ����. �L ∘ (�	���� + �����L ∘ �&����. �L ∘ (�����h���
�  

Besides that, 

= 
���; �k&���� ⋅ (k�������� = = 
���; �&��̅�� ⋅ (���̅����� = = 
�?�; L ∘ �&���@ ⋅ �L ∘ (��������� 	                (17) 

Therefore, the resulting polynomial system F&�;�, ;�, … , ;&� becomes 

F&�;�, ;�, … , ;&� = ℊZ ∘ F& mℊ̀Z ∘ �;�, ;�, … , ;&�n = ℊ̀Zf� ∘ F&�ℊ̀Z ∘ �;�, ;�, … , ;&��                         (18) 

Let o&  denotes the solution set of F& = 0. The expansion 

coefficients �;�, ;�, … , ;&�  is said to be equivalent to �;�, ;�, … , ;&� if, for some ℊZ ∈ V�, �;�, ;�, … , ;&� = ℊZ ∘ �;�, ;�, … , ;&� 
Therefore, we can divide the solution set by assigning o& 

to the equivalence classes. These equivalence classes under 

the equivalence relation ‘∼’ are known as orbits.  

The set of representative solutions is a set of all ∼ equivalence 

classes in o&, i.e., o&	/∼. So, computing all solutions of F& = 0 

depends on the computing all representative solutions, then we 

perform group actions on them. 
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4. Construction of the Symmetric 

Homotopy for Discretized Problem 

In this section, we focus on the construction of the 

symmetric homotopy for variable-coefficient fourth-order 

ODEs with polynomial nonlinearity. Due to the symmetry 

analyzed in Section 3, we used it to construct an efficiency 

homotopy for our problem; and we limit our study to the 

nonlinearity case � = 3,5. 
Recall that the eigenvalues of the linear fourth-order ODE 

operator are 0 ≤ s� ≤ s� ≤ ⋯ ≤ s& , and the corresponding 

eigenfunctions are t�, t�, … , t& . Denote u�s�� = �v�/�t�� , 

where t� = √2	�./�.0	��. 
Let wx�yz�: 1 → u�s��  denotes the  � -orthogonal projection 

which is defined as; ?� − wx�yz��, t@ = 0, ∀	t ∈ u�s��. 
For L ∈ V� , consider the transformation on  �-orthogonal 

projection is L ∘ 	?wx�yz��&@ = 	wx�yz��L ∘ �&� 
4.1. The Symmetric Homotopy for Cubic Polynomial 

Nonlinearity 

Consider the following simple case of fourth-order BVP as 

the starting problem for our general problem with polynomial 

nonlinearity � = 3 

+ ����� = �[, � ∈ �0, 1���0� = ��1� = �		�0� = �		�1� = 0              (19) 

The EEM for (19) in an eigensubspace corresponding to an 

eigenvalue can be written as follows: find � = ;�t� ∈ u�s��, 
such that 

= �&		���t�		������� = = �&[ ���t�������� , ∀	t� ∈ u�s��	  (20) 

√2��.0�7;� C�./��.0�����
� = ;�[√27C�./7�.0�����

� , 
. = 1,2, … ,9                                (21) 

Note that the variables ;�  in the discretized problem (21) 

are separable and each equation has 3 solutions. Therefore 

(21) has 3& real solutions. �0,… ,0� is the trivial solution. For 

nontrivial solutions, suppose that the nonzero components are 

located at .�, … , .{ , we have explicit expression for these 

components as follows; 

;�N� = ;�|� = ⋯	= 	;�}� =	 yz}�.~            (22) 

Thus, we find that it is easy to solve the discretized 

problem and then can set the resulting system of polynomial 

equations (21) block-wise to obtain the starting system for 

the general problem. 

By using the symmetry, we can classify the solutions of 

the resulting system of polynomial equations obtained 

from EEM into the equivalence classes. Therefore, we 

only need to focus on the calculation of the representative 

solutions. Thus, we construct the following symmetric 

homotopy for our problem with cubic nonlinearity 

3&�;�, ;�, … , ;& , J� = ��1 − J�K&�;�, ;�, … , ;&� + JF&�;�, ;�, … , ;&�,                                              (23) 

where K& is defined as follows; 

K&�;�, ;�, … , ;&� ≜ C?wx�yz��&@		t�		
�

� −C?wx�yz��&@[t�
�

� = 0, . = 1,2, … , 9 

and, � ∈ ℂ is the generic random number for avoiding the singularities. 

4.2. The Additional Symmetry for Odd Cubic Nonlinearity 

It is known that the additional symmetry in the solutions of 

(1) can be obtained when 
���; �� is an odd function of �. 

That means if ���&� is a solution of (1), then −��−�&� is also 

a solution, which is named ℤ�  symmetry. Therefore, we 

denote by V� × ℤ�  the symmetry group of the discretized 

solutions and the homotopy solution paths. 

4.3. The Symmetric Homotopy for Quintic Polynomial 

Nonlinearity 

Analogues to cubic polynomial nonlinearity, the following 

simple case of fourth-order BVP can be the starting problem 

for our general problem with polynomial nonlinearity � = 5 

+ ����� = �~, � ∈ �0, 1���0� = ��1� = �		�0� = �		�1� = 0                  (24) 

Again, the EEM for (24) in an eigensubspace 

corresponding to an eigenvalue can be written as follows: 

find � = ;�t� ∈ u�s��, such that 

= �&		���t�		������� = = �&~ ���t�������� , ∀	t� ∈ u�s��	     (2
5) 

√2��.0�7;� C�./��.0�����
� = ;�~√2�C�./��.0�����

� , 
. = 1,2, … ,9                                     (26) 

Similarly, the variables ;� in the discretized problem (26) 

are separable and each equation has 5 solutions. Therefore 

(26) has 5&  solutions. �0,… ,0�  is the trivial solution. For 

nontrivial solutions, the nonzero components are 
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;�N7 = ;�|7 = ⋯ = ;�}7 = yz}�.~                             (27) 

Thus, solutions of (26) can be easily found. The starting 

system K& for the general quintic problem can be obtained 

by putting these polynomial equations together block-wise. 

Similarly, we construct the following symmetric homotopy 

for our problem with quintic nonlinearity 3&�;�, ;�, … , ;& , J� = ��1 − J�K&�;�, ;�, … , ;&� + JF&�;�, ;�, … , ;&�,                                               (28) 

where K& is defined as follows; 

K&�;�, ;�, … , ;&� ≜ C?wx�yz��&@		t�		
�

� −C?wx�yz��&@~t�
�

� = 0,			. = 1,2, … , 9 

4.4. The Additional Symmetry for Odd Quintic Nonlinearity 

Similarly, the additional symmetry in the solutions of 

(1) can be obtained when 
���; �� = �~ . That means if ���&�  is a solution of (1), then ±.��±.�&�  are also a 

solution besides −��	�&�, where . = √−1, which is named ℤ7  symmetry. Therefore, we denote V� × ℤ7  to the 

symmetry group of the discretized solutions and the 

homotopy solution paths. 

5. Numerical Results 

In this section, we present some numerical examples to 

demonstrate the efficiency of symmetric homotopy method. 

As we mentioned before, there are several software 

packages which can be used for tracking the representative 

paths of our symmetric homotopy such as PHCpack, 

HOM4PS-2.0, and Bertini. Hence, in this paper, the 

numerical experiments were performed by using PHCpack 

which has some properties such as accepting start system 

defined by the user. The efficiency of our symmetric 

homotopy is verified by comparison with the efficiency of 

the total degree homotopy. 

5.1. Example 1 

Consider the following variable-coefficient fourth-order 

ODE with cubic polynomial nonlinearity ����� − ������	�	 + ����� = ������� + �[����[, � ∈ �0, 1� ��0� = ��1� = �		�0� = �		�1� = 0,              (29) 

where ���� = ����� = m� − ��n�  and ���� = �[��� = m� − ��n7 

are chosen to be symmetric about the center of domain Ω. 
The Tables 1-4 show the details of solution for the 

discretized problem, which are obtained by using the total 

degree homotopy and symmetric homotopy. No. Sols refer to 

the numbers of solutions (including complex solutions) which 

increase exponentially with the numbers of eigenfunctions 

basis 9. No. Real Sols refer to the numbers of real solutions 

which are obtained by solving the target system of polynomial 

equations by the total degree homotopy. No. Rep-Sols and No. 

Real Rep-Sols refer to the numbers of representative solutions 

and the numbers of real representative solutions obtained by 

using symmetric homotopy, respectively. 

Note that, such BVPs (29) may have infinitely many solutions 

[23], and the discretization problem has only finite solutions. 

Table 1. The data of discretized problem (29) with cubic polynomial nonlinearity in 1��. 

Total degree homotopy Symmetric homotopy 

N No. Sols No. Real Sols Time No. Rep-Sols No. Rep-Real Sols Time 

2 9 5 5ms 6 4 0ms 

3 27 7 54ms 18 6 40ms 

4 81 13 524ms 45 9 271ms 

5 243 15 4s626ms 135 11 2s278ms 

6 729 21 30s222ms 376 14 20s454ms 

7 2152 23 3m12s640ms 1120 16 1m35s303ms 

8 6554 29 18m24s148ms 3186 19 11m33s347ms 

9 14812 31 1h42m52s372ms 7559 21 44m24s928ms 

10 53480 37 8h 4m51s161ms 26064 24 4h12m18s133ms 

 

The details of solution for discretized problem (29) are 

listed in Table 1. When 9 = 10, we observe that the number 

of solutions for total degree homotopy is approximately 

equal to 2 times the number of representative solutions, and 

the expected time by total degree homotopy is 

approximately equal to 2 times the expected time by 

symmetric homotopy. 

5.2. Example 2 

Consider the following variable-coefficient fourth-order 

ODE with an odd cubic polynomial nonlinearity ����� − ������	�	 + ����� = �[, � ∈ Ω ≡ �0, 1� 
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��0� = ��1� = �		�0� = �		�1� = 0,              (30) 

where ���� = m� − ��n�  and ���� = m� − ��n7  are chosen to be 

symmetric about the center of domain Ω. 
Table 2 shows the details of solution for discretized 

problem (30). When 9 = 10, the number of solutions for total 

degree homotopy is approximately equal to 4 times the 

number of representative solutions, and the expected time by 

total degree homotopy is approximately equal to 4 times the 

expected time by symmetric homotopy. 

Due to the additional symmetry in the solution set of (30), 

we expect the efficiency of symmetric homotopy is more, 

comparing to solution of the problem with general cubic 

polynomial obtained in Table 1. 

Table 2. The data of discretized problem (30) with an odd cubic polynomial nonlinearity in 1��. 

Total degree homotopy Symmetric homotopy 

N No. Sols No. Real Sols Time No. Rep-Sols No. Rep-Real Sols Time 

2 9 5 16ms 4 3 0ms 

3 27 7 31ms 10 4 15ms 

4 81 9 203ms 25 5 47ms 

5 243 11 1s406ms 70 6 406ms 

6 728 13 10s672ms 194 6 3s516ms 

7 2185 15 57s256ms 570 8 14s236ms 

8 6561 17 5m50s672ms 1671 8 1m15s101ms 

9 19672 19 33m53s536ms 4976 9 7m24s179ms 

10 59024 20 2h15m43s774ms 14825 9 35m21s779ms 

 
As previously mentioned, the number of solutions 

increases with the number of eigenfunctions basis 9 . The 

solution set may contain spurious solutions, which means 

that approximation solution is not closed to original solutions 

for ODEs. Therefore, removing spurious solutions with 

certain filters will be necessary. The filtering strategy used in 

[11] can be a possible way to remove spurious solutions. The 

basic idea of this filter is based on error estimates of EEM, 

i.e., ��	–	�&��N ≤ 	,9f� , ‖� − �&‖�| ≤ 	,9f��X�� , where �& ∈ 1& , � ≥ 0  and ,  is a generic positive constant 

independent of 9 . The approximate solutions �&  of 

discretized problems on successively finer levels satisfy the 

error estimates, and then can be viewed as a solution path ���; 	9�  parameterized by discretization level 9 . Thus, the 

true approximate solutions should lie on a solution path. 

When 9  is large, the Cauchy's criterion for convergence 

implies that ‖�& − �&X�‖ is very small. Applying Newton's 

method with initial guesses �& = �&f�  to the discretization 

system, one can expect convergence for nonspurious 

solutions. 

The representative solutions for discretized problem (30) 

after filtering with 9 = 20 are displayed in Figure 1. 
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Figure 1. The representative solutions for (30) after filtering with	9 = 20. 
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5.3. Example 3 

Consider the following variable-coefficient fourth-order ODE with quintic polynomial nonlinearity ����� − ������	�	 + ����� = ������� + �[����[ + �7����7 + �~����~, � ∈ Ω ≡ �0, 1� ��0� = ��1� = �		�0� = �		�1� = 0,                                                                        (31) 

where ���� = ����� = �7��� = m� − ��n� and ���� = �[��� = �~��� = m� − ��n7 are chosen to be symmetric about the center 

of domain Ω.  
The details of solution for discretized problem (31) are listed in Table 3. 

Table 3. The data of discretized problem (31) with quintic polynomial nonlinearity in 1�. 

Total degree homotopy Symmetric homotopy 

N No. Sols No. Real Sols Time No. Rep-Sols No. Rep-Real Sols Time 

2 25 7 31ms 15 5 16ms 

3 125 9 735ms 75 7 515ms 

4 625 15 13s892ms 325 10 7s547ms 

5 3124 17 4m29s435ms 1622 12 2m15s30ms 

6 15593 23 1h 2m 7s489ms 7853 15 28m52s373ms 

7 77593 25 13h59m15s81ms 39112 17 6h51m5s51ms 

5.4. Example 4 

Consider the following variable-coefficient fourth-order ODE with an odd quintic polynomial nonlinearity ����� − ������	�	 + ����� = �~, � ∈ Ω ≡ �0, 1� ��0� = ��1� = �		�0� = �		�1� = 0,                                                               (32) 

where ���� = m� − ��n� and ���� = m� − ��n7 are chosen to be symmetric about the center of domain Ω. 
Table 4. The data of discretized problem (32) with an odd quintic polynomial nonlinearity in 1�. 

Total degree homotopy Symmetric homotopy 

N No. Sols No. Real Sols Time No. Rep-Sols No. Rep-Real Sols Time 

2  25  5 15ms  11 3  0ms  

3 125 7 282ms 57 4 94ms 

4 625 9 5s344ms 280 5 2s234ms 

5 3121 11 1m41s230m 1455 6 59s553ms 

6 15620 13 24m14s611ms 7397 7  11m 5s 8ms 

7 78098 15 5h46m42s993ms 37589  8 2h24m40s948ms 

 

Table 4 shows the details of solution for discretized 

problem (32). When 9 = 7, the number of solutions for total 

degree homotopy is approximately equal to 2 times the 

number of representative solutions, and the expected time by 

total degree homotopy is approximately equal to 2 times the 

expected time by symmetric homotopy. 

Similarly, because of the additional symmetry in the 

solution set of (32), the efficiency of symmetric homotopy is 

more, comparing to solution of the problem with general 

quintic polynomial obtained in Table 3.  

The representative solutions for discretized problem (32) 

after filtering with 9 = 14	are displayed in Figure 2. 
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Figure 2. The representative solutions for (32) after filtering with 9 = 14. 
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6. Conclusion 

In this paper, a numerical technique based on EEM is 

presented to obtain the approximate solutions for variable-

coefficient fourth-order ODEs with (cubic/quintic) 

polynomial nonlinearity. We have extensively used the 

symmetry with dihedral group V�  which leads to simple 

computations. The symmetric homotopy constructed for 

solving discretization systems of ODEs can preserve the 

symmetry and reduce the computational cost. Numerical 

results demonstrated that the symmetric homotopy method is 

efficient and promising. 

Acknowledgements 

This work is supported in part by the National Natural 

Science Foundation of China (11571061, 11401075) and in 

part by the Fundamental Research Funds for the Central 

Universities (DUT16LK36). 

 

References  

[1] Z. Bai and H. Wang, On positive solutions of some nonlinear 
fourth-order beam equations, Journal of Mathematical 
Analysis and Applications, 270 (2002), pp. 357–368. 

[2] Y. Yang, Fourth-order two-point boundary value problems, 
Proceedings of the American Mathematical Society, (1988), 
pp. 175–180. 

[3] G. Bonanno and B. Di Bella, A boundary value problem 
for fourth-order elastic beam equations, Journal of 
Mathematical Analysis and Applications, 343 (2008), pp. 
1166–1176. 

[4] M. do Rosário Grossinho, L. Sanchez, and S. A. Tersian, On 
the solvability of a boundary value problem for a fourth-order 
ordinary differential equation, Applied Mathematics Letters, 
18 (2005), pp. 439–444. 

[5] L. Greenberg and M. Marletta, Numerical methods for 
higher order sturm-liouville problems, Journal of 
Computational and Applied Mathematics, 125 (2000), pp. 
367–383. 

[6] Z. S. Aliyev and F. M. Namazov, Spectral properties of a 
fourth-order eigenvalue problem with spectral parameter in 
the boundary conditions, Electronic Journal of Differential 
Equations, 2017 (2017), pp. 1–11. 

[7] R. P. Agarwal, Boundary value problems for higher order 
differential equations, tech. report, 1979. 

[8] G. Han and Z. Xu, Multiple solutions of some nonlinear 
fourth-order beam equations, Non-linear Analysis: Theory, 
Methods &Applications, 68 (2008), pp. 3646–3656. 

[9] X. L. Liu and W. T. Li, Existence and multiplicity of solutions 
for fourth-order boundary value problems with three 

parameters, Mathematical and Computer Modelling, 46 
(2007), pp. 525–534. 

[10] A. Cabada, R. Precup, L. Saavedra, and S. A. Tersian, 
Multiple positive solutions to a fourth-order boundary-value 
problem, Electronic Journal of Differential Equations, 2016 
(2016), pp. 1–18. 

[11] X. Zhang, J. Zhang, and B. Yu, Eigenfunction expansion 
method for multiple solutions of semilinear elliptic equations 
with polynomial nonlinearity, SIAM Journal on Numerical 
Analysis, 51 (2013), pp. 2680–2699. 

[12] R. L. Burden and J. D. Faires, Numerical analysis, Cengage 
Learning, 2011. 

[13] J. Alexander and J. A. Yorke, The homotopy continuation 
method: numerically implementable topological procedures, 
Transactions of the American Mathematical Society, 242 
(1978), pp. 271–284. 

[14] T. Y. Li, Numerical solution of multivariate polynomial 
systems by homotopy continuation methods, Acta numerica, 6 
(1997), pp. 399 436. 

[15] T. Y. Li, Numerical solution of polynomial systems by 
homotopy continuation methods, Handbook of numerical 
analysis, 11 (2003), pp. 209–304. 

[16] J. Verschelde, Algorithm 795: Phcpack: A general-purpose 
solver for polynomial systems by homotopy continuation, 
ACM Transactions on Mathematical Software (TOMS), 25 
(1999), pp. 251–276. 

[17] T. L. Lee, T. Y. Li, and C. H. Tsai, Hom4ps-2.0: a software 
package for solving polynomial systems by the polyhedral 
homotopy continuation method, Computing, 83 (2008), pp. 
109–133. 

[18] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. 
Wampler, Bertini: Software for numerical algebraic geometry 
(2006), Software available at http://bertini. nd. edu. 

[19] A. J. Sommese and C. W. Wampler II, The Numerical solution 
of systems of polynomials arising in engineering and science, 
World Scientific, 2005. 

[20] E. L. Allgower, D. J. Bates, A. J. Sommese, and C. W. 
Wampler, Solution of polynomial systems derived from 
differential equations, Computing, 76 (2006), pp. 1–10. 

[21] X. Zhang, J. Zhang, and B. Yu, Symmetric homotopy method 
for discretized elliptic equations with cubic and quantic 
nonlinearities, Journal of Scientific Computing, 70 (2017), pp. 
1316–1335. 

[22] W. Hao, J. D. Hauenstein, B. Hu, and A. J. Sommese, A 
bootstrapping approach for computing multiple solutions of 
differential equations, Journal of Computational and Applied 
Mathematics, 258 (2014), pp. 181–190. 

[23] S. M. Khalkhali, S. Heidarkhani, and A. Razani, Infinitely 
many solutions for a fourth-order boundary-value problem, 
Electronic Journal of Differential Equations, 2012 (2012), pp. 
1–14. 

 


