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Abstract: Multidimensional Time Model for Probability Cumulative Function can be reduced to finite-dimensional time 
model, which can be characterized by Boolean algebra for operations over events and their probabilities and index set for 
reduction of infinite dimensional time model to finite number of dimensions of time model through application of Boolean 
prime ideal theorem and Stone duality and can be indexed by an index set considering also the fractal-dimensional time arising 
from alike supersymmetrical properties of probability through consideration of extension of the classical Stone duality to the 
category of Boolean spaces, locally compact Hausdorff spaces. The introduction of probabilistical prediction philosophically 
based on Erdős–Rényi LLN for the prediction through Descartes’ cycles, Gauss methods of trigonometric interpolation and 
least squares to reduce error in determination of the orbits of planetary bodies, and Farey series continued by sampling on the 
Sierpinski gasket.  
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1. Introduction Discussing Different 

Approaches to Multidimensional Time 

Model 

1.1. First Approach to Multidimensional Time Model 

Through Kramers Turnover Problem in the Theory of 

Velocity of Chemical Reactions 

Consider first the mathematical structure of the models of 
Boltzmann type kinetic equations for reacting gas mixtures 
for particles undergoing inelastic interactions with reactions 
of bimolecular and dissociation-recombination type is very 
complicated, because of the collisional operators that usually 
in the full Boltzmann equations, are expressed by 5-fold 
integrals. Consequently direct numerical applications of these 
models present several computational difficulties. The search 
for the simpler solution had its long way till the introduction 
of the equation for the Brownian motion by Albert Einstein. 
However, using the theory of Brownian motion for the 
velocity (rate) of chemical reactions Bohr, Kramers, and 
Slater used only one-dimensional (1D) model for The 
Kramers turnover problem, that is, obtaining a uniform 

expression for the rate of escape of a particle over a barrier 
for any value of the external friction until it was corrected by 
Grote-Hynes theory 40 years later, with new improvements 
following, all of them distinguish 1D approach from 2D, 3D, 
and multiD approaches. First approach to multidimensional 
time model is through Kramers turnover problem in the 
theory of velocity of chemical reactions.  

It is important and very interesting to consider such point 
that Kramers in his original work had it as possibility that 
multidimensional pattern could be related to time 
dimensions, as he based his introduction theory of Brownian 
motion on the Einstein’s pattern he considered a range of 
time intervals τ. His discussion of the possibility of a term 
proportional to τ in the expression for Moments of Brownian 
motion Bτn (n > 1) related it to the fact that the values, which 
X takes at moments t1, t2.... tn which lie sufficiently close 
together are no longer independent; and Moments of 
Brownian motion Bτn (n > 1) in fact are represented by a 
volume integral  

∫…∫X (t1)X (t2).. X (tn) dt1dt2....dtn 

over an n-dimensional cube; the contribution to this integral 
due to a narrow cylinder extending along the diagonal t1= t2 
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=...= tn may give a term proportional to τ. 

1.2. Second Approach to Multidimensional Time Model 

Through Cumulant Functions and Time Series 

Analysis 

To strengthen the above introduced notion consider 
cumulants properties for time series analysis that provide 
measure of Gaussianity. If r.v. X is normal, then cumk{X} = 0 
for k > 2, where cumk denotes the joint cumulants of X with 
itself k times.  

For simplicity consider seq of iid Xi with all moments and 
E{Xi} = 0 and var{Xi} = 1, then for  

Sn = ΣXi/√�  

cumk{ Sn } = n cumk{X}/nk/2 

that tends to 0 for k > 2, as n tends to infinity, so Sn has a 

limiting normal distribution.  
And for time series analysis the moment function  
E {X (t+u1)… X (t+uk-1)X (t)} would not depend on t, and 

on the short time interval centered at point of time t can be 
approximated by normal distribution.  

1.3. Third Approach Through Associated Random Variables 

Additional to the Brownian motion considerations in the 
theory of chemical reactions and time series analysis for 
cumulant functions, the same results can be obtained from 
the consideration of associated random variables. 

Definition 1 For n > 1 the set of rv Xi is said to 
beassociated, if for all given real-valued functions gi that are 
increasing ineach component when the other components are 
held fixed, the inequality  

E [Π� � 2� (X) ]≥Π	 2� (gj (X))holds, or equivalently, Corr (gi (X), gj (X)) ≥ 0, 

Theorem 1. (a) A set consisting of a single random 
variable is a set of associated random variables. (b) 
Independent random variables are associated random 
variables. (c) A subset of a set of associated random variables 
forms a set of associated random variables. (d) Increasing 
functions of associated random variables are associated 
random variables [24].  

2. Multidimensional Time Model for 

Probability Cumulative Function Is a 

Method That Opens a New Approach 

to Geometrical Predictions 

Proposition 1. The process X (t) with above properties can 
be represented by composition of Brownian motion processes 
in finite-dimensional time model.  

Next consider Stone representation of Boolean algebra, 
which is represented by an algebra with known axioms for 
Boolean algebra and can be characterized by quadruplets B= 
<X, 0, *, ~>, where 0 is an element from a set X, and * is a 
binary operation and ~ is an unary operation, which would be 
a Boolean algebra with 1 as a unit on the operations ∧, ∨, and 
~. Besides that it has four unary operations, two of which are 
constant operations, another is the identity, and negation and 
besides the number of n-ary operations, the number of the 
dimensions that infinite-dimensional model can be reduced to 
through application of Boolean prime ideal theorem and 
Stone duality, can be indexed by an index set.  

Proposition 2. Multidimensional Time Model for 
Probability Cumulative Function can be reduced to finite-
dimensional time model, which can be characterized by 
Boolean algebra for operations over events and their 
probabilities and index set for reduction of infinite 
dimensional time model to finite number of dimensions of 
time model considering the fractal-dimensional time that is 
arising from alike supersymmetrical properties of probability. 

3. Discussion of the History of the Laws 

of Large Numbers [14-17, 20-22] as a 

Tricential Method for Predictions 

Statistical prediction in modern sciences traces its roots in 
ancient mathematics. To introduce this, it would be 
reasonable to start from the theorems of Probability and 
Statistics. Such theorems support the calculation of 
probability, estimation of and testing statistical hypotheses 
(TSH) for the next occurrence of the Heads and Tails, or +s 
and –s. For instance, the theorem of Bernoulli for the 
probability of coin tossing outcomes of Heads and Tails 
depending on their frequencies. Consider Erdos-Renyi law of 
large numbers for general sequences of independent 
identically distributed (i.i.d.) random variables. As an 
extension of the Erdos’ result that was obtained the same 
year when Erdos and Selberg found an elementary 
probabilistical proof of Prime Number Theorem. The 
theorem extended Kac, Salem, and Zygmund result for 
functions with conditions 

f (x+1) = f (x), 
 �(�) 
�

�
= 0, 
 ��(�) 

�

�
= 1, 


 (�(�) − ��(�))��

�
= O (

�

(����)�) for some � > 0,     (1) 

where ��(�) is the nth partial sum of the Fourier series of f 
(x), with n1 < n2 < … < nk < ⋯  a sequence of numbers 
satisfying nk+1 /nk> c > 1, then for almost all x 

!"#$→∞
�

$
(∑ �(�'

$
'(� �) = 0                      (2) 

to the Theorem of existence of f (x) and sequence nk such 
that 

!"#)*+$→∞
�

$
(∑ �(�'

$
'(� �) = ∞,                  (3) 
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This result surprisingly points to a philosophical view of 
prediction at infinity. The question, if the limit in (1) is true 
for all f (x) was already proved by Raikov for sequences with 
nk =2k. 

And then he further used the gap between the conditions: 


 (�(�) − ��(�))��

�
= O (

�

(�������),-�),                 (4) 

And 


 (�(�) − ��(�))��

�
<

�

(����������)�                    (5) 

to prove even stronger version 

!"#)*+$→∞
�

$(������$)
.
,/�

(∑ �(�'
$
'(� �)) = ∞,           (6) 

And 

!"#)*+$→∞
�

$(���$)
.
,-�

 (∑ �(�'
$
'(� �)) = 0            (7) 

This result established the weak sense of prediction for the 
coin tossing outcomes, or the length of the longest heads run 
that could be used further for the development of method of 
TSH from the axiomatical approach to mathematical theory 
of probability. 

The history of application of the law of large numbers 
(LLN) to statistical analysis started possibly some 450 years 
ago, when Gerolamo Cardano stated without proof that the 
accuracies of empirical statistics tend to improve with the 
number of trials. John Arbuthnot was the first to publish 
statistical test on fraction of boys and girls born year after 
year, three years before the LLN for coin tossing random 
variable was first proved by Jacob Bernoulli. However, more 
than 120 years passed before Poisson used the name "la loi 
des grands nombres" ("The law of large numbers"). Five 
other versions of LLN were derived by Chebyshev, Markov, 
Borel, Kolmogorov, and Khinchin. They differ from one 
another by convergence in probability (weak LLN), almost 
sure convergence, or with probability 1 (strong LLN, e.g. 
Kolmogorov LLN), if the i.i.d. random variables in the 
sequence should have a variance (e.g. Kolmogorov LLN), if 
the variables can be correlated, and the like variations of the 
LLN. Many of them are proved with the help of Chebyshev 
inequality. 

P (|1 − 2| ≥ 45) ≤ 1/k2                      (8) 

Borel’s LLN is the extension of Bernoulli’s Theorem that 
the limiting frequency of the repeating event tends to 
probability of this event with probability 1. This is direct 
consequence of Kolmogorov LLN. Khintchin’s weak LLN is 
the convergence in probability of sample average to the 
expected value. 

!"#�→7 8(|1 − 2| > 9) = 0                   (9) 

 

4. Insights into Near-Gaussian 

Distributions and d-Dimensional 

Projections as a More Than Two 

Centuries Used Method for 

Geometrical Predictions 

Before considering any discussion about the above 
phenomenon or any possible approach to analyze or 
investigate it, it seems appropriate to quote Karl Pearson, 

who wrote 110 years ago on p. 189 “My custom of terming 
the curve the Gauss–Laplacian or normal curve saves us from 
proportioning the merit of discovery between the two great 
astronomer mathematicians." One of the definitions of Peirce 
of "normal" as of what would, in the long run, occur under 
certain circumstances, clearly implies Principle of prediction 
and LLN.  

“It is undeniable that, in a large number of important 
applications, we meet distributions which are at least 
approximately normal. Such is the case, e.g., with the 
distributions of errors of physical and astronomical 
measurements, a great number of demographical and 
biological distributions, etc.” Cramer.  

The first investigation of slightly non-Gaussian 
distributions was undertaken by Chebyshev around a century 
and a half ago, who studied in detail a family of orthogonal 
polynomials which form a natural basis for the expansions of 
these distributions. A few years later the same polynomials 
were also investigated by Hermite and they are called 
Chebyshev-Hermite or simply Hermite polynomials, their 
definition was first given by Laplace.  

These methods use Edgeworth’s form that is equivalent to 
the Gram-Charlier Type A series with use cumulant analysis 
for the representation of the distribution function in terms of 
different types of sums of functions of Gaussian processes.  

A standard method of exploring high-dimensional datasets 
is to examine various low-dimensional projections thereof. In 
fact, many statistical procedures are based explicitly or 
implicitly on a projection pursuit. Under weak regularity 
conditions on a distribution P = P (n) on Rn, most d-
dimensional orthonormal projections of P are similar (in the 
weak topology) to a mixture of centered, spherically 
symmetric Gaussian distributions on Rd if n tends to infinity 
while d is fixed. [18] 

5. Examples of Geometrical Predictions 

It was established so far that statistical analysis leads to the 
week sense of prediction, which we call Principle. The 
Principle of prediction leads to different statistical analyses. 
There is no surprise why in the further analysis of Laplace's 
several works on probability, we find that Chapter IV of 
Laplace’s “Philosophical Essay on Probabilities” is called 
“Concerning hope”. The Treatise is one of the important 
works on the subject of probability where possibly, a half of 
the Treatise is concerned with statistical methods and 
applications. In the beginning of Chapter XVII “Concerning 
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the various means of approaching certainty”, he describes the 
principles that are components of the Principle of prediction. 
These principles include induction, analogy and hypotheses, 
supported by numerous comparisons, which he called 
“principal means for arriving at truth”. In his view analysis 
and natural philosophy of sciences, Newton’s binomial 
theorem and the principle of universal gravity are the 
consequences of induction. To show that induction should be 
followed as far as anticipated with logic which is 
strengthened by analogy and hypotheses testing, he brings as 
an example Fermat Conjecture that states that  

2�;
+ 1 is a prime for all n, which was caused by induction 

and was recognized by Euler that for n=32 gives 
4,294,967,297, a number divisible by 641 (pp. 177, 178). 

In the account of Laplace on the history of the subject, 
Pascal and Fermat were the first to state the principles and 
the methods of probability (pp. 167, 185). 

In light of the above account about induction and Fermat 
Conjecture, a reasonable continuation is the Descartes’ 
theorem. Descartes was a very close friend of Fermat and one 
of the founders of French Academy. The theorem states, that 
if there are 3 mutual tangent circles to each other, then the 4th 
circle, which can possibly be circumscribed or inscribed 

could be constructed. The 4th circle would be tangent to all 3 
circles and the 4th curvature could be calculated from the 
first 3 from equation: 

(k1+ k2 + k3 + k4)
2 = 2 (k1

2 + k2
2 + k3

2 + k4
2), ki= ±1/ri,  (10) 

with ri being radius of the i-th circle 

Euler showed that the special case, when the ki are perfect 
squares of  <=

� , is equivalent to the three simultaneous 
equations of Pythagorean triples. 

(<�
� + <�

� + <?
�+<@

�)2=2 (<�
@ + <�

@ + <?
@+<@

@)          (11) 

2 (<�<�)� + 2(<?<@)� = (<�
� + <�

� − <?
�−<@

�)2
       (12) 

2 (<�<?)� + 2(<�<@)� = (<@
� − <�

� + <?
�−<@

�)2       (13) 

2 (<�<@)� + 2(<�<?)� = (<�
� − <�

� − <?
�+<@

�)2
       (14) 

It is also interesting to notice that Fermat, who was in one 
Mersenne circle with Descartes, and later in exchanged 
correspondence with Pascal laid foundations of the theory of 
probability, gave the smallest Pythagorean triple with both 
the hypotenuse c and the sum of the sides a + b as perfect 
squares such triple has sides  

a =4,565,486,027,761; b =1,061,652,293,520; and c =4,687,298,610,289, 

with a +b = 2,372,1592 and c = 2,165,0172, although there are infinitely many such Pythagorean triples.  
It is also interesting to notice that there is a general formula that gives all solutions of Fermat cubic  

<�
? + <�

? + <?
? = <@

?,                                                                              (15) 

(3x2+5xy-5y2)?+(4x2-4xy+6y2)? + (5�� − 5�C − 3C�)? =  (6�� − 4�C + 4C�)?                                 (16) 

Farey sequence that was first studied by C. Haros a year 
after Gauss’ successful calculation of the orbit of Ceres was 
introduced 200 years ago. It can be viewed as a natural 
continuation of Descartes’ circles theorem, after more than 120 
years, when L. R. Ford presented a very important property of 
Farey’s series. The property indicates that circles of radius 1/b2 
drawn above each reduced fraction a/b, and touching the 
number line at this point never overlap despite expectations, 
although they touch very often. It was first studied by C. Haros 
a year after Gauss’ successful calculation of the orbit of Ceres, 
and thus was introduced 200 years ago with Farey’s paper. 

6. Conclusion 

With the introduction of Descartes’ Circle Theorem in his 
letter to Princess Elisabeth of the Palatinate it is almost a 
quarter of a century less from Quadricentennial history of 
Geometrical Predictions. The Theorem was rediscovered by 
Philip Beecroft almost 200 years later and then by Frederick 
Soddy almost 100 years later. This makes the 
quadricentennial history of Geometrical Predictions look like 
Tercentennial history of the Law of Large Numbers that 
started with publication of Bernoulli’s Theorem and had its 
Centenary and Bicentenary anniversaries commemorated by 
Laplace’s publication of his Treatise on Probability, 
translations of Ars Conjectandi and publications on the 

history of the LLN for the Bicentenary celebrations The 
Tricentenary that is also the 250th 

anniversary of the first public presentation of Thomas 
Bayes’s work was commemorated in Paris in at a colloquium 
entitled L’art de conjecturer des Bernoulli [10-12, 20-21].  
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