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Abstract: Several mathematical models that explain natural phenomena are mostly formulated in terms of nonlinear 

differential equations. Many problems in applied sciences such as nuclear physics, engineering, thermal management, gas 

dynamics, chemical reaction, studies of atomic structures and atomic calculations lead to singular boundary value problems 

and often only positive solutions are vital. However, most of the methods developed in mathematics are used in solving linear 

differential equations. For this reason, this research considered a model problem representing temperature distribution in heat 

dissipating fins with triangular profiles using MATLAB codes. MADM was used with a computer code in MATLAB to seek 

solution for the problem involving constant and a power law dependence of thermal conductivity on temperature governed by 

linear and nonlinear BVPs, respectively, for which considerable results were obtained. A problem formulated dealing with a 

triangular silicon fin and more examples were solved and analyzed using tables and figures for better elaborations where 

appreciable agreement between the approximate and exact solutions was observed. All the computations were performed using 

MATHEMATICA and MATLAB. 
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1. Introduction 

1.1. Background of the Study 

Several mathematical models that explain natural 

phenomena are mostly formulated in terms of nonlinear 

differential equations, both ordinary and partial. Many 

problems in applied sciences such as nuclear physics, 

engineering, thermal management, gas dynamics, chemical 

reaction, studies of atomic structures and atomic calculations 

lead to singular boundary value problems and often only 

positive solutions are important. However, most of the 

methods developed in mathematics are used in solving linear 

differential equations. For these reasons, a semi-analytical 

method named Adomian decomposition method (ADM) 

proposed by George Adomian �1923 � 1990�  has been 

attracting the attentions of many mathematicians, physicists, 

engineers and various graduate researchers. The method has 

the advantage of converging to the exact solution and can 

easily handle a wide class of both linear and nonlinear 

differential and integral equations. The commonly existing 

problems in various fields of studies mentioned earlier lead 

to singular BVPs of the form: 

	

��� � 
���	
��� � ������	���� � ����, � ∈ ��, ��  (1) 

subject to given boundary conditions where atleast one of the 

functions 
���, ����  and ����  has a singular point and 

�, �, �	and � are finite constants. 

For example, when 	
��� � ���� � 0, ���� � ����/� and 

��	���� � �	��� !/� , �1�  is known as the Thomas-Fermi 

equation given by the singular equation 	

 � ���/�	!/� 

which arises in the study of electrical potential in an atom. 

Also when 
��� � 0 and ��	���� � �	��� �", �1� is known 

as the generalized Emden-Fowler equation with a negative 

exponent and it frequently arises in applied mathematics. 

Another example is given by the singular equation 	

 �
#
$ 	
 � %�	� � 0, sometimes written in the form ��#	
�
 �
&��, 	� which results from an analysis of heat conduction 

through a solid with heat generation. The function %�	� 

represents the heat generation in the solid, 	  is the 

temperature and the constant ' is equal to 0,1	or 2 depending 
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on whether the solid is a plate, a cylinder or a sphere. 

Equation �1)  subject to boundary conditions represents 

temperature distribution inside a triangular extended surface 

(or fin) with thermal conductivity. Thus, extended surfaces 

are governed by BVPs; and they are widely used in many 

engineering appliances which include, but are not limited to, 

air conditioning, refrigeration, automobile and chemical 

processing equipments. For this reason this research tried to 

consider both invariant and power-law dependence of 

thermal conductivities governed respectively by linear and 

nonlinear BVPs. 

The primary objective of using extended surfaces is to 

enhance the heat transfer rate between a solid and an 

adjoining fluid. Such an extended surface is termed a fin. In a 

convectional heat exchanger heat is transferred from one 

fluid to another through a metallic wall. The rate of heat 

transfer is directly proportional to the extent of the wall 

surface, the heat transfer coefficient and to the temperature 

difference between one fluid and the adjacent surface. If thin 

strips (fins) of metals are attached to the basic surface, 

extending into one fluid, the total surface for heat transfer is 

thereby increased. 

This research tried to consider two triangular profile fin 

problems by incorporating with MATLAB codes. The 

modified Adomian decomposition method (MADM) is used 

to get the component decomposition terms. The Adomian 

decomposition method (ADM) is a well-known systematic 

method for practical solution of linear or nonlinear and 

deterministic or stochastic operator equations, including 

ODEs, PDEs, integro-differential equations, etc. The method 

is a powerful technique, which provides efficient algorithms 

for analytic approximate solutions and numeric simulations 

for real-world applications in the applied sciences and 

engineering. It permits to solve both nonlinear IVPs and 

BVPs without restrictive assumptions such as required by 

linearization, perturbation, discretization, guessing the initial 

term or a set of basis functions, and so forth. The accuracy of 

the analytic approximate solutions obtained can be verified 

by direct substitution. A key notion is the Adomian 

polynomials, which are tailored to the particular nonlinearity 

to solve nonlinear operator equations. The decomposition 

method has been used extensively to solve effectively a class 

of linear and nonlinear ordinary and partial differential 

equations. However, a little attention was devoted for its 

application in solving the singular two-point boundary value 

problems (STPBVPs). This project treated some classes of 

singular second-order two-point boundary value problems 

both analytically and numerically using the ADM and the 

modifications Improved Adomian Decomposition Method 

(IADM) and MADM focusing on the Dirchlet and mixed 

boundary conditions; and applied the symbolic softwares 

MATLAB and MATHEMATICA to facilitate computing. 

1.2. Statement of the Problem 

Numerous methods have been applied to determine 

numerical solutions of scientific problems that obviously 

result in variety of approximate solutions. 

This research tried to investigate analytical and numerical 

solutions thermal conductivity governed generally by: 

	

(�) + 
(�)	
(�) + �(�)��	(�)� = �(�), � ∈ (�, �) (2) 

where either of 
, �  or �  are singular with given boundary 

conditions using the ADM, MADM and IADM accordingly. 

To perform this, it was tried to answer the research questions: 

1. How effective are the decomposition method and its 

modifications to treat nonlinearity behaviors in thermal 

conductivity problems? 

2. How do the modifications remove the singularity nature 

of the problems? 

1.3. Objectives 

The main objective of this research was to treat thermal 

conductivity equations through the improved ADMs. 

Specifically speaking, the study: 

1) determined approximate solutions of thermal 

conductivity equations using improved ADMs. 

2) performed error analysis to compare the results obtained 

accordingly. 

3) made comparison between the numerical and analytical 

solutions of the problems by using plots of the 

equations on the same coordinate plane. 

2. Literature Review 

2.1. Extended Surfaces 

Scientists and engineers are interested in singular BVPs 

because the problems arise in a wide range of applications, 

such as in chemical engineering, mechanical engineering, 

nuclear industry, thermal management and nonlinear 

dynamical systems. For this reason, these kinds of problems 

have been studied by many researchers. To be specific, as 

extended surfaces are found in many engineering appliances, 

numerous studies have been performed on different fin 

configurations with constant and variable thermal properties. 

Fins are echo-friendly and economic means of convective 

heat transfer enhancement. They are encountered quite often 

in practice: from industrial compact heat exchangers to CPU 

heat sink modules of personal computers. Finned structures, 

better known as heat sinks, have well served thermal 

management of electronic systems for many years. Kraus, A. 

D., Aziz, A. and Welty, J. provided a review on this subject 

devoted to various aspects of extended surface convective 

heat transfer [13]. Mokheimer Esmail, M. A. investigated the 

performance of annular fins with different profiles subject to 

variable heat transfer coefficient [17]. The performance of 

the fin is expressed in terms of fin efficiency as a function of 

the ambient and fin geometry parameters. 

2.2. Numerical and Analytical Treatments of the Bvps 

Zavalani, G. used Galerkin-finite element method (G-

FEM) to treat two point BVPs numerically [22]. The method 

uses three basic procedures. Making weak formulation is the 
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first step to determine, the second step is to develop finite 

element formulation. Lastly, weighted average is used for full 

discretization; that are all required by neither the ADM nor 

its modifications. Moreover, the method fails to treat 

nonlinear and singular BVPs. 

Khuri, S. A. and Sayfy, A. proposed a new approach, 

modified decomposition method in combination with the 

cubic B-spline collocation technique introduced for 

numerical solution of a class of singular boundary value 

problems arising in physiology [11]. The main thrust of this 

approach is to decompose the domain of the problem into 

two subintervals. The singularity, which lies in the first 

subinterval, is removed via the application of a modified 

decomposition procedure based on a special integral operator 

that is applied to surmount the singularity. Then, in the 

second sub-domain, which is outside the vicinity of the 

singularity, the resulting problem is treated employing the B-

spline collocation technique. The approach is applicable to 

treat nonlinear singular BVPs and in addition, the 

approximate solutions converge faster to the exact solution 

but very vast computational work is needed. 

Noor, M. A. and Mohyud-Din, S. T. used modified 

variational iteration method (MVIM) to determine solutions 

of singular and non-singular initial and boundary value 

problems [18]. The proposed technique is applied on 

equations of higher order boundary layer problem, unsteady 

flow of gas, third-order dispersive and fourth-order parabolic 

partial differential equations. The authors made the 

modification by introducing ADM to VIM. They used the 

Pade approximants technique (PAT) in order to make their 

work more concise and for better understanding of the 

solution behavior but needs caution to select the initial value 

because the approximants are heavily dependent on the initial 

value. Though they concluded that the proposed frame work 

is very powerful and efficient in finding the analytical 

solutions for singular and nonsingular boundary value 

problems, the method requires a huge computational work as 

it is incorporated from the ADM, VIM, and PAT. 

Ravi, A. S. V. and Aruna, K. used an analytical method 

called DTM to obtain the exact solutions for some linear two-

point boundary value problems with singular nature [19]. 

Although these analytical methods are effective in the linear 

case, their applicability for nonlinear problems was not 

examined in the paper. 

2.3. Treatments of Related Problems Using ADM and Its 

Modifications 

Adomian formally introduced ADM concept and formulas 

for generating Adomian polynomials for all forms of 

nonlinearities since early 1980’s. Several authors have been 

focusing on this area to develop a practical method for the 

calculation of Adomian polynomials. 

Adomian, G. reviewed the method in Applied 

Mathematics; and concluded that the decomposition method 

can be an effective method for solution of a wide class of 

problems providing generally a rapidly convergent series 

solution [1]. Based on the author, it has some distinct 

advantages over usual approximation methods in that it is 

computationally convenient, provides analytic, verifiable 

solutions not requiring perturbation, linearization, or 

discretization required by methods like FDM which results in 

massive computations. 

Inc, M. and Evans, D. J. obtained an approximate solution 

for only one nonlinear example by using the ADM-Padê 

technique [9]. The technique they proposed requires the 

computation of undetermined coefficients. 

Hasan, Y. Q. and Zhu, L. M.. introduced an efficient 

modification of the ADM for solving singular initial value 

problem in the second-order ordinary differential equations 

[8]. The scheme is tested for some examples and the obtained 

results demonstrate efficiency of the proposed method. The 

study showed that the decomposition method is simple and 

easy to use and produces reliable results with few iterations. 

The results show that the rate of convergence of the modified 

decomposition method, MADM is higher than the standard 

ADM for initial value problems. 

Several other researchers also have developed 

modifications to the ADM. The modifications arise from 

evaluating difficulties specific for the type of problem under 

consideration. The modification usually involves only a 

slight change and is aimed at improving the convergence or 

accuracy of the series solution. 

Duan, J.-S, Rach, R., Baleanu, D. and Wazwaz, A.-M. 

reviewed the ADM and its modifications including different 

modified and parameterized recursion schemes, the 

multistage ADM for initial value problems as well as the 

multistage ADM for boundary value problems, new 

developments of the method and its applications to linear or 

nonlinear and ordinary or partial differential equations, 

including fractional differential equations [5]. The authors 

presented a contemporary review of the ADM and discussed 

its utility and advantages for solving linear or nonlinear and 

deterministic or stochastic operator equations without any 

restrictive assumptions, including ODEs, PDEs, integral 

equations and integro-differential equations for IVPs or 

BVPs. They also concluded that the ADM is the method of 

choice for solving nonlinear differential equations with a 

wide class of analytic nonlinearities including product, 

polynomial, exponential, trigonometric, hyperbolic, 

composite, negative-power, radical and decimal-power 

nonlinearities. Furthermore, the ADM has been shown to be 

a reliable method for the solution of nonlinear fractional 

ODEs and PDEs for both IVPs and BVPs. In summary, based 

on Duan, J.-S, Rach, R., Baleanu, D. and Wazwaz, A.-M. the 

ADM is a powerful and efficient technique for the solution of 

nonlinear ordinary, partial and fractional differential 

equations [5]. It provides the analyst with an easily 

computable, readily verifiable and rapidly convergent 

sequence of analytic approximate functions for the solution. 

Ravi, A. S. V. and Aruna, K. proposed two modified 

recursive schemes for solving a class of doubly singular two-

point boundary value problems [20]. The authors illustrated 

how the modified recursive schemes can be used to solve a 

class of doubly singular two-point boundary value problems. 
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Based on the authors the accuracy of the numerical results 

indicates that the method is well suited for the solution of this 

type problem. They included that the main advantage of the 

approach is that it provides a direct scheme to obtain 

approximate solutions, and they have also shown graphically 

that these approximate solutions are almost identical to the 

analytic solution. They also stated another advantage of the 

modified recursion scheme as: it does not require the 

computation of undetermined coefficients, whereas most of 

previous recursive schemes like by Inc, M. and Evans, D. J.  

require the computation of undetermined coefficients [9]. 

The method provides a reliable technique which requires less 

work compared to the traditional techniques such as FDM, 

Cubic spline method, and standard ADM. The numerical 

results of the examples are presented and they believe that 

only a few terms are required to obtain accurate solutions. By 

comparing the results with other existing methods, it has 

been proved that proposed modified ADM is a more 

powerful method for solving the singular problems. 

Lin, Y. and Chen, C. K. proposed a modification of the 

Adomian decomposition method, MADM [16]. The authors 

demonstrated that nonlinear double singular BVPs of second 

order can be handled without difficulty. Furthermore, the 

authors stated that MADM can also be used to solve singular 

boundary value problems where the traditional method ADM 

fails. The numerical computation gives a more precise 

approximation of the solution. The reported results show a 

greater improvement over the traditional method. 

Kaliyappan, M. and Hariharan, S. recall that they 

presented a simple way of computing Adomian polynomials 

by applying the decomposition of positive integers as a 

subscript of the variable 	  for nonlinear terms [10]. They 

developed MATLAB codes that can generate Adomian 

polynomials with single variable. This paper used 

MATHEMATICA instead. 

3. Materials and Methods 

1) convectional heat transfer is considered to study 

temperature distribution along a triangular fin profile by 

formulating a singular two-point BVP. 

2) relevant journals and books were addressed to gather 

information about singular BVPs and the methods to 

treat the problems. 

3) nonlinear expressions were decomposed by the help of 

MATHEMATICA using Adomian decomposition 

formula:  

)* � �
*!

,-
,.- �/�∑ 12*234 	2� .34, 5 = 0,1,2, …         (3) 

4) The inverse operator, 

7��(. ) = 9 �*�#�� 9 �#�* 9 …$4 9 �(. ):� … :�$4$4$;   (4) 

in its reduced form was incorporated in to MATLAB 

codes to treat constant and power-law dependent 

thermal conductivity problems. Operators like 

7��$$(. ) = < <(. ):�:� − � − �41 − �4 < <(. ):�:�
$

$=

�

$=

$

$=

$

$=
, 

7>�� = 9 (. ):
>4                              (5) 

were used in IADM to treat problems with Dirchlet 

boundary conditons. (described in subsection 5.1) 

5) Furtheremore, MATLAB and MATHEMATICA were 

applied suitably to facilitate the computations with the 

improved operators; and graphs were plotted using 

those programs. 

4. Preliminaries 

4.1. Singular Points 

It has been required to solve the differential equation 

?(�)	

(�) + @(�)	
(�) + A(�)	(�) = 0           (6) 

or, in standard form, 

	

(�) + 
(�)	
(�) + �(�)	(�) = 0                 (7) 

in the neighborhood of a singular point, as the behavior of 

the solutions there may be among their most important 

features. When the singularities are not too wild, a 

modification of the technique of power series can be used to 

calculate the solutions there. 

To simplify the discussion, attentions are restricted to 

equations of the form (6) where, ?, @ and A are polynomials, 

that they may be assumed to have no common factors. 

The solutions to the linear second order differential 

equations of the form (6) in the case with ?, @,	and A real 

analytic in a neighborhood of a point � = �4 and ? ≠ 0	can 

be expanded as power series of the form: 

	(�) = ∑ C*�** , 5 = 0,1,2,3, …                   (8) 

and with the knowledge of C4 and C�, the coefficients C2 with D ≥ 2 can be determined successively by certain recurrence 

relations.	
There are many important linear second order differential 

equations (with non-constant coefficients) that arise in 

mathematical physics which do not satisfy the above 

conditions, and power series solutions would like to be able 

to obtained for some of these. 

The method discovered by the German mathematician F. 

G. Frobenius in the 1870’s and is therefore often called the 

Frobenius method is used to determine the singular points. 

Definition 4.1. A function � is said to be analytic at a point �4 ∈ F if � can be expanded in a power series about �4 which 

has a positive radius of convergence. 

Definition 4.2. The point �	 = 	 �4 is called a singular point 

of (4.1) if ?(	�4) = 0. 
This causes difficulties in writing (6) in the standard form 	

 + I($)

J($) 	
 + K($)
J($) 	 = 0. 

Definition 4.3. The singular point � = 	�4  is said to be 
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regular singular point of �6� if the equation can be written as 

	

 � I�$�
J�$� 	
 � K�$�

J�$� 	 � 0                        (9) 

where, lim$→$=
($�	$=)I($)

J($) 	and	 lim$→$=
($�	$=)WK($)

J($) 	 both 

exist and are finite. 

This means that, for � near �4, the functions 
I($)
J($) and 

K($)
J($) 

can be rewritten as 
I($)
J($) = (IX($)

($�$=)  and 
K($)
J($) = KX($)

($�$=)W  where 

@�(�) and A�(�) are analytic at � = 	�4. This is the same as 

saying that the multiplier of 	
 in (9) has at most the factor (� − �4) in denominator; and the multiplier of 	 in (9) has at 

most the factor (� −	�4)� in the denominator. 

A singular point which is not regular is called irregular 

singular point. 
Remark: If ?(�) and @(�) are analytic at �4 and ?(�4) ≠0, then 

I($)
J($) is analytic at �4. 

Example 4.1. Given the Legendre differential equation (1 − ��)	

 − 2�	
 + �(� + 1)	 = 0 , let � ∈ ℝ, � ≠ 0 . 

Find the singular points of the equation and determine which 

regular singular points are. 

Solution 

The points are the zeros of (1 − ��) = (1 − �)(1 + �) 

and are clearly, � = −1, � = 1. 
To test whether example (4.1) is regular, divide the given 

equation by the factor (1 − ��) to obtain 

	

 − 2�	

(1 − �)(1 + �) + �(� + 1)(1 − �)(1 + �) 	 = 0 

Here, it can be observed that the multiplier of 	
 has the 

form 

1� − 1 Z 2�1 + �[ 

and the multiplier of 	 has the form 

1� − 1\−�(� + 1)
1 + � ]. 

The denominators of the factors in the parentheses above 

are not zero at �	 = 	1, so they are analytic at �	 = 	1. Hence, �	 = 	1 is a regular singular point. A similar test for �	 = 	−1 

shows that it also is a regular singular point. 

4.2. Boundary Value Problems 

Definition 4.4. A boundary value problem for second order 

ordinary differential equations is a differential equation with 

conditions specified at the extremes of the independent 

variable in the equation. 

Definition 4.5. Let �:ℝ! ⟶ ℝ be given function and 	4 

and 	� be given numbers. The problem 

	

 = �(�, 	, 	
), � ∈ (�, �)                  (10) 

	(�) = 	4, 	(�) = 	�                         (11) 

is called two-point boundary value problem. Two-point 

boundary value problems are BVPs with boundary conditions 

given at two specified points. 

Linear BVPs can mainly be classified as homogeneous and 

inhomogeneous. They are called homogeneous if %(�), 	4 

and 	�  are all zero. They are said to known as 

inhomogeneous if atleast one of %(�), 	4  and 	�  are non-

zero. 

A boundary value problem for a differential equation 

consists of finding a solution 	 of the differential equation 

that also satisfies the boundary conditions. A boundary value 

problem may or may not have a solution; and if it has a 

solution it may be unique or infinitely many. 

Definition 4.6. A two-point BVP with a singular point �	 = 	 �4 subjected to two specified boundary conditions at � 

and �  in an interval I as 	(�) = �  and 	(�) = � , where �, �, � and � are some constants, the two-point BVP is called 

a STPBVP. 

4.3. Operators 

An operator is a function that takes a function as an 

argument instead of numbers as it is used to dealing with in 

functions. Here are some examples of operators. 

7 = ,
,$ 						7 = `

`$ 											7 = 9 :� 			7 = 9 :�;a   (12) 

Or, if a function is plugged in, say 	(�), in each of the 

above, then the following can be obtained. 

7(	) = ,b
,$ 	7(	) = `b

`$ 	7(	) = 9	(�):� 	7(	) = 9 	(�):�;
a  

(13) 

These are all fairly simple examples of operators but the 

derivative and integral are operators. A more complicated 

operator would be the heat operator. The heat operator can be 

found from a slight rewrite of the heat equation without 

sources. The heat operator is then 

7 = `
`> − ' `W

`$W.                               (14) 

and 

7 = ,
,$ c�

$
,
,$d                                 (15) 

is another differential operator for a particular second order 

differential equation (see the example below). 

The operator 7 in second order differential equations is a 

twice differentiable function. The domain of 7 is the twice 

differentiable functions on an open interval F . The 

terminology 7  of the function 	  is used to describe 7(	) 

or	7�	  or, simply 7	 and the range of the functions on F (and 

hence 7�	  is itself a function on F). Generally, 7 is chosen 

7�.  = ,e
,$e �.                                   (16) 

for the f>g  order differential equations and thus its inverse 7�� follows as the f-fold definite integration operator from �4  to �.  The operator 7  defined has the following basic 

property: 
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If 	� and 	� are twice differentiable functions on F and C� 

and C� are constants, then 

7�C�	� � C�	� � C�7�	� � C�7�	�               (17) 

Definition 4.7. An operator 7  satisfying property �17)  is 

called linear operator. 

Example 4.2. The differential equation 

	

 − 1� 	
 = 0 

can be re written in compact form as 

c�
$ 	
d
 = 0	                               (18) 

So from this an operator can be generated to be: 

7 = ,
,$ c�

$
,
,$d                              (19) 

so that (18) can be written in an operator form as: 

7�	 = ,
,$ c�

$
,b
,$d                           (20) 

Beyond this, it can be verified that the operator 7  is a 

linear operator. Bearing the basic properties of derivation of 

ordinary differential equations in mind and plugging in the 

expression C�	� + C�	�  into the operator above it can be 

shown as: 

7�C�	� + C�	� = ::� Z1� ::� (C�	� + C�	�)[ 

= ::� j1� ::� (C�	�) + 1� ::� (C�	�)k 
= ::� ZC� 1� ::� 	� + C� 1� ::� 	�[ 

= C� ::� Z1� :	�:� [ + C� ::� Z1� :	�:� [ 

= C�7�	� + C�7�	�  
Thus the operator at (19) is linear operator. 

An operator that is not linear is known as nonlinear 

operator. In this research nonlinear operators in which 

nonlinear functions are plugged are symbolized by some 

various representations like /	  and f(	) . These operators 

are used to determine the Adomian polynomials by the help 

of Adomian formula which is briefly discussed in the 

following chapter. 

5. Thermal conductivity equations via 

Adm, Iadm and Madm 

5.1. General Description of the Adomian Decomposition 

Method 

In the 1980’s, George Adomian introduced a new method 

to solve nonlinear functional equations. This method has 

since been termed the ADM and has been the subject of 

many investigations. The method involves splitting the 

equation under investigation into linear and nonlinear 

portions. The linear operator representing the linear portion 

of the equation is inverted and the inverse operator is then 

applied to the equation. The nonlinear portion is decomposed 

into a series of Adomian polynomials. This method generates 

a solution in the form of a series whose terms are determined 

by a recursive relationship using the polynomials. In 

reviewing the basic methodology involved, consider a 

general differential equation in an operator form: 

7	 + A	 + /	 = �                             (21) 

where 7 is an operator representing the linear portion which 

is easily invertible,	/ is the nonlinear operator representing 

the nonlinear term and A  is a linear operator for the 

remainder of the linear portion. Applying the inverse 

operator 7��, the equation then becomes 

7��7	 = 7��� − 7��A	 − 7��/	               (22) 

Since 7 is linear, 7�� would represent integration and with 

any given boundary conditions, will give an equation for 	 

incorporating these conditions. This gives 

	(�) = %(�) − 7��A	 − 7��/	                (23) 

where %(�) represents the function generated by integrating � and using the boundary conditions. 

The Adomian decomposition method introduces the 

solution 	(�) and the nonlinear function /	 by the infinite 

series as: 

	(�) = ∑ 	*(�)l234                         (24) 

and 

/	 = ∑ )*(	4, 	�, 	�, … , 	*)l234                (25) 

where, )*  are the Adomian polynomials that can be 

determined by Adomian formula: 

)* = �
*!

,-
,.- �/(∑ 12*234 	2) .34, 5 = 0,1,2, …       (26) 

So for 5 = 0, (26) reduces to 

)4 = /(	4) 

For 5 = 1, it reduces to 

)� = ::1 �/(	4 + 1	�) .34 

⟹ )� = 	�/′(	4) 

For 5 = 2, it becomes 

)� = 12! :�
:1� �/(	4 + 1	� + 1�	�) .34 

⟹ )� = 	�/
(	4) + 12! 	��/′′(	4) 
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The desired Adomian polynomials can be determined 

using similar procedure. 

)! � 	!/
�	4� � 	�	�/

�	4� � 13! 	�!/′′′(	4) 

. 

. 

. 

It can be observed that )4 depends only on 	4, )� depends 

only on 	4 and 	�, )� depends only on 	4, 	� and 	� and so 

on. 

Optionally, a simple way of computing Adomian 

polynomials of any type of nonlinearity is presented by 

applying the decomposition of positive integers 5  as a 

subscript of the variable 	  for nonlinear terms through the 

use of MATHEMATICA software in the appendix C. 

MATHEMATICA exploits general symbolic programming 

for generating Adomian polynomials. 

Now, substituting (24) and (25) into (23), one can get: 

∑ 	*(�)l234 = %(�) − 7�� ∑ A	* −l234 7�� ∑ )*l234     (27) 

The recursive relationship is found to be 

	4 = %(�) 

	*p� = −	7��A	* − 7��)*                    (28) 

And hence from (28), 
	4 = %(�) 

	� = −	7��A	4 − 7��)4 

	� = −	7��A	� − 7��)� 

. 

. 

. 

	2 = −	7��A	2�� − 7��)2��						 
for D = 1,2,3, … . So, having determined the components 	*, 5 ≥ 0 the solution 	 in a series form follows immediately 

by (24). 

For instance, as a simple example consider the nonlinear 

differential equation: 

	
 + 	� = 1, 	(0) = 0                       (29) 

with	exact	solution		(�) = 1 − w��$
1 + w�$ . 

Recall that the ADM involves separating the equation 

under investigation into linear and nonlinear portions. The 

linear operator representing the linear portion of the equation 

is inverted and the inverse operator is then applied to the 

equation. Any given conditions are taken into consideration. 

The nonlinear portion is decomposed into a series of 

Adomian polynomials. This method generates a solution in 

the form of a series whose terms are determined by a 

recursive relationship using these Adomian polynomials. 

Following the method described above, the desired linear 

operator is defined as  

7 = ,
,$                                 (30) 

The inverse operator is then 

7�� = 9 (. ):�$4                          (31) 

Rewriting (29) in operator form, we have 

7	 + /	 = 1                          (32) 

⟹ 7	 = 1 − /	                        (33) 

where / is nonlinear operator such that /	 = 	�. 
Next apply the inverse operator for 7 to the left hand side 

of the equation the following way 

7��7	 = 	(�) − 	(0)                 (34) 

Using the initial condition this becomes 

7��7	 = 	(�)                         (35) 

Returning this to (33) it becomes 

	(�) = 7��(1) − 7��(/	) 

= 9 :�$4 − 7��(/	) = � − 7��(/	)                 (36) 

Next the Adomian polynomials, )* would be generated as 

follows: 

Let 	 be expanded as infinite series 

	(�) =                                 (37) 

and define 

/	 = ∑ )*l*34                              (38) 

Then 

∑ 	*(�)l*34 = � − 7��(∑ )*l*34 )            (39) 

So from (29) the ADM invites the recursive relation: 

	4(�) = �		 
	*p�(�) = −7��()*), 5 ≥ 0                  (40) 

Now using the Adomian formula given by (26) the 

polynomials become: 

)4 = /(	4)|.34 = 	4� 

)� = ::1 (/(	4 + 1	�)) = 2	4	� 

)� = ::1 (/(	4 + 1	� + 1�	�)) = 2	4	� + 	�� 

. 
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. 

. 

Using these results in the recursive relation (26) the 

solution is generated as follows: 	4��� � � 

	���� � �7���)4� 

� �7���	4�� 

� �<��:�
$

4
� � 13 �! 

	�(�) = −7��()�) 

= −7��(2	4	�) 

= −<2�(−13 �!):�
$

4
= 215 �y 

. 

. 

. 

Hence the approximate solution for 	(�) obtained using 

the first five components denoted zy look like the following. 

zy = 	4 + 	� + 	� + 	! + 	{ 

= � − 13 �! + 215 �y − 17315 �| + 622835 �}. 
The decomposition method and its modifications can be 

applied suitably to treat singular BVPs. How the ADM treats 

a class of singular BVPs is discussed below. For illustrative 

purpose, the following class of singular BVPs is considered 

which can be handled more easily, quickly and elegantly by 

implementing ADM for the exact solutions without making 

massive computational work. To begin, 

Consider (1) in the form 

(�~	
)
 = &(�, 	), � ∈ (�, �)	               (41) 

subject to the boundary conditions 

	(�) = �	and		(�) = �                     (42) 

Equation (41) in an operator form can be rewritten as: 

7(	) = &(�, 	)                            (43) 

where the linear differential operator 7 is defined by 

7(. ) = ,
,$ c�~ ,

,$ �.  d                         (44) 

The inverse operator 7�� is therefore defined by 

7��(. ) = 9 ���~ 9 �.  :�$4 �:�$4 	                (45) 

Operating 7�� with (43), it then follows 

	 = 	(0) + 9 ���~ 9 �&(�, 	) :�$4 �:�$4          (46) 

In this equation the expression &(�, 	)  may represent 

linear or nonlinear differential equation. Note that a second 

order ordinary differential equation written in standard form 

over the dependent variable 	 and independent variable � is 

said to be linear if it can be written in the form: 

	

 + 
(�)	
 + �(�)	 = �(�) 

otherwise it can be called as nonlinear. 

It is not unusual to transform an equation into another 

equivalent form so that it would be convenient to use better 

techniques of solving. The following two cases deal with the 

expression &(�, 	) in (46). 

Case 1. If &(�, 	) is linear. 

Consider &(�, 	) in the form: &(�, 	) = ℎ(�) + �(�)	. Thus, (46) becomes 

	 = 	(0) + 9 ���~ 9 �ℎ(�) :�$4 �:� +$4 9 ���~ 9 ��(�)	 :�$4 �:�$4   (47) 

Now decompose the solution 	 as in (24), 

It is important to note that the standard ADM suggests that 

the zeroth component 	4 usually defined by the function: 

%(�) = 	(0) + 9 ���~ 9 �ℎ(�) :�$4 �:�$4              (48) 

that represents the terms arising from integrating the source 

term ℎ(�) and from using the given conditions; and all are 

assumed to be prescribed. Accordingly, the solution can be 

computed by using the recurrence relation: 

	4 = %(�) 

	*p� = 9 ���~ 9 ��(�)	* :�$4 �:�$4 , 5 ≥ 0             (49) 

Case 2. If &(�, 	) is nonlinear. 

Consider &(�, 	) in the form: 

&(�, 	) = �(�)f(	)                          (50) 

where f(	) is nonlinear. 

Substituting this in to (46), 

	 = 	(0) + 9 ���~ 9 ��(�)f(	) :�$4 �:�$4         (51) 

The ADM is based on decomposing 	 and the nonlinear 

term f(	) as 

	(�) = ∑ 	*(�)l*34                          (52) 

and 

f(	) = ∑ )*(	4, 	�, 	�, … , 	*)l234              (53) 

Using these results in (51), it then follows 

∑ 	*l*34 = 	(0) + ∑ 9 ���~ 9 ��(�))* :�$4 �:�$4l*34 , 5 ≥ 0  (54) 

According to the standard ADM, the solution can be 

computed by using the recurrence relation: 

	4 = 	(0) 
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	*p� � 9 ���~ 9 �����)* :�$
4 �:�$

4 , 5 ≥ 0               (55) 

Thus, determining the components 	* , 5 ≥ 0  using (49) 

and/or (55) the solution 	  in a series form follows 

immediately. The series may be summed to provide the 

solution in a closed form. However, for concrete problems, 

the 5 term partial sum may be used to give the approximate 

solution as: 

Φ* = ∑ 	2*��234                                 (56) 

The classical ADM is very powerful in treating nonlinear 

BVPs, though this is one of the qualities of the method over 

some other methods it has its own shortcomings like its 

failure to treat some nonlinear singular boundary value 

problems. The following subsection addresses some merits 

and demerits of the method. 

5.1.1. MADM 

Since the introduction of the method in early 1980’s, ADM 

has led to several modifications made by various researchers 

in an attempt to improve the accuracy and expand the 

application of the original method. As pointed out above, the 

rate of convergence of the series solutions is one of the 

potential shortcomings of the decomposition method. To 

improve on this, the authors tried to introduce different 

modifications of the method. To begin with, based on Ravi, 

A. S. V. and Aruna, K. the standard ADM is modified in such 

a way that the function % in (16) can be divided into two 

parts as follows to increase rate of convergence of the series 

solution and minimize the size of computations [21]. This 

modification is applicable irrespective of the types of the 

BVPs under consideration. 

% = %4 + %�	                            (57) 

Accordingly, a slight variation was proposed only on the 

components 	4  and 	� . The suggestion was that only the 

parts %4  be assigned to the component 	4 , whereas the 

remaining part %� be combined with other terms given in (21) 

to define 	� to get the recursive relation: 

	4 = %4		 
	� = %�−	7��A	4 − 7��)4 

	*p� = −	7��(A	*) − 7��()*), 5 ≥ 1					    (58) 

Although this variation in the formation of 	4  and 	�  is 

slight, however it plays a major role in accelerating the 

convergence of the solution and in minimizing the size of 

calculations. In many cases the modified scheme avoids 

unnecessary computations, especially in calculation of the 

Adomian polynomials. In other words, sometimes there is no 

need to evaluate the so-called Adomian polynomials required 

for nonlinear operators or if needed to evaluate these 

polynomials the computation will be reduced very 

considerably by using the modified recursive scheme. There 

are two important remarks related to the modified method. 

First, by proper selection of the functions %4 and %�, the exact 

solution 	 may be obtained by using very few iterations, and 

sometimes by evaluating only two components. The success of 

this modification depends only on the choice of %4 and %�, and 

this can be made through trials, that are the only criteria which 

can be applied so far. Second, if % consists of one term only, 

the scheme (28) should be employed in this case. 

Another modification of the standard ADM which 

alleviates the deficiency of treating some singular boundary 

value problems like, BVPs subjected to the form of mixed 

boundary conditions is MADM presented by Hasan, Y. Q. 

and Zhu, L. M. [8]. In fact, it is a slight refinement to the 

original ADM; it only modifies the involved differential 

operator. Generally, MADM by the authors mentioned 

proposes the differential and inverse operators: 

7 = ��� ,-�X
,$-�X �*�# ,

,$ �#�*p� ,
,$ (. )                (59) 

and 

7��(. ) = 9 �*�#�� 9 �#�* 9 …$4 9 �(. ):� … :�$4$4$;     (60) 

5 − 1 times 

for treatment of 5 + 1 order boundary value problem of 

the form: 

	(*p�) + #
$ 	(*) + /	 = �	5 = 0,1,2, … ; ' = 0,1, ��	2  (61) 

The operators above are reduced so as to treat second order 

BVPs and incorporate symbolic programmings into them to 

obtain solutions to a triangular fin problems involving both 

constant and power-law dependent thermal conductivity 

(highly nonlinear). 

Kim, W. and Chun, C. came up with another modification 

of the standard ADM to solve singular 5 + 1 order boundary 

value problems [12]. This scheme is designed in such a way 

that BVPs with singular nature can easily be treated. In this 

project the operators are used to treat singular second-order 

BVPs with mixed boundary conditions. Generally, to see 

what MADM by the authors mentioned look like, consider 

the singular boundary value problem of 5 + 1 order ordinary 

differential equation (61) given the following way: 

	(*p�) + #
$ 	(*) + /	 = �(�)                     (62) 

	(0) = �4, 	
(0) = ��, … , 	���(0) = ����, 
	(�) = C4, 	
(�) = C�, … , 	*��(�) = C*��         (63) 

Where /  is nonlinear differential operator of order less 

than 5 , �(�)  is a given function, �4, ��, … , ����, C4, C�, … , C*�� , �  are given constants, where ' ≤ � ≤ 5, � ≥ 1. 
Now (62) can be re written in the form 

��� ,-�X
,$-�X ���	

 + (' − 25 + 2)�	
 + /	 = �       (64) 

Or equivalently, 

��� ,-�X
,$-�X ���*�# ,

,$ c�#��*p� ,b
,$d� + /	 = �         (65) 

(64) can be written in the operator form 
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7�7�	 � ���� � /	                           (66) 

Where, the differential operator 7  employs the first two 

derivatives 

7� � ��*�# ,
,$ c�#��*p� ,

,$d                   (67) 

7� � ��� ,-�X
,$-�X                           (68) 

in order to overcome the singularity behavior at � � 0. 

In view of (67) and (68) the inverse operators 7��� and 7��� 

are the integral operators defined by 

7��� = 9 ��*�#��$4 9 �#��*$; (. ):�:�	            (69) 

7��� = 9 …	9 ��$4$4 (. ):� … :�                   (70) 

5 − 1 time 

By applying 7��� on (63), one can have 

7�	 = Ψ�(�) + 7����(�) − 7���/	              (71) 

such that 

7�Ψ�(�) = 0                              (72) 

By applying 7��� on (71), one can have 

		(�) = Ψ�(�) + 7���Ψ�(�) + 7���7����(�) − 7���7���/	 
(73) 

such that 

7�Ψ�(�) = 0	                           (74) 

The standard ADM introduces the solution 	(�) and the 

nonlinear function /	  by infinite series given by (24) and (25) where the Adomian polynomials are determined by the 

formula at (27). Substituting (24) and (25) in to (73) gives 

∑ 	*l*34 = Ψ�(�) + 7���Ψ�(�) + 7���7����(�) −7���7��� ∑ )*l*34                               (75) 

Identifying 	4 = Ψ�(�) + 7���Ψ�(�) + 7���7����(�),  the 

Adomian method admits the use of the recursive relation 

	4 = Ψ�(�) + 7���Ψ�(�) + 7���7����(�) 

	*p� = −7��)*	                           (76) 

which gives 

	4 = Ψ(�) + 7���(�)																											 
	� = −7��)4 

	� = −7��)�																																  (77) 

	! = −7��)� 

. 

. 

. 

This leads to the complete determination of the 

components 	* of 	(�). The series solution 	(�) defined by (24)  follows immediately. For numerical purposes, the 5 

term approximant defined by (56)  can be used to 

approximate the exact solution. 

5.1.2. IADM 

Ebaid, A. 2010. made improvements of operators 

developed earlier by Lesnic, D. 2001 for the purpose of 

treating the heat equation with Dirchlet boundary condition 

[6],� [15]. In this work the IADM is used to deal with linear 

and nonlinear STPBVPs with Dirchlet boundary conditions. 

The improvement is based on the ADM and Lesnic’s work 

later developed by Ebaid, A. 2010 [6]. Lesnic, D. 2001. 

proposed the inverse operators [15]: 

7��$$(. ) = < <(. ):�:� − � − �41 − �4 < <(. ):�:�
$

$=

�

$=

$

$=

$

$=
, 

	7>�� = 9 (. ):
>4                             (78) 

to solve the Dirchlet BVP for the heat equation 

	> = 	$$, �4 < � < 1, 
 > 0                      (79) 

under the boundary conditions 	(�4, 
) = �4(
) , 	(1, 
) =��(
) and the initial condition 	(�, 0) = f(�). 

Using the definition in (78) it is observed that 

7��$$(	$$) = 	(�, 
) − 	(�4, 
) − $�$=��$= �	(1, 
) − 	(�4, 
) 	  (80) 

i.e., the boundary conditions can be used directly. However, 

from (78) again one can see that the lower bound of all 

integrations is restricted to the initial point �4. 

In fact, this restriction can be avoided by using a new 

definition of 7��$$ which gives the same result as in (80) and 

given by: 

7��$$(. ) = 9 9 (. ):�:� − $�$=��$= 9 9 (. ):�:�$��$=
$�$$= 	      (81) 

where, C is free lower point. This free lower point plays an 

important role if the equation being solved has a singular 

point. So the desired operator originally designed by the 

author mentioned earlier is derived as follows. 7��$$(. ) is defined as: 

7��$$(. ) = 9 9 (. ):�:� − �(�) 9 9 (. ):�:�$�;,$�$a 	     (82) 

where �(�) is to be determined such that 7��$$(	

(�)) can 

be expressed only in terms of the boundary conditions given 

in (2). Using this definition, thus: 

7��$$(	

(�)) = 	(�) − 	(�) − (� − �)	
(C) −�(�)�	(�) − 	(:) − (� − :)	
(w) . 
= 	(�) − 	(�) − 	�(�)�	(�) − 	(:) − (� − �)	
(C) +�(�)�(� − :) 	
(w). 

Setting : = � and w = C, 

7��$$(	

(�)) = 	(�) − 	(�) − �(�)�	(�) − 	(�) −
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�� � ��	
�C�+������ � ��	
�C�.        (83) 

In order to express 7��$$�	

����  in terms of the two 

boundary conditions only, the coefficient 	
�C�  has to be 

eliminated by setting 

��� � ��	
�C� � ������� � ��	
�C� � 0 assuming 

	
�C� B 0. 

⇒ 	���� � $�a
;�a                           (84) 

Using (84) in (82), the operator below proposed by Ebaid, 

A. 2010 is obtained to solve the singular two-point Dirchlet 

BVPs [6]. 

7��$$�. � � 9 9 �. �:�:� � $�a
;�a 9 9 �. �:�:�$

�
;
a

$
� ,$

a � B �, C �
constant                           (85) 

Thus �83� is reduced to: 

7��$$�	

���� � 	��� � 	��� � $�a
;�a �	��� � 	���  (86) 

From ( 85 ) it is noted that 7��$$�	

����  is already 

expressed in terms of the given boundary conditions without 

any restrictions on C. So, the choice of the value that C can 

take depend properly on the singular point of the equation 

under consideration. For example, if the equation has a 

singular point say at �	 � 	�4, C will be chosen to be any real 

value except the value of �4. Moreover, if the equation has 

two singular points at � � ��  and � � �� , then C  will be 

considered any real value except these values of �� and ��. In 

general, if the equation has 5  singular points �� , �� ,...,�* , 

then C takes any real value except the values of these singular 

points. 

For solving linear and non-linear singular two-point 

boundary value problems under the Dirchlet boundary 

condition, IADM is established using (85) together with the 

standard ADM. 

Consider �1� in the form: 

	

��� � ���� � 
���	
��� � ������	����       (87) 

Applying the operator 7��$$�. �  given by �86 ) on both 

sides of �72�, it is observed that: 

	��� � 	��� � � � �� � � �	��� � 	��� � 7��$$�����  
�7��$$�
���	
��� � 7��$$�������	�����.  (88) 

The Adomian decomposition method introduces the 

solution 	���  and the nonlinear function ��	�  by infinite 

series as in �24� and �25�, respectively. 

Substituting the results into �88� and according to the 

ADM, the solution 	��� can be smartly computed by using 

the recurrence relations constructed based on the following 

cases. 

Case 1:- If ��	� 	� 		 , i.e., linear function, then the 

solution 	���  can be computed by using the recurrence 

relation: 

	4��� � 	��� � � � �� � � �	��� � 	��� � 7��$$�����  
	*p���� � �7��$$�
���	*
 ��� � ����	*��� , 5 E 0  (89) 

Case 2:- If ��	� is nonlinear function, then the recurrence 

relation required to compute the solution 	��� is: 

	4��� � 	��� � � � �� � � �	��� � 	��� � 7��$$�����  
	*p���� � �7��$$�
���	*
 ��� � ����)*��� , 5 E 0     (90) 

Where the pairs of equations �89�  and �85� , �90�	 and �85�improve the standard ADM, (IADM) and can be used to 

solve linear and nonlinear singular two-point boundary value 

problems subject to Dirchlet boundary conditions. Hence, 

using the recurrence relation �85�  or �86�  depending on 

linearity behavior of the boundary value problem, the 5 � term  truncated approximate solution can be computed 

by the help of �56�. 

5.2. Numerical and Analytical Illustrations 

Triangular fin problem that involves both invariant and 

power-law dependent thermal conductivities is considered in 

this section. The modified operators by Hasan, Y. Q. and 

Zhu, L. M. shown in sub section 5.1.3 and MATLAB codes 

are assimilated to obtain the numerical solutions [8]. For the 

sake of illustrations, additional examples are shown. 

5.2.1. A Fin Problem 

Consider a wall at temperature �;  transferring heat by 

convection to an ambient at temperature �l��D5�� as shown 

in the figure below. 

 

Figure 1. A wall transferring heat by convection. 

The rate of heat transfer from this wall may be evaluated 

in terms of a heat transfer coefficient in the form 

� � �)��; � �l�	                           (91) 

where, � is the heat flux, � coefficient of heat transfer, ) the 

cross section, �;  temperature at the base /wall temperature/ 

and �l the ambient temperature. 

One of the prime objectives of the study of heat transfer is 

to find ways of controlling this �. For example, the design of 

a heat exchanger is often based on achieving the smallest 

possible heat transfer area or the largest possible amount of 

heat transfer for any given size heat exchanger. 
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As can be observed from �91�  one of the ways of 

increasing �  is by increasing the heat transfer area. The 

surface area of a wall may, in principle, be increased in two 

ways as shown in figures below. 

 
Figure 2. Triangular and rectangular fin profiles. 

In Figure 2�C� the extended surfaces are integral parts of 

the base material, obtained by a casting or extruding process. 

In Figures 2��	and	��  the extended surfaces, that may or 

may not be made from the base material, are attached to the 

base by pressing, soldering, or welding. The same geometry 

is obtained, though less frequently, by machining the base 

material. In practice, manufacturing technology and cost 

dictate the selection of the most desirable form. 

Applications of extended surfaces are numerous, 

particularly in heat transfer to gaseous media. Since in this 

case the corresponding heat transfer coefficient is low, a 

small, compact heat exchanger may be achieved only by the 

use of extended surfaces. 

Since the temperature of an extended surface does not 

remain constant along its length, because of transversal heat 

transfer by convection to the surroundings, the heat transfer 

from extended surfaces cannot be evaluated from �91�. Thus 

it is unquestionable to evaluate the temperature distribution 

in extended surfaces, which enables to determine the heat 

transfer in terms of the temperature distribution. So this 

research studied the temperature distribution in a triangular 

profile as shown in figure below considering both constant 

and variable thermal conductivities across a variable cross 

section as follows. 

 
Figure 3. The geometry of a straight fin of triangular profile. 

The general formulation of problems of extended surfaces 

with variable cross sections is given by 

,
,$ c') ,�

,$d � �f�� � �l� � 0                  (92) 

This equation is elaborated in two cases considering 

constant and variable thermal conductivities in the following 

sub sections. 

(i) Constant Thermal Conductivity 

Assuming constant thermal conductivity and measuring 

temperature above the ambient, �92�  may further be re-

designed to give: 

,
,$ c') ,�

,$d � �f� � 0                           (93) 

where, � � � � �l ; and noting from figure above that 

) � � c$
�d � and �f � ��� � ����, inserting these values into 

�5.64� it becomes 

'��7 ::� Z� :�:�[ � �f� � 0	 
⟹ ,,$ c� ,�,$d � �gXpgW��#; � � 0                    (94) 

Hence the differential equation governing temperature 

distribution inside a triangular fin with invariant thermal 

conductivity can be expressed as: 

,,$ c� ,�,$d � ��� � 0                           (95) 

with boundary conditions 
,�,$ |$34 � 0, and ��7� � �; , where �  is the temperature measured above the ambient 

temperature, subscript � stands for fin base and 7 is the fin 

length. In addition, �� is the fin parameter defined as: 

�� � �gXpgW��#;                              (96) 

where �� and �� are convective heat transfer coefficients of 

fin’s either sides, ' is the thermal conductivity and � is fin’s 

vertical dimension at its base. For this formulation, the origin 

of coordinates is placed at the tapered end of the fin. 

From �59� and �60�, appropriate differential and inverse 

operators to treat �95� respectively are, 

7$$�. � � ��� ,,$ � ,,$ �. �                    (97) 

and 

7$$���. � � 9 ��� 9 ��. �$4$� :�:�              (98) 

Equation �95� can be rewritten as: 

,W�,$W � �$ ,�,$ � �� �$ � 0                     (99) 

This in its operator form can be expressed as: 

7$$� � �� �$                           (100) 
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Applying �98) on both sides of (100) , the following is 

found 

�(�) = �(7) + 7$$�� c�� �
$d                 (101) 

Using (98)  and the boundary condition, the recursive 

relation can easily be formulated as: 

�4 = �; 

�#p� = 9 ��� 9 ���#:�:�$4$� , ' ≥ 0	     (102) 

MATLAB codes are used to determine the required 

decomposition components of this recurrence relation and are 

available in appendix A. For the sake of demonstration, the 

first six components of the solution computed by the foresaid 

MATLAB code are given as follows. 

�4 = �; 

�� = ���;� − ���;7 

�� = �{�;4 �� − �{�;7� + 3�{�;7�
4  

�! = ���;36 �! − ���;74 �� + 3���;7�
4 � − 19���;7!

36  

�{ = ���;576 �{ − ���;736 �! + 3���;7�
16 �� − 19���;7!

36 �
+ 211���;7{

576  

�y = ��4�;14400 �y − ��4�;7576 �{ + ��4�;7�
48 �!

− 19��4�;7!
144 �� + 

211��4�;7{
576 � − 1217��4�;7y

4800  

So by (56) the approximate solution, say using the first ten 

components can be determined as: 

Φ�4 = ∑ �2}234                            (103) 

= �; �\��� c}4}������!�{!���$p{|{|y��$W�|�44� $ p�|y�W$��!��$�p$�
y��{44 d] + \�� c������!4{� $p�4��W$W����$ p$�

y|� d] − ⋯+
\��� c�!�{4|�}}�¢��}|����!��£$p|����4�{��$W���{{}y!���$ 

���y|4�{44 + �4!!}44��$��y}y�{� $�p�!y��W$���{�$£p$¢
���y|4�{44 d] + 1¤.  

But only the first three components of the MADM solution are used to compare with the exact solution. The relevant 

analytical exact solution of (95) as given by Arpaci, S. Vedat  is [2]: 

�($)
�¥ = ¦=(�§$=.�)

¦=(�§�=.�)                                                                               (104) 

where F4 denotes Bessel’s function of second kind. So from (88), 

�(�) = �; ¦=(�§$=.�)
¦=(�§�=.�)                                                                            (105) 

A relative error which covers part of a silicon fin length is defined to see how the approximate MADM solutions to the exact 

solution are. 

An absolute relative deviation (ARD) from exact solution that considers ten different points of the interval is defined and 

computed the following way. 

)A¨ = �
�4 Z©�ª��«¬­«�ª ©a>	$3� + ©�ª��«¬­«�ª ©a>	$34.}y� + ©�ª��«¬­«�ª ©a>	$34.}� + ©�ª��«¬­«�ª ©a>	$34.�y� + ©�ª��«¬­«�ª ©a>	$34.�� +

©�ª��«¬­«�ª ©a>	$34.|y� + ©�ª��«¬­«�ª ©a>	$34.|� + ©�ª��«¬­«�ª ©a>	$34.�y� + ©�ª��«¬­«�ª ©a>	$34.�� + ©�ª��«¬­«�ª ©a>	$34.yy�[  

= �
�4 (0.003000590579085 + 0.006144019569687 + 0.00944568578639900 + 0.0100292368369663891 +0.01659947989466741 + 0.02049881777482788 + 0.02465295003258466 + 0.02910035359995550 +0.03388917438611092) = 0.0153360308460284 

ARD from exact solution is defined to see how far the 

MADM solutions from the exact solutions are; and it shows 

that the approximate solution digresses only about 1.5% from 

the exact solution for a small parameter �. Such a definition 

for ARD gives a global and average sense of deviation from 

exact solution and is more valid than focusing on error at a 

single fixed point. Even this gap may be filled more by 

taking appropriate values of the constants. 

Note that larger temperature difference does not imply less 

heat loss. Arpaci, S. Vedat shares this by stating ‘In terms of 

heat transfer from extended surfaces, it is more appropriate to 

compare the exact and the approximate heat losses than the 
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exact and approximate temperatures, to determine the 

limitation of the approximate solution’ [2]. 

(ii) Power Law Dependence of Thermal Conductivity 

Assuming general power-law dependence under steady 

condition for thermal conductivity of the fin material in the 

form 

' � '4�®  (106) 

and averaged heat transfer coefficient, the succeeding 

governing equation can be derived the following way. 

,
,$ c') ,�

,$d � 2ℎf(� − �l) = 0  (107) 

where, ), �, f, ℎ  denote the variable cross-sectional area, 

local temperature, the periphery and the heat transfer 

coefficient, respectively. Substituting the appropriate terms, (107) becomes 

::� Z� c�7d ��'4�®� :�:�[ − 2ℎ�(� − �l) = 0 

⟹ ,
,$ c��® ,�

,$d − �g�
#=; (� − �l) = 0     (108) 

⟹ ��® 	:��:�� + �® :�:� + ���®�� Z:�:�[� − 2ℎ7'4� (� − �l) = 0 

Dividing by ��® and rearranging gives: 

,W�
,$W + �

$
,�
,$ + � �

� c,�
,$d� − �g�

#=;
�
$ ����® − �l��®� = 0  (109) 

Using (82), equation (93) can easily be converted to its 

operator form equivalent as: 

7$$(�) + � �
� c,�

,$d� − �g�
#=;

�
$ ����® − �l��®� = 0  (110) 

Applying (98) on both sides of (110), one can achieve: 

�(�) = �(7) − �7$$�� �
� c,�

,$d� + �g�
#=; 7$$�� c�X�¯

$ d −
�g��°#=; 7$$�� c��¯

$ d                           (111) 

Here, it is easy to observe that there are three different 

nonlinearities; and they can be represented as series 

decomposition of three different Adomian polynomials as 

follows. 

NA = �
� c,�

,$d� = ∑ )*l*34                            (112) 

NB = ���® = ∑ *́l*34                               (113) 

NC = ��® = ∑ ¶*l*34                                 (114) 

Using (112) - (114) in (111) and following the 

decomposition technique, 

∑ �*l*34 = �(7) − �7$$��(∑ )*l*34 ) + �g�
#=; 7$$�� c�

$ ∑ *́l*34 d − �g��°#=; 7$$�� c�
$ ∑ ¶*l*34 d                           (115) 

Thus, the recurrence relation needed is: 

�4(�) = �(7) 

�*p�(�) = −�7$$��()*) + �g�
#=; 7$$�� c�

$ *́d − �g��°#=; 7$$�� c�
$ ¶*d ; 5 ≥ 0                            (116) 

To reach the very final solution, each decomposed 

component of the series 

� = ∑ �*l*34                           (117) 

has to be computed recursively. For this reason, it is 

necessary to obtain Adomian polynomials components of )*, *́ , and	¶* at each of the iterations. To handle this task 

neatly, three functions returning symbolic representations for )*, *́ , and	¶* , a function to take inverse transform and a 

core code to calculate the ultimate solution with the help of 

these functions are used. All these MATLAB codes are given 

in the appendix B. 

Using the computational code mentioned previously the 

MADM solution series can be expanded upto any desired 

component. To demonstrate, the first three components of the 

decomposition solution can be shown as: 

�4 = �;  

�� = 2ℎ7'4� �;��®(� − 7) − 2ℎ7�l'4� �;�®(� − 7) 

�� = gW�W�¥X�W¯
#=W;W (−�;��� + 4�;��7 + �;���l − 4�;��7� − 2�;����l + 8�;�7��l − 3�;�7� + 	3�;�l7� + 3�;�7�� −

6��;�l7� + ��l��� − ��l��7 + 3��l�7�). 

5.2.2. Numerical and Analytical Treatments 

Model problem 

Silicon, being an efficient thermal conductor, has been of 

extensive interest in fabrication of cooling fins and packed 

heat sink modules especially for thermal management in 

microelectronics. For temperatures ranging within 300 −

1400·, a power law correlation for thermal conductivity of 

silicon is given by: 

' = '!44 c �
!44d~

                            (118) 

where, '!44 = 148 ¸
¹§ , α = −1.3 



44 Ashenafi Gizaw Jije:  Thermal Conductivity Equations via the Improved Adomian Decomposition Methods  

 

Regarding �106�, '4 � 148 » 300�.! ¸¹=. 
§  

Now it can be taken the advantage of the described 

computational work in section 5.2 based on MADM to 

investigate the temperature distribution in a triangular silicon 

fin with dimensions L=0.05m and b=0.005m, subject to a 

constant base temperature of �; � 423·�150¶4�,  and 

ambient temperature of �l 	� 298·	�25¶4�. The results to 

this model problem from the first eight decomposition 

solutions by MADM are used to plot the graph as shown in 

figure 4. 

 
Figure 4. Temperature distribution along the length of the silicon fin. 

The figure is all about variant thermal conductivity (the 

power law dependence) of the silicon fin considered above 

taking the first eight decomposition solutions of the problem. 

It can be observed from the figure that the temperature 

distribution decreases as one goes from the source to the 

tapered end of the triangular fin. So, unnecessary heat from a 

system can be dissipated to the surrounding atmosphere 

through extended surfaces. Compared to the FDM by 

Mokheimer Esmail, M. A temperature along the fin 

determined by MADM is observed to decline faster though 

only the first eight components of the decomposition were 

used [17]. Hence, overheating of operating machines can be 

protected by plugging in many extended surfaces to the 

machines. All these confirm that fins can serve as effective 

coolants. Outside this, it is not difficult to understand how 

powerful the scheme, modification of ADM to treat highly 

nonlinear BVPs. 

Example 5.1. Consider 

��	

��� � �	
��� � 	��� � 0             (119) 

1 � � � 2 with the conditions 	�1� � 1 and 	�2� � 1. 
I. ADM solution 

As the given equation is not inhomogeneous, ADM fails to 

provide the self-cancelling noise terms that ADM favors 

where sum of noise terms vanishes in the limit. Self-

cancelling noise terms appear for some inhomogeneous 

differential equations only. Thus, if terms in 	4 are cancelled 

by terms in 	�, even though 	� includes further terms, then 

the remaining non cancelled terms in 	�  are cancelled by 

terms in 	�, the remaining terms of 	� are cancelled by some 

terms of 	!  and so on. Finally, the exact solution of the 

equation is readily found for the inhomogeneous case by 

determining the first two or three terms of the solution 	��� 

and by keeping only the non-cancelled terms of 	4. 

Moreover, it can be observed that the standard ADM fails 

to treat such problems since its operators are designed so as 

to give no attention to the boundary conditions of the BVPs. 

Such difficulties are resolved perfectly by the IADM in 

which the operators are designed in such a way that all the 

boundary conditions are included. But the exact solution of 

the problem as given by Arpaci, S. Vedat is [2]  

	��� � 2� ln 2 � � ln �2 ln 2 										 
II. IADM solution 

Rewriting (119) in the standard form gives: 

	

��� � 1� 	
��� � 1�� 	��� � 0 

With 

f��� � �1� , ���� � 1�� , ���� � 0, � � 1, � � 2, 	�1�� 1, 	�2� � 1 

using �89) given by 

	4��� � 	��� � � � �� � � �	��� � 	��� � 7��$$�����  
	*p���� � �7��$$�
���	*
 ��� � ����	*��� , 5 E 0    (120) 

Substituting the given terms, one can get: 

	4 � 1 � 7��$$�0 � 1 

For 5 � 0  and the given terms above at the second 

equation in �120�, reduces to: 

	� � �7��$$�� 1� 	4
 ��� � 1�� 	4���  
� �7$$�� j 1��k 

⟹ 	� � ���1 � �� ln 2 � ln � 

Similarly, 	� can be determined as: 

	� � 7$$�� j1� 	�
 ��� � 1�� 	�k 
⟹ 	� � �7$$�� j1� ::� �� �ln 2��� � 1� � ln �� � 1�� �� �ln 2��� � 1� � ln ��k 
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	� � �1
2 �ln 2�� � 1

2 ��1 � �� �ln 2�� � 1
2 �1 � �� �ln 4�� � 1

2 �ln 2���. 
By (56), 

⟹ Φ! � 1 � �1 � �� ln 2 � ln � � �� ��2 � �� �ln 2�� � �� �1 � �� �ln 4�� � �� �ln 2���                         (121) 

which is the approximate solution using the first three 

iterations only. But the first seven iterative results are used to 

get better numerical results in the table 1 that shows the 

numerical illustration using both the IADM and exact 

solutions together. 

In order to verify how close the IADM solution Φ! to the 

exact solution 	���, the graph of the two solutions are plotted 

in figure 5. For the IADM solution it is enough to use only 

the first three components of the decomposition series 

solution. All the computations and the plot are done by 

MATHEMATICA. 

 

Figure 5. Comparison of the IADM and Exact solutions for example 5.1. 

Table 1. Numerical results for example 5.1. 

x 
Approximate 

Solution 
Exact Solution Error /¼�½� � ¾¿ÀÁÂ/ 

1 1 1 0 

1.1 1.024373035 1.024373062 2.6258E−08 
1.2 1.042179302 1.042179356 5.3793E−08 

1.3 1.053967377 1.053967445 6.7857E−08 

1.4 1.060201157 1.060201221 6.3608E−08 
1.5 1.061278079 1.061278124 4.4892E−08 

1.6 1.057542456 1.057542476 2.0090E−08 

1.7 1.049295464 1.049295466 1.8739E−09 
1.8 1.03680277 1.036802784 1.4216E−08 

1.9 1.030300538 1.020300552 1.3555E−08 

2 1 1 0 

In figure 5, the IADM solution Φ! and the exact solution 

	��� � �2 ln 2�� � � ln �2 ln 2  

are plotted together but to get better approximate solution, 

MATHEMATICA is used to evaluate up to the 7
th

 iteration as 

shown in table 1. It can be concluded from the figure that an 

accurate IADM solution is obtained considering only few 

terms of the decomposition solution. Also, in order to 

compare the approach with another modification of the ADM 

at Benabidallah, M. and Cherruault, Y the numerical results 

for the absolute errors /	��� � Φ¦ÃÄÅ���/ are presented in 

table 1 [3]. In the journal mentioned, the authors used the 7-

terms of the ADM in indirect way in which a huge amount of 

computational work is needed to obtain the numerical 

solution with absolute errors � 6 » 10�{ . Hence, in 

comparison, the improved Adomian decomposition method 

is not only more accurate but also more simple and direct. 

Example 5.1. Consider the linear singular equation 

	

��� � �� 	
��� � Æ�Ç���� � Æ � 1 � Æ�Ç�	���, � ∈ �0,1� 

with the boundary conditions 	�0� � 1 and 	�1� � w. 

I. IADM solution 

Using the recurrence relation given by (89) and the same 

procedure as in examples above. 

	4 � 	�0� � $�4��4 �	�1� � 	�0� � 7$$��������     (122) 

With 


��� � ~$ , ���� � �Æ�Ç���� � Æ � 1 � Æ�Ç�	and	���� � 0 (123) 

and hence substituting the given constants � � ��  and Æ � 1, in these equations one can easily get 


 � 12� 	and	� � �1� Z12 � �[. 
Using these expressions the first component of the 

decomposition of the solution 	��� can be found to be: 

	4 � 1 � �w � 1�� 

Similar procedure as in previous examples the next four 

approximate solutions shown below are obtained with the 

help of MATHEMATICA using the recurrence relation (89) 

							� � �� � ��1112 � 11e12 �� � e�2 � ��4 � e��4 � �!6 � e�!6 � � ln � � 12 e� ln � 

	� � � �24 � ��233360 � 169e720 �� � 5e�24 � 25��48 � e��24 � 13�!144 � e�!48 � �{72 � e�{36 � �y120 � e�y120 � 124 � ln � � 524 e� ln �
� 14 �� ln � � 18 e�� ln � � 16 �! ln � � 112 e�! ln � � 14 ��ln ��� � 18 e��ln ��� 
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	! � � 79�360 − (−551543604800 + 267917e604800 )� + 221e�1440 − 1741��
2880 + 791e��

2880 − 53�!
360 + 191e�!

4320 + 167�{
3456 − 3e�{

128 + 53�y
4800

− 67e�y
14400 − 7��

21600 − 23e��
21600 + �|

5040 − e�|
5040 + 79360 � ln � − 221e� ln �1440 + 3196 �� ln � − 548 e�� ln �

+ 772 �! ln � − 196 e�! ln � − 136 �{ ln � + 172 e�{ ln � − 1120 �y ln � + 1240 e�y ln � − 196 �(ln �)�

− 596 e�(ln �)� − 116 ��(ln �)� + 132 e��(ln �)� − 124 �!(ln �)� + 148 e�!(ln �)� + 124 �(ln �)!

− 148 e�(ln �)! 

	{ = 418823�1209600 − (133427837169344000 − 1732427e5080320 )� − 175097e�1209600 + 1187213��
2419200 − 538187e��

2419200 + 168503�!
3628800 − 10813e�!

907200 − 18193�{
207360

+ 5047e�{
138240 − 35611�y

3456000 + 9443e�y
3456000 + 479��

216000 − 307e��
324000 + 193�|

635040 − 437e�|
3175200 − 17��

4233600 − 11e��
529200 + �}

362880
− e�}

362880 − 418823� ln �1209600 + 175097e� ln �1209600 − 299�� ln �5760 + 169e�� ln �5760 + 359�! ln �5760 − 59e�! ln �2160 + 151�{ ln �3456
− 107e�{ ln �6912 + 17�y ln �2400 − 47e�y ln �28800 − 23�� ln �21600 + 23e�� ln �43200 − �| ln �5040 + e�| ln �10080 − 79�(ln �)�

1440 + 221e�(ln �)�
5760

− 7384��(ln �)� − 1192e��(ln �)� − 172�!(ln �)� − 1384e�!(ln �)� − 1144 �{(ln �)� + 1288e�{(ln �)�
− 1480�y(ln �)� + 1960e�y(ln �)� + 1576�(ln �)! + 5576e�(ln �)! + 196��(ln �)! − 1192 e��(ln �)! + 1144�!(ln �)!
− 1288e�!(ln �)! − 1192�(ln �){ + 1384e�(ln �){ 

II. ADM solution 

Here the ADM is supported by the Maclaurin series expansion of functions to get in to the desired solution. The equation 

can be rewritten as (�~	
)
 = Æ�~pÇ���� + Æ − 1 + Æ�Ç�	(�) 

Using the scheme in (49), 

	4 = 1 

	*p� = Æ 9 ���~ 9 �(� + Æ − 1)�~pÇ�� + Æ�~p�Ç���	*:�$4 �:�$4                                                (124) 

From the recurrence relation (124), one can easily obtain 

	4 = 1 

	� = �Ç + Æ2(� + 2Æ − 1) ��Ç 

	� = (� + Æ − 1)2(� + 2Æ − 1) ��Ç + Æ(3� + 5Æ − 3)6(� + 2Æ − 1) �!Ç + ��
8(� + 2Æ − 1)(� + 4Æ − 1) �{Ç 

	! = (� + Æ − 1)�
6(� + 2Æ − 1)(� + 3Æ − 1) �!Ç + Æ(� + Æ − 1)(3� + 7Æ − 3)12(� + 2Æ − 1)(� + 3Æ − 1)(� + 4Æ − 1) �{Ç 

+ �{3(� + Æ − 1)(� + 3Æ − 1) + 4(3� + 5Æ − 3)(� + 4Æ − 1)}120(� + 2Æ − 1)(� + 3Æ − 1)(� + 4Æ − 1)(� + 5Æ − 1) �yÇ + Æ!
48(� + 2Æ − 1)(� + 4Æ − 1)(� + 6Æ − 1) ��Ç 

. 

. 

. 

To show the possibility of obtaining the exact solution of the given equation, the approximate solution can be established by 

(56) the following way. 

Φ! = 	4 + 	� + 	� 

= 1 + �Ç + Æ2(� + 2Æ − 1) ��Ç + (� + Æ − 1)2(� + 2Æ − 1) ��Ç + Æ(3� + 5Æ − 3)6(� + 2Æ − 1) �!Ç + ��
8(� + 2Æ − 1)(� + 4Æ − 1) �{Ç 

Φ{ = 	4 + 	� + 	� + 	! 
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� 1 � �Ç � Æ
2�� � 2Æ � 1� ��Ç � �� � Æ � 1�

2�� � 2Æ � 1� ��Ç � Æ�3� � 5Æ � 3�6�� � 2Æ � 1� �!Ç � 

��8�� � 2Æ � 1��� � 4Æ � 1� �{Ç � �� � Æ � 1��6�� � 2Æ � 1��� � 3Æ � 1� �!Ç � Æ�� � Æ � 1��3� � 7Æ � 3�12�� � 2Æ � 1��� � 3Æ � 1��� � 4Æ � 1� �{Ç � 

�È3�� � Æ � 1��� � 3Æ � 1� � 4�3� � 5Æ � 3��� � 4Æ � 1�É120�� � 2Æ � 1��� � 3Æ � 1��� � 4Æ � 1��� � 5Æ � 1� �yÇ � Æ!48�� � 2Æ � 1��� � 4Æ � 1��� � 6Æ � 1� ��Ç . 
By investigating the approximate solutions Φ�, Φ! and Φ{, 

it can be observed that they agree with the Maclaurin 

expansion of the function w$Ê
up to �Ç , ��Ç  and �!Ç 

respectively. So, by evaluating more terms of the 

decomposition series, the exact solution is found to be 

	��� � w$Ê. 
The following (figure 6) is plot by MATHEMATICA 

where the IADM solutions obtained using only the first four 

components of the decomposition solutions and the exact 

solution (for � � 0.5, Æ � 1). 

 
Figure 6. Comparison of the IADM and ADM solutions for example 5.2. 

Table 2 shows the numerical illustration using the IADM 

and exact solutions for the problem. Unlike the figure, the 

first seven terms of the decomposition solution are used. 

Table 2. Numerical results for example 5.2. 

x 
Approximate Solution ¾¿ÀÁÂ 

Exact Solution ¾ÀÁÂ 

Error /¾ÀÁÂ �¾¿ÀÁÂ/ 

0 1 1 0 

0.2 1.221155823 1.221402758 2.47E-04 

0.4 1.491930426 1.491824698 1.06E-04 

0.6 1.822019687 1.8221188 9.91E-05 

0.8 2.2256288 2.225540928 8.79E-05 

1 2.718281828 2.718281828 0 

To verify how close the approximate solution is to the 

exact one: 	��� � w$ , the IADM solution considering the 

first four approximate results and the exact solution are 

plotted in figure 6 for � � 0.5 and Æ � 1. It is shown from 

this figure that the approximate solution obtained through the 

IADM is very close to the exact one using very few terms. 

Furthermore, numerical results are shown in the table using 

the first seven IADM solutions of the example considered. 

From the absolute error in the table it is observed that the 

IADM solution is closer to the exact solution.. Lin, Y. and 

Chen, C. K. used a three-point finite difference method in 

which a huge amount of computational work is needed to 

obtain the numerical solution [14]. 

Example 5.2. Consider the nonlinear boundary value 

problem 

	

 � 1� 	
 � ��3 	y � 0	with		�0� � 1	and		
�1� � �√38 . 
I. MADM solution 

To treat second order BVPs with mixed boundary 

conditions of this form, the operators at (67) and (69) can be 

reduced, respectively, to 7� � ���# ,,$ c�# ,,$d                  (125) 

and 7��� � 9 ��#$4 9 �#��$; �. �:�:�  (126) 

Hence, from �106� and �107� one can define the operators 

below to treat the problem considered. 

7� � �! ,,$ c��� ,,$d                   (127) 

and 

7��� � 9 �$4 9 ��!$� �. �:�:�               (128) 

Rearranging and multiplying the given equation 	

 ��$ 	
 � $W
! 	y � 0 by ��, in an operator form it becomes 

7�	 � $�
! 	y                              (129) 

Applying �128� on both sides of �129� one can get 

	��� � 	�0� � �� 	
�1��� � 7��� $�
! 	y          (130) 

Using the decomposition series for the linear function 	��� and the Adomian polynomial series for the nonlinear 

term 	y, the following expression can be obtained. 

∑ 	*l*34 � 	�0� � �� 	
�1��� � 7��� c$�
! ∑ )*l*34 d  (131) 

This gives the recursive relationship 

	4��� � 	�0� � 12	
�1��� 

	*p���� � 7��� c$�
! )*d , 5 E 0.           (132) 

Now to determine the Adomian polynomials for the 

nonlinear term, call it f�	� � 	y,  the Adomian formula 

given by �3� is used in �132� as follows. 

For 5 � 0, 
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)4 � f�	4� 

⟹ )4 � 	4y 

For 5 � 1, 

)� � :
:1 �f�	4 � 1	�� .34 

⟹ )� � 5	4{	� 

For 5 � 2,3, …  the respective Adomian polynomials can 

be obtained in similar fashion. 

Or, optionally, MATHEMATICA is set to give desired 

number of decomposition terms of any nonlinearity types as 

shown in the appendix C. For instance, 

For 5 � 2, 

MATHEMATICA displayed the corresponding Adomian 

polynomials in terms of the subscript of the term 	 for )� as 

u�2 &
�0 � 1
2	�1 �&

�0  

this means 

)� � 	��
�	4� � 1
2	���

�	4� 

where �  in this case is f.  Hence, only by substituting the 

appropriate derivatives of the nonlinear function f  the 

desired result follows for )� as 

)� � 5	�	4{ � 10	��	4! 

The same procedure gives the rest of the polynomials: 

)! � 5	!	4{ � 20	�	�	4! � 10	�!	4� (133) 

. 

. 

. 

Substituting these results of the Adomian polynomials in 

to �132� gives the components 

	4 � 1 � √3��16 	 
	� � � ��|���4|��√! ����6961983 � 15255520√3 � 7340032√3�� � 2293760�{ � 143360√3�� � 16128�� �336√3��4 � 9����  

	� � � ��!��!4|}4y}��y�√! 5��{�|{}|}�!}y�|� � 2274393702976√3��� � 458752��994569 � 2179360√3��� �286720�1307616 � 639947√3��� � 5376�26731043 � 3922848√3���4 � 448�3922848 � 35474273√3���� �3�1087535333 � 6538080√3���{ � 155713536√3��� � 16220160��� � 405504√3��4 � 20736��� � 216√3��{ ���$W�
�� �  

. 

. 

. 

The approximate solution of the nonlinear homogeneous 

boundary value problem considering only the first three 

iterative results is thus approximately given using �56� by: 

Φ! � 	4 � 	� � 	� 

II. Exact solution 

The exact solution of the nonlinear BVP is given by Kim, W. 

and Chun, C. is [12]: 

	��� � 1
Ì1 � ��3

 

The graphs of the example from the MADM and exact 

solutions are plotted using MATHEMATICA in figure 7.  

 
Figure 7. Comparison of the MADM and exact solutions for example 5.3. 

Table 3 shows numerical illustrations of the example that 

deal with the exact solution given by Kim, W. and Chun, C 

and the approximate solution determined by MADM to see 

how close they are using the absolute error [12]. 
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Table 3. Numerical results for example 5.3. 

x 
MADM solution 

¾ÂÀÁÂ 

Exact 

Solution 
/Exact solution�¾ÂÀÁÂ/ 

0 1 1 0 

0.1 0.998335705 0.998337488 1.7830E-06 
0.2 0.993392139 0.993399268 7.1290E-06 

0.3 0.985313275 0.985329278 1.6003E-05 

0.4 0.974326442 0.974354704 2.8262E-05 
0.5 0.960725402 0.960768923 4.3521E-05 

0.6 0.944850222 0.944911183 6.0961E-05 

0.7 0.92706639 0.927145541 7.9151E-05 
0.8 0.907745218 0.907841299 9.6081E-05 

0.9 0.887246455 0.887356509 1.1005E-04 

1 0.865920000 0.866025404 1.0540E-04 

From the example above it can easily be observed that the 

modification of the decomposition method MADM can 

easily treat problems that the standard ADM fails to be 

effective, even resulting in a good agreement with the exact 

solution. Only the first three iterative results of the solution 

are used to plot the graph. Overlapping of the graphs implies 

the results obtained by MADM are as accurate as the results 

from the exact solution. In addition, numerical results are 

shown in table 3 considering only the first four iterative 

results of the approximate solution in order to get better 

numerical result. The absolute error determined show that the 

method is too accurate to treat nonlinear singular two-point 

boundary value problems with mixed boundary conditions. 

Example 5.3. Consider the nonlinear singular BVP 

	

��� � 12� 	
(�) = wb Z12 − wb[ , � ∈ (0,1) 

subject to the boundary conditions 	(0) = �5(2)  and 	(1) = 0. 
I. IADM solution 

As can be expected, it is necessary to represent the 

nonlinear part by the Adomian polynomials. Here the 

nonlinear term is 


(	) = wb(0.5 − wb) 

The required recurrence relation is (90) which is given by: 

	4(�) = 	(�) + � − �� − � �	(�) − 	(�) + 7��$$��(�)  
	*p�(�) = −7��$$�
(�)	*
 (�) + �(�))*(�) , 5 ≥ 0 

⟹ 	4 = �52 + �(−�52) = (1 − �)�52 

But for fast convergence to the exact solution, MADM by 

Wazwaz, A.-M. helps to rearrange the result obtained above 

so that 	4  assumes to be zero and all the existing terms 

obtained to be added to 	� the following way [21]: 

For 5 = 0, 		� = −7��$$� �
�$ 	*
 + )4  

The Adomian polynomial )4  can be determined either 

using the Adomian formula (3) or the results provided by 

MATHEMATICA at appendix C to be: 

)4 = 
(	4) = wb=(0.5 − wb=) 

⟹ 7��$$�−0.5 = �
{ � − �

{ ��  (134) 

Adding the previous result of 	4 i.e. (1 − �)�52 to (134) 

one can get 	� as: 

	� = (1 − �) ln 2 + 14 � − 14 �� 

Recall that )� = 	�

(	4) 

	)� = 	�

(	4) + 12	��


(	4) 

)! = 	!

(	4) + 	�	�


(	4) + 16	�!



(	4) 

i. e. , )� = 12 (1 − 4wb=)	� 

)� = 14 wb=�	�� + 2	� − 8wb=(	�� + 	�)  
)! = 112 wb=�	�! + 6	�	� + 6	! − 8wb=(2	�! + 6	�	�+ 3	!)  

For 5 = 1, 	�  from the second equation of the recurrence relation 

would be: 

	� = −7��$$� 12� Z14 �52 − 12 �[ + 32 ((1 − �)�52 + 14 �
− 14 ��)  

⟹ 	� = �8 + ��
8 − �!

16 + �{
32 − 34 �� ln 2

+ � Z− 732 + 3 ln 24 + ln 1616 [ − 18 � ln 16 + 

116 �! ln 16 − 18 � ln � + 18 � ln 16 ln � 

The terms of the decomposition components are getting 

too vast to solve by hand but MATHEMATICA facilitates 

computing. So it can be used to list as many decomposition 

terms as desired. Though more than ten terms of the 

decomposition are used in the IADM solution, it is believed 

not economical to write the next iterative results, it is found 

important to list only up to the fifth iteration below. 

	! = − !$
�{ − $W

�� + y$ 
!�{ − �!$�

|�� + $�
�{ − $�

�}� + !
� � ln 2 + !

� �� ln 2 − �
! �! ln 2 + �!

}� �{ ln 2 − |
��4 �y ln 2 − |

� ��(ln 2)� + |
�� �!(ln 2)� −

|
{� �{(ln 2)� − �

�� � ln 16 + y
�}� �! ln 16 − !

�{4 �y ln 16 + �( �}
|�� − {} ÍÎ �

�4 + |(ÍÎ �)W
�� + |} ÍÎ ��

�}�4 − ÍÎ �y�
�{ ) + �

�{ � ln 256 + !
�{ � ln � + �

!� �! ln � −
!
� � ln 2 ln � + �

�� � ln 16 ln � − �
!� �! ln 16 ln � − �

�{ � ln 256 ln � + �
!� �(ln �)� − �

!� � ln 16 (ln �)�  

	{ = �
|��4 �(−345 + 912 ln 2 − 1976(ln 2)� + �

| (210 − 524 ln 2 − 79 ln 16) − !
� (−51 − 1616(ln 2)� + 320(ln 2)! − 56 ln 2 (−15 +
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ln 16� � 39 ln 16� � 96 ln 16 � ln 2 ��524 � 56 ln 16� � �� �695 � 39120�ln 2�� � 28800�ln 2�! � 446 ln 16 � 8 ln 2 �337 �560 ln 16�� � 240��1 � 14�ln 2�� � 20�ln 2�! � ln 64� � y� ��132 � 7424�ln 2�� � 2880�ln2�! � 140 ln 16 � 49�ln 16�� �56 ln 2 �37 � ln 4096��� � �|��4 ��y$¢
� � ��265 � 912 ln 2 � 1680�ln 2�� � 82 ln 16� � !� �y��51 � 1616�ln 2�� � 320�ln 2�! �56 ln 2 ��15 � ln 16� � 39 ln 16� � �| �|��210 � 524ln	2 � 79 ln 16� � ����{y� � 296�ln 2�� � 14 ln 16 � ln 2 ��524 � 56 ln 16�� ��� �!��695 � 39120�ln 2�� � 28800�ln 2�! � 446 ln 16 � 8 ln 2 �337 � 560 ln 16�� � 240����1 � 14�ln 2�� � 20�ln 2�! � ln64� �y� �{��132 � 7424�ln2�� � 2880�ln 2�! � 140 ln 16 � 49�ln16�� � 56 ln 2 �37 � ln 4096�� � ���265 � 912 ln 2 � 1680�ln 2�� �60�{��1 � ln 16� � 70�!��1 � ln 16�� � 82 ln 16 � 10���5 � 10 ln 16 � 8 ln 2 ��16 � 7 ln 16��� ln � � 30���3 � ����2 �ln 256� � ln 65536��ln ��� � 40���1 � ln 16��ln ��!�  

Hence, the result obtained by (71� is used to show the 

numerical illustrations in table 4. 

II. Exact solution 

Consider the given equation 

	

��� � 12� 	
��� � wb Z12 � wb[ , � ∈ �0,1� 

Re writing it in the form of (41) and using (56� one can 

get: 

	4 � 	�0� 

	*p� � 9 ���~ 9 �����)* :�$4 �:�$4 , 5 E 0 (135) 

Here � � �� and ���� � �� �⁄  but the Adomian polynomials 

are already determined in IADM solution above. 

From the recursive relation above it can be obtained that 

	4 � �5�2� 

For 5 � 0, �135� reduces to 

	� � <Ð��� �⁄ <��� �⁄ wb=�0.5 � wb=��:�$
4

Ñ:�$
4

 

� ��� 

Similarly using �135� one can easily observe that 

	� � �{2  

	! � ���3  

	{ � ��4  

	y � ���45  

. 

. 

. 

	* � ��1�* $W-
* , 5 E 1 (136) 

Now these results by the ADM can be used to get the 

series expansion of ln	�1 � ���. The solution is then given by 

	 � ∑ 	*l*34  (137) 

� �5�2� � Ò ��1�*��*5
l

*3�  

⟹ 	��� � �5 Z 21 � ��[ 

which is the exact solution. 

MATLAB is used to plot the IADM and exact solutions in 

the figure 8. 

 
Figure 8. Comparison of the IADM and exact solutions for example 5.4. 
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The numerical illustrations of the problem considered are 

shown in table below. 

Table 4. Numerical results for example 5.4. 

x 
Approximate 

solution ¾¿ÀÁÂ 

Exact solution 

¼�½� 

Error /¼(½) −¾¿ÀÁÂ/ 

0 0.693147181 0.693147181 0 

0.1 0.683195177 0.683196850 1.67E-06 

0.2 0.653924627 0.653926467 1.84E-06 

0.3 0.606967226 0.606969484 2.26E-06 

0.4 0.544725404 0.544727175 1.77E-06 

0.5 0.470002399 0.470003629 1.23E-06 

0.6 0.385661666 0.385662481 8.15E-07 

0.7 0.294370545 0.294371061 5.16E-07 

0.8 0.198450643 0.198450939 2.96E-07 

0.9 0.099820206 0.099820335 1.29E-07 

1 0 0 0 

In the overlapping plots shown above, one can easily 

observe that the IADM and the exact solutions are nearly 

identical. Furthermore, numerical results are shown in table 4 

in which an absolute error ≤ 10��  is obtained. This shows 

that the IADM converges faster to the exact solution. Unlike 

that of the DTM, in this example it can easily be observed 

that it is not difficult to obtain exact solutions for nonlinear 

inhomogeneous BVPs using the standrad ADM. 

6. Summary, Conclusion and 

Recommendations 

6.1. Summary 

Convective triangular fins with invariant and power-law 

temperature-dependent thermal conductivities were studied 

by MADM. Through MATLAB and MATHEMATICA, 

reliable parametric solutions for both problems was offered 

by the help of the modification. A realistic model problem 

regarding a silicon fin of specific dimensions was carried out 

as a numerical illustration. The MADM solutions were 

compared with an exact analytical solution by Arpaci, S. 

Vedat for the constant '  (governed by linear BVP) and a 

numerical solution via FDM by Mokheimer Esmail, M. A for 

power-law temperature-dependent '  cases (governed by 

nonlinear BVP) [2], [17]. Moreover, it was observed that 

ADM and its modifications; MADM and IADM are 

comfortable to treat the problems. The approximate solutions 

obtained by MADM and IADM converge faster to the 

respective exact solutions. Some numerical approximations 

by IADM are compared with the results in some other 

methods like reproducing kernel space method by Cui, M. 

and Geng, F in which magnificent power of fast convergent 

behavior of IADM is observed [4].  

Further more, this research also considered second order 

STPBVPs both numerically and analytically using the 

standard and improved ADMs. The results were compared by 

plotting the graphs of the approximate and exact solutions on 

the same coordinate plane by using the symbolic softwares 

MATLAB and MATHEMATICA. Error analysis was 

performed to see how close the approximate solutions to the 

exact solutions are. 

6.2. Conclusion 

Temperature distribution with constant and variable 

thermal conductivity along triangular fin profile governed 

respectively by linear and nonlinear two-point BVPs can be 

treated directly using the improved ADMs. 

Thermal equations of linear and nonlinear BVPs can be 

treated directly through the standard ADM and its 

modifications effectively. 

Although the classical ADM is very powerful, it fails in 

treating some singular boundary value problems due to the 

existence of singular point at �	 = 	0. So this difficulty is 

alleviated by the modifications MADM and IADM; and 

shown by treating STPBVPs with Dirchlet and mixed 

boundary conditions holding singular feature both 

numerically and analytically.  

Though the methods are very convenient for software 

treatments, it is noted that the modified decomposition 

methods (especially IADM) encounters difficulties in 

obtaining each component for some complex nonlinear 

problems even if symbolic packages are used since each 

component is obtained by cumbersome definite integrals. 

6.3. Recommendations 

Based on the analysis of thermal equations via the 

improved Adomian decomposition methods the following 

basic recommendations are suggested: 

1) To study heat transfer from extended surfaces it is 

undisputable to study the temperature distribution along 

the fins length. So individuals who are interested to 

work on heat transfer in these areas can benefit from the 

results and the MATLAB codes presented. 

2) Two-point BVPs with single singular point were treated 

by the modifications. It would be worthwhile to expand 

application of the operators so that the method could be 

used to treat two-point BVPs with multiple 

singularities. 

3) The ADM is not only used in a straight forward manner 

but also requires less computational works in 

comparison to some other methods like HAM and 

MVIM. To the contrary, though the series can be rapidly 

convergent in a very small region, it has very slow 

convergence rate in wider regions and the truncated 

series solution is an inaccurate solution in that region 

which will seriously restrict the application area of the 

method. An investigation into this claim would greatly 

benefit the scientific community. 
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Appendix 

Appendix A. MATLAB Code to Get the Decomposition Terms of the Recurrence Relation (ÓÔÕ). 

clear all %clears previously declared symbols. 

clc %clears page. 

syms L m x xx s Thetha_b %syms declares the variables used to be symbolic. 

nth=input('How many decomposition terms do you want to include in your solution? '); 

%invites to insert the number of decomposition terms needed to be used in the decomposition. 

f=1; s=0; 

for n=1:nth 

s=s+f; 

disp(sprintf('%s%d', 'Thetha_', n-1,'='))%displays each component of the decomposition with %their respective values. 

disp(f*Thetha_b) 

f=int((1/xx)*int(m^2*f,x,0,xx),xx,L,x);% MADM operator in the form int(expr,var,a,b); it %computes definite integral. 

end 

solution=s*Thetha_b %finally this displays the sum of the results from the for loop. 

Appendix B. MATLAB Codes to Get the Decomposition Terms of the Recurrence Relation (ÓÓÖ). 

1. For À× 

% Function Ak, returning the k
th

 component of the Adomian polynomials corresponding to % the nonlinearity A. 

% Beginning 

function Ak =f(k) 

syms x s h 

sym('u0(x)');sym('u1(x)');sym('u2(x)');sym('u3(x)');sym('u4(x)');sym('u5(x)');sym('u6(x)');sym('u7(x)');sym('u8(x)');sym('u9(

x)');sym('u10(x)');sym('u11(x)');sym('u12(x)');sym('u13');sym('u14');sym('u15');sym('u16'); sym('u17');sym('u18'); sym('u19'); 

sym('u20'); 

s='u0(x)'+h*'u1(x)'+h^2*'u2(x)'+h^3*'u3(x)'+h^4*'u4(x)'+h^5*'u5(x)'+h^6*'u6(x)'+h^7*'u7(x)'+h^8*'u8(x)'+h^9*'u9(x)'+h^

10*'u10(x)'+h^11*'u11(x)'+h^12*'u12(X)'+h^13*'u13'+h^14*'u14'+h^15*'u15'+h^16*'u16'+h^17*'u17'+h^18*'u18'+h^19*'u19

'+h^20*'u20'; 

Ak=(1/factorial(k))*subs(diff(1/s*(diff(s,x))^2,h,k),h,0); 

% The End 

2. For ´# 

% Function Bk, returning the k
th

 component of the Adomian polynomials corresponding to % the nonlinearity B. 

% Beginning 

function Bk =f(k) 

syms x s h Z 

sym('u0(x)');sym('u1(x)');sym('u2(x)');sym('u3(x)');sym('u4(x)');sym('u5(x)');sym('u6(x)');sym('u7(x)');sym('u8(x)');sym('u9(

x)');sym('u10(x)');sym('u11(x)');sym('u12(x)');sym('u13');sym('u14');sym('u15');sym('u16'); sym('u17');sym('u18'); sym('u19'); 

sym('u20'); 

s='u0(x)'+h*'u1(x)'+h^2*'u2(x)'+h^3*'u3(x)'+h^4*'u4(x)'+h^5*'u5(x)'+h^6*'u6(x)'+h^7*'u7(x)'+h^8*'u8(x)'+h^9*'u9(x)'+h^

10*'u10(x)'+h^11*'u11(x)'+h^12*'u12(x)'+h^13*'u13'+h^14*'u14'+h^15*'u15'+h^16*'u16'+h^17*'u17'+h^18*'u18'+h^19*'u19'

+h^20*'u20'; 

Bk=(1/factorial(k))*subs(diff(s^(1-Z),h,k),h,0); 

% The End 

3. For ¶# 

% Function Ck, returning the kth component of the Adomian polynomials corresponding to the %nonlinearity C. 

% Beginning 

function Ck =f(k) 

syms x s h Z 

sym('u0(x)');sym('u1(x)');sym('u2(x)');sym('u3(x)');sym('u4(x)');sym('u5(x)');sym('u6(x)');sym('u7(x)');sym('u8(x)');sym('u9(

x)');sym('u10(x)');sym('u11(x)');sym('u12(x)');sym('u13');sym('u14');sym('u15');sym('u16'); sym('u17');sym('u18'); sym('u19'); 

sym('u20'); 

s='u0(x)'+h*'u1(x)'+h^2*'u2(x)'+h^3*'u3(x)'+h^4*'u4(x)'+h^5*'u5(x)'+h^6*'u6(x)'+h^7*'u7(x)'+h^8*'u8(x)'+h^9*'u9(x)'+h^

10*'u10(x)'+h^11*'u11(x)'+h^12*'u12(x)'+h^13*'u13'+h^14*'u14'+h^15*'u15'+h^16*'u16'+h^17*'u17'+h^18*'u18'+h^19*'u19'
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+h^20*'u20'; 

Ck=(1/factorial(k))*subs(diff(s^(-Z),h,k),h,0); 

% The End 

4. Code for the inverse operator 

% Function Linverse, returning inverse transformed function of its input. 

% Beginning 

function Linverse =f(y) 

syms L x xx; 

Linverse = int(1/xx*int(y*x,x,0,xx),xx,L,x); 

% The End 

5. The main code that determines the final solution. 

% The Core Code 

% Beginning 

clc 

clear all 

syms U x u0 T0 T1 T2 BETA h L k0 b Tinf Tb Z sumsol 

T0=Tb; 

T1=-BETA*Linverse(subs(Ak(0),{sym('u0(x)')},{T0}))+2*h*L/k0/b*Linverse(subs(Bk(0)/x, 

sym('u0(x)'),{T0}))-2*h*L*Tinf/k0/b*Linverse(subs(Ck(0)/x,sym('u0(x)'),{T0})); 

T2=-BETA*Linverse(subs(Ak(1),{sym('u0(x)'),sym('u1(x)')},{T0,T1}))+2*h*L/k0/b* 

Linverse(subs(Bk(1)/x,{sym('u0(x)'),sym('u1(x)')},{T0,T1}))-2*h*L*Tinf/k0/b*Linverse 

(subs(Ck(1)/x,{sym('u0(x)'),sym('u1(x)')},{T0,T1})); 

T3=-BETA*Linverse(subs(Ak(2),{sym('u0(x)'),sym('u1(x)'),sym('u2(x)')},{T0,T1,T2}))+ 

2*h*L/k0/b*Linverse(subs(Bk(2)/x,{sym('u0(x)'),sym('u1(x)'),sym('u2(x)')},{T0,T1,T2}))-

2*h*L*Tinf/k0/b*Linverse(subs(Ck(2)/x,{sym('u0(x)'),sym('u1(x)'),sym('u2(x)')},{T0,T1,T2})); 
T4=-BETA*Linverse(subs(Ak(3),{sym('u0(x)'),sym('u1(x)'),sym('u2(x)'),sym('u3(x)')}, 

{T0,T1,T2,T3}))+2*h*L/k0/b*Linverse(subs(Bk(3)/x,{sym('u0(x)'),sym('u1(x)'),sym('u2(x)'), 

sym('u3(x)')},{T0,T1,T2,T3}))-2*h*L*Tinf/k0/b*Linverse(subs(Ck(3)/x,{sym('u0(x)'),sym 

('u1(x)'),sym('u2(x)'),sym('u3(x)')},{T0,T1,T2,T3})); 

T5=-BETA*Linverse(subs(Ak(4),{sym('u0(x)'),sym('u1(x)'),sym('u2(x)'),sym('u3(x)'),sym 

('u4(x)')},{T0,T1,T2,T3,T4}))+2*h*L/k0/b*Linverse(subs(Bk(4)/x,{sym('u0(x)'),sym('u1(x)'),sym('u2(x)'),sym('u3(x)'),sym

('u4(x)')},{T0,T1,T2,T3,T4}))-2*h*L*Tinf/k0/b*Linverse(subs 

(Ck(4)/x,{sym('u0(x)'),sym('u1(x)'),sym('u2(x)'),sym('u3(x)'),sym('u4(x)')},{T0,T1,T2,T3,T4})); 
T6=-BETA*Linverse(subs(Ak(5),{sym('u0(x)'),sym('u1(x)'),sym('u2(x)'),sym('u3(x)'),sym 

('u4(x)'),sym('u5(x)')},{T0,T1,T2,T3,T4,T5}))+2*h*L/k0/b*Linverse(subs(Bk(5)/x,{sym('u0(x)'),sym('u1(x)'),sym('u2(x)'),s

ym('u3(x)'),sym('u4(x)'),sym('u5(x)')},{T0,T1,T2,T3,T4,T5}))-

2*h*L*Tinf/k0/b*Linverse(subs(Ck(5)/x,{sym('u0(x)'),sym('u1(x)'),sym('u2(x)'),sym('u3(x)'),sym('u4(x)'),sym('u5(x)')},{T0,T

1,T2,T3,T4,T5})); 

T7=-BETA*Linverse(subs(Ak(6),{sym('u0(x)'),sym('u1(x)'),sym('u2(x)'),sym('u3(x)'),sym 

('u4(x)'),sym('u5(x)'),sym('u6(x)')},{T0,T1,T2,T3,T4,T5,T6}))+2*h*L/k0/b*Linverse(subs(Bk(6)/x,{sym('u0(x)'),sym('u1(x)

'),sym('u2(x)'),sym('u3(x)'),sym('u4(x)'),sym('u5(x)'),sym('u6(x)')},{T0,T1,T2,T3,T4,T5,T6}))-

2*h*L*Tinf/k0/b*Linverse(subs(Ck(6)/x,{sym('u0(x)'),sym 

('u1(x)'),sym('u2(x)'),sym('u3(x)'),sym('u4(x)'),sym('u5(x)'),sym('u6(x)')},{T0,T1,T2,T3,T4,T5,T6})); 
L=0.05;Tinf=273+25;Tb=273+150;h=4;BETA=-1.3;Z=-1.3;k0=148*300^-BETA;b=0.005; 

disp('The solution by MADM is: '); 

sumsol=T0+T1+T2+T3+T4+T5+T6+T7 

% The End 

Appendix C. Decomposition of Adomian Polynomials Using MATHEMATICA  

The following is a MATHEMATICA program to get any number 5 of the Adomian polynomials of any type of nonlinearity 

developed based on the subscripts of the term 	. AdomianPolynomials�u_, F_, o_ :	= CoefficientList�ExpandAll�Series�&�Sum�1^'	�' , {', �}  , {1, 0, �}  , 1  AdomianPolynomials�	, &, 5 //ColumnForm 

Based on the code, the first six terms of the Adomian polynomials in Wolfram language are displayed in the following way: 

F[0] 
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u�1 &
�0  
u�2 &
�0 + 12	�1 �&

�0  

u�3 &
�0 + 	�1 	�2 &

�0 + 16	�1 !&


�0  
u�4 &
�0 + 12	�2 �&

�0 + 	�1 	�3 &

�0 + 12	�1 �	�2 &


�0 + 124	�1 {&({)�0  

u�5 &
�0 + 	�2 	�3 &

�0 + 	�1 	�4 &

�0 + 12	�1 	�2 �&


�0 + 12	�1 �	�3 &


�0  
+16	�1 !	�2 &({)�0 + 1120	�1 y&(y)�0  

These results displayed above by MATHEMATICA would generally mean respectively that 

)4 = �(	4) 

)� = 	��
(	4) 

)� = 	��
(	4) + 12 	���

(	4) 

)! = 	!�
(	4) + 	�	��

(	4) + 16	�!�


(	4) 

){ = 	{�
(	4) + 12	���

(	4) + 	�	!�

(	4) + 12	��	��


(	4) + 124 	�{�({)(	4) 

)y = 	y�
(	4) + 	�	!�

(	4) + 	�	{�

(	4) + 12	�	���


(	4) + 12 	��	!�


(	4) + 126	�!	��({)(	4) + 1120 	�y�(y)(	4) 
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