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Abstract: This paper aims to establish a new class of differential equations and study the oscillatory behavior of a kind of 

first-order neutral nonlinear differential equation with time delay arguments. The oscillatory properties of the solutions of the 

type of first order neutral functional differential equations applied in chemomedical problems are studied. Sufficient conditions 

for the oscillations of solutions of the above equations are obtained. Also, some results which demonstrate in literature [1-4] will 

be extended, and the paper focuses on expanding the main finding of literature [2, 3]. Moreover, a new kind of method to be used 

to discuss the properties of oscillation of the first-order neutral nonlinear differential equations and some theorems are obtained 

in the paper.  
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1. Introduction 

The oscillation theory of differential equations with 

deviating arguments is a relatively new and rapidly 

developing branch of the theory of ordinary differential 

equation, numerous research papers have been devoted to this 

study. Recently, attempts have been made by many 

mathematicians to develop the oscillation theory of 

differential equations with deviating arguments. The 

mathematical modeling of several real-world problems leads 

to differential equations rely more on the past history rather 

than on the present. The models may have discrete time delays 

as well as distributed lags or delays originated in [5]. 

Bernoulli (1728) studied the problem of sound vibrating in a 

tube of finite length and investigated the properties of first 

order Ordinary Differential Equation With Deviating 

Arguments (ODEWDA). Miskis investigated several 

oscillation problems of first order ODEWDA, which are 

recorded in his book. Since 1950 oscillation theory of 

ODEWDA has received the attention of several applied 

mathematicians as well as other scientists around the world. 

There are two main reasons to pursue this research, firstly, 

theoretically it is well-known that the ODE 

0=+′ )t(y)t(p)t(y  )R(C)t(p

+∈  has no the oscillatory 

solution, but the equation 0
2

=π−+′ )t(y)t(y  has the 

oscillatory solution ty sin= . Therefore, the oscillation of 

this type of first order equation is caused by deviating 

arguments. Secondly, this problem arises in many industrial 

and scientific problems, for example the literature of [6]. The 

first systematic research of the oscillation of first order 

equations with deviating arguments was given in the book 

“Linear differential equations with retarded argument” by 

Miskis, A. D. 

The new development of the oscillation theory of 

differential equation with deviating arguments has two cases， 

those are the research of oscillatory solution of partial 

differential equation with deviating arguments and the 

research of oscillatory solution of difference equation with 

deviating arguments. The difference equation has been 

considered in its own right as a method of biology model of 

single species with nonoverlapping generation, on the other 

hand, some methods for the latter in the special case when the 

deviation of argument vanishes at individual points have been 

used to investigate differential equations with piecewise 

constant delays, this note continues the investigation of 

differential equations with piecewise constant arguments 

(EPCA) originated in literature [7]. They are closely related to 
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impulse and loaded equation, especially, to difference 

equation of a discrete argument, these equations have the 

structure of continuous dynamical systems within intervals of 

certain length. Continuity of a solution at a point joining any 

two consecutive intervals implies recursion for the solution at 

such points, and the equations are thus similar in structure to 

those found in certain “sequential-continuous” models of 

disease dynamics. The cited works show that all types of 

EPCA share similar characteristics. First of all, it is natural 

pose the initial value problem for such equations not on 

interval but at a number of individual points, second, 

two-sided solutions exist for all types of EPCA, finally, since 

EPCA combine the features of both differential and difference 

equations, their asymptotic-behavior as tending to infinity 

resembles in some cases the solutions growth of differential 

equation, while in other it inherits the properties of difference 

equation. 

In recent years there has been a growing interesting in 

oscillation theory of the retarded and advanced functional 

differential equations with piecewise constant arguments, see, 

for example in literature [6]-[16]. And there were some papers 

on oscillatory properties of neutral functional differential 

equations with piecewise constant arguments [17]-[32], 

especially, there has been a lot of activities concerning the 

oscillatory behavior of a kind of first-order neutral linear 

differential equations. But there is hardly any work at the time 

concerning the oscillatory behavior of a kind of first-order 

neutral nonlinear differential equations with time delay 

arguments. 

2. Preliminaries 

In this paper, the first-order neutral nonlinear differential 

inequalities with time delay arguments and the neutral 

nonlinear functional differential equation with time delay 

arguments are considered 
′
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where )t(),t(p),t(a
i

σ  and )t(
i

τ  are continuous functions for +∈t R , .k,...,,i 21=  such that 

M)t(,)t(p,)t(a
i

≤σ≤>≥ 000  and M)t(m
i

≤τ≤<0 ( M,m  are positive constants). 
jj

,c θ  are 

positive constants too, 10

1

<≤ ∑
=

n

j

j

c ,
n

θ<<θ<θ< ⋯210 . Also suppose that the functions f  and g  satisfy the 

following condition: 

(A) f (or g ) is continuous on 
k

R  and such that  

,y
j

0>  for ⇒= .k,...,,j 21 021 >)y,,y,y(f
k

⋯ , ( or 021 >)y,,y,y(g
k

⋯ ) 

and 

,y
j

0<  for ⇒= .k,...,,j 21 021 <)y,,y,y(f
k

⋯ , (or 021 <)y,,y,y(g
k

⋯ ). 

Some sufficient conditions are given as follows:  

1. Differential inequality (1) has no eventually positive 

solutions; 

2. Differential inequality (2) has no eventually negative 

solutions; 

3. Differential equation (3) has only oscillatory solutions. 

As it is customary, a solution is said to be oscillatory if it has 

arbitrarily large zeros. 
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3. Two Lemmas 

Lemma 1 Suppose that )t(x  is an eventually positive 

solution of (1). Let 

∑
=

θ−−=
n

j

jj

)t(xc)t(x)t(z

1

        (4) 

Then there is a 0tT ≥ , such that 00 ><′ )t(z,)t(z  for 

Tt ≥ . 

Proof Suppose that 0>)t(x , 0>−θ− )Mt(x
n

, for 

0tTt ≥≥ . From (1), we get that ,)t(z 0<′  so )t(z  is 

strictly decreasing for Tt > . 

Let L)t(z

lim

t

=
∞→

, then L is a finite constant or ∞− . 

It can be proved that −∞=L  is impossible. Assume that 

−∞=L , then we get the fact )(tx  is unbounded from (4). 

So there is a sequence { }
k

t , ∞→
k

t ( ∞→k ) such that 

{ })s(x)t(x
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k
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k
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=
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This is a contradiction to −∞=L . Hence, L is a finite 

constant. Thus, )t(z  is bounded and )t(x  is bounded too. 

Then )t(x

lim

t ∞→

∞< . 

It is easy to prove that 0<L  is impossible from (5). Now 

we shall prove that 0>L . 

Take { }
k
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i

k
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k
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n

j
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1 0≥
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)t(x

lim

t

. 

Since )t(z  is strictly decreasing, so 0>)t(z  for Tt ≥ . 

we obtain that 

00 ><′ )t(z,)t(z  for Tt ≥ . 

Lemma 2 Suppose that )t(x  is an eventually positive 

solution of (1). Let 

∑
=

θ−−=
n

j

jj

)t(xc)t(x)t(z

1

 

and 

)t(z

)mt(z

)t(

−=ω , 

If 1≥=ω
∞→

X)t(inf

lim

t

, and X  is finite then

0=
∞→

)t(x

lim

t

.  

Proof By Lemma 1, there is a 0tT ≥ , such that 

00 ><′ )t(z,)t(z  for Tt ≥ , then  

L)t(z

lim

t

=
∞→

, ( +∞<≤ L0 ). 

Integrating both sides of (1) from mt −  to t , for 

Mtt 30 +>  

 

)mt(z)t(z −− + ∫ −

t

mt

ds))]s(s(x,)),s(s(x[g)s(a
k

σ−σ− ⋯1  
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+ ∫ −

t
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Take { }
k
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t ( ∞→k ), the proof is similar 

to the proof of (5) in Lemma 1. 
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. 

4. Oscillations of the Neutral Nonlinear 

Theorem 1 Consider the delay differential inequality 
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where 00 >> H,G . Assume further that 
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Then (1) has no eventually positive solutions. 

Proof The existence of an eventually positive solution will 

be proved that it leads to a contradiction. To this end suppose 

that )t(x  is solution of (1) such that for 0t  sufficiently large  

00 tt,)t(x >∀>  

They can choose a Mtt +> 01  such that 

,))t(t(x,))t(t(x
ii

00 >τ−>σ− .k,...,,i 21= for 
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, and observing 

that the functions f and g satisfy the condition (A), and thus 

from (1) and Lemma1, you obtain 00 ><′ )t(z,)t(z  for 

Mtt +> 0 , i.e. )t(z  is strictly decreasing for Mtt +> 0 , 

Hence, you have )mt(z)t(z −<  and )t(x)t(z <  for 

Mtt 20 +>  
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)(∫ − G

exp(

e

11 −≤ inf

lim

t ∞→
)ds)s(a

t

mt

∫ −
. 

The last inequality contradicts hypothesis (4). 

Case 2 X  is infinite. That is 

lim

t ∞→
+∞=−

)t(z

)mt(z

 

In view of (5) and the fact that 0≥)t(a , from (9), we get 

lim

t ∞→ +∞=
−

)t(z

)

m

t(z

2 . 

And, therefore  

lim

t ∞→

+∞=
−

−

)

m

t(z

)mt(z

2

, 

which contradicts (12). So (1) has no eventually positive 

solutions. 

Theorem 2 Consider the delay differential inequality. 

′














θ−− ∑

=

n

j

jj

)t(xc)t(x

1

))]t(t(x)),...,t(t(x)),t(t(x[g)t(a
k

σ−σ−σ−+ 21  

))]t(t(x)),...,t(t(x)),t(t(x[f)t(p
k

τ−τ−τ−+ 21 0≥ , 

where )t(),t(p),t(a
i

σ )t(
i

τ
jj

,c θ , f  and g  satisfy the condition of Theorem 1, 

.k,...,,i 21= .n,...,,j 21=  Then (2) has no eventually negative solutions.  

Theorem 3 Consider the delay differential equation 

′














θ−− ∑

=

n

j

jj

)t(xc)t(x

1

))]t(t(x)),...,t(t(x)),t(t(x[g)t(a
k

σ−σ−σ−+ 21  

))]t(t(x)),...,t(t(x)),t(t(x[f)t(p
k

τ−τ−τ−+ 21 0= , 

Where (t)σp(t),a(t), i (t)τ i jj

,c θ , f  and g  satisfy the condition of Theorem 1, .k,...,,i 21= .n,...,,j 21=  Then (3) 

has only oscillatory solutions. 

Proof From the result of Theorem 1 it follows that (3) has no eventually positive solutions. Also, from the result of Theorem 1 

it follows that (3) has no eventually negative solutions. Therefore (3) has only oscillatory solutions. 

5. Applications 

Example 1 Consider the first order nonlinear functional differential equation  
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′








−− 1)x(t

3

1
x(t) t)cosx(t 2−+ 3

2
3

1

2)](cost[x(t1)]3[x(t +−−+ 0=               (13) 

Where 
3

1
c = , 1,θ = 1a(t)3,p(t) ≡≡ , 1m =  and 3M = , Clearly, conditions of Theorem 3 are satisfied, then (13) 

has only oscillatory solutions. 

Example 2 Consider the first order nonlinear functional differential equation  

′







 −− )
3

1
x(t

2

1
x(t) t)sinx(t 2−+ 5

3
5

2

3)](2cost[x(t1)]2[x(t +−−+ 0= ,            (14) 

where 
2

1
c = , ,

3

1
θ = 1a(t)2,p(t) ≡≡ , 1m =  and 

5M = , Clearly, conditions of Theorem 3 are satisfied, Then 

(14) has only oscillatory solutions. 

6. Conclusion 

In this paper, we study the oscillatory behavior of solutions 

of a kind of first-order neutral nonlinear functional differential 

equations with time delay arguments. We look for the 

sufficient conditions of the existence of no eventually positive 

solutions and no eventually negative solutions for the delay 

functional differential inequalities. We obtain some result by 

the auxiliary function method which is important tools in 

oscillation theory. We also get some corollaries about the 

linear case: σ)x(tσ))x(tf(t, −=− . 
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