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Abstract: We formulated a five compartmental model of ND for both the ordinary and control models. We first determined 

the basic Reproduction number and the existence of Steady (Equilibrium) states (disease-free and endemic). Conditions for the 

local stability of the disease-free and endemic steady states were determined. Further, the Global stability of the disease-free 

equilibrium (DFE) and endemic equilibrium were proved using Lyponav method. We went further to carry out the sensitivity 

analysis or parametric dependence on R0 and later formulated the optimal control problem. We finally looked at numerical 

Results on poultry productivity in the presence of Infectious Newcastle Disease (ND) and we drew six graphs to demonstrate 

this. We observe that in absence of any control measure, the number of latently infected birds will increase rapidly from the 

initial population size of 80 to 160 birds within 1-3 days, whereas in the presence of control measures the population size will 

reduces to about 30 birds and goes to a stable state. This shows that the control measures are effective. The effect of the three 

control measures on the infectious classes can be seen. The number of non-productive infectious birds reduces to zero with 

control whereas the number of infectious productive reduces to about 8 birds and goes to its stable state when control is applied. 

This shows that the application of all three control measures tends to be more effective in the non- productive infectious bird 

population. It was also establish that the combination of efficient vaccination therapy and optimal efficacy of the vaccines are 

significantly more effective in the infectious productive birds’ population, since the combination reduces the population size of 

the birds to zero with 9–10 days. From the simulation also we see that optimal efficacy of the vaccine and effort to increase the 

number of recovered birds increases the number of latently infected birds population to about 129 at the early days of the 

infection whereas from another graph, the infectious productive birds reduces to 15 while the non -productive birds reduces to 

zero. The results from the simulation also show clearly, the effect of vaccination therapy on the latently infected birds. We 

observe that this programme will reduce the number of latently infected birds even if it not done more often. From the 

simulation, we further observe that this programme has effect on the infectious classes especially the non-productive infectious 

bird population, which reduces to zero after about 4 days. 

Keywords: Newcastle Disease (ND), Disease-free Equilibrium (DFE), Global Stability, Efficient Vaccination,  

Lyponav Method 

 

1. Introduction 

Newcastle disease (ND) is a contagious viral infection 

from a member of the family Paramyxoviridae in the genus 

Avulavirus which causes respiratory nervous disorder in 

several species of birds including chickens and turkeys. 

There are ten serotypes of avian paramyxo viruses designated 

APMV-I to APMV-10 and ND virus (NDV) has been 

designated APMV-1. NDV has also been categorized into 

five pathotypes based on clinical signs in infected chickens, 

designated: a) viscerotropic velogenic, b) neurotropic 

velogenic, c) mesogenic, d) lentogenic or respiratory and e) 

asymptomatic. 

ND has a proven ability to spread internationally and cause 

major outbreaks. It undoubtedly is a threat to the Pacific region 
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that quarantine authorities should be aware of. Potential 

methods of introducing the disease include infected day old 

chicks, frozen carcasses and contaminated feed or equipment. 

Wild and caged birds have played a major role in international 

spread on ND; [7]. Wild birds constitute a natural reservoir of 

low-virulence viruses, while poultry are the main reservoir of 

virulent strains. The most virulent form of ND virus causes up 

to 100 percent mortality in affected flocks, [8]. 

The most severe strain is the viscerotropic velogenic 

Newcastle disease. It is often called Exotic Newcastle 

Disease’ and infection of susceptible bird with this form 

usually causes high mortality. The milder form of the disease 

is the ‘mesogenic ND’. Humans may become infected; 

manifested by unilateral or bilateral reddening, excessive 

lachrymation, oedema of the eyelids, conjunctivitis and sub-

conjunctival haemorrhage. Velogenic NDV is endemic in 

areas of Mexico, Central and South America, widely spread 

in Asia, the Middle East and Africa, and in double-crested 

wild cormorants in the US and Canada. Lentogenic strains of 

NDV are worldwide in their distribution while widespread 

mesogenic pathotypes with a special adaptation to pigeons 

(that is, pigeon paramyxovirus) do not appear to infect other 

poultry readily, [3]. Other papers consulted in this work are: 

[1, 2, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 

22, 23, 24, 25, 26, 27, 28, 29 and 30]. 

2. Method 

2.1. Assumptions of the Model 

1. The productive birds becomes non–productive as a 

result of the disease. 

2. Birds are recruited by immigration or birth. 

3. Birds are recruited only to the non–productive 

susceptible class. 

4. Infected birds can be treated. 

5. Poultry birds that recover from one strain can become 

susceptible to anothstrain. 

6. Recovered birds move only to the non–productive 

susceptible class. 

2.2. Model Parameters for Newcastle Disease 

Table 1. Symbols and Parameter. 

Symbols/Parameters Interpretation 

N(t) Total bird population at time t 

SP Susceptible productive birds at time t 

Sn Susceptible non–productive birds at time 

Ip Infective productive birds at time t 

In Infective non–productive birds at time t 

R Recovered birds at time t 

ρ Recruitment rate of birds 

a Progression rate from non–productive susceptible to productive susceptible �� Contact rate for non–productive susceptible birds �� Contact rate for productive susceptible birds 

δ Recovery rate 

h Rate at which infective productive birds becomes non–productive 

γ Loss of immunity rate 

d Natural death rate of birds 

µ Disease–induced death rate for infected birds 

u(t) Efficiency of vaccine therapy in preventing new infection 

v(t) Efficiency of drug therapy in inhibiting the virus strain 

2.3. Model Flow Diagram 

 

Figure 1. Flow diagram for Newcastle Disease. 
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2.4. Mathematical Model for Newcastle Disease 

Following the flow diagram we obtain the following 

system of ordinary differential equations. 
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2.5. Control Measure 

Two control measures are employed which are; u(t) the 

efficiency of the vaccine therapy in preventing the infection, 

considering the need for a revaccination program to maintain 

adequate protection from the disease U(t) and V(t) the 

efficiency of drug in inhibiting the virus strain. There are 

different strains of the Newcastle disease in birds; some are 

more severe than the other such as the viscerotropic 

velogenic strain, characterized by high mortality rate 

amongst birds.  

The control model is given as: 
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3. Results 

3.1. Existence of Steady (Equilibrium) States 

The basic reproduction number R0 for the Newcastle 

disease model (1) is calculated using the Next Generation 

Operator method as described in (1). 

Where 
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Therefore the basic reproduction, R0, which is the 

dominant eigenvalue, is given by, 

R0 = 
 (���	
���	) (��
Ω�
��
��)� (�
�) (�
 Ω
�) (�
�
�) (�
�
�) 

This measures the average number of new infections 

generated by a single infectious birds in the poultry. 

The steady states are obtained by setting ����� =  ����� =  ���� = ����� = ����� = ���� = 0 

Thus, 
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3.2. Local Stability of the DFE for NDV Model 

The disease–free equilibrium of the NDV model is given by 

)* = (Sn
0
, Sp

0
, 0, 0, 0, 0)= (

	
+(�
� , 
� (	
+() (�
�)� , 0, 0, 0, 0) 

Theorem 3.1: The disease-free steady (equilibrium) state (DFE) for NDV model is locally asymptotically stable if R0<1. 

Proof: The Jacobian of the NDV model, is given by 
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At the DFE, the Jacobian is given by, 
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Considering the determinant 
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Evaluating the determinant gives, 

 (-d-,)(k1 - ,) (-d - - − ,) [- (k2- ,)(k3 - ,) (k4 - ,) + ��k1 + ��k1 + , (�� + ��)] = 0 

Where 
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From the above equation, three of the eigen values are ,2= -d < 0, ,3 = -k1< 0, ,4 = -d–-< 0 

The remaining eigenvalues can be resolved from 
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By Rourth–Horwith condition: The polynomial has 

negative real roots if a0>0, a1>0, a3>0 and a1a2>a0a3. From the 

equation; a0 = 1>0, a1 = (54 + 56 + 53)>0, a3 = 535456 (1 −�*)>0 if and only if �* < 1 and a1a2>a0a3 is satisfied. 

Hence we conclude that the DFE is locally asymptotically 

stable whenever R0<1. 

The epidemiological implication of the result is that the 

spread of Newcastle disease virus can be effectively 

controlled in the poultry when the basic reproduction number 

R0<1, provided the initial population contains a small influx 

of infectious birds. 

3.3. Local Stability of the EE for NDV Model 

In a pure endemic state, we have that Sn = Sp = R = 0. 

Hence, the endemic equilibrium becomes, 
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Theorem 3.2: The endemic steady (equilibrium) state of the NDV is locally asymptotically stable when R0>1 if 

nβ >
+ d−α −

p nI I+
 

Proof: The Jacobian at the endemic equilibrium gives 
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This means that if the contact rate for non–productive 

infectious birds ( nβ ) exceeds the quantity 
+ d−α −

p nI I+
, then the 

disease will be endemic. 

3.4. Global Stability of the DFE for NDV Model 

Here we establish the global asymptotic stability for DFE. 

We define the invariant region =>  = {(Sn, Sp, E, In, Ip, R) ∈ D: Sn≤ Sn
*
, Sp≤ Sp

*
} 

Theorem 3.3: The DFE steady (equilibrium) state of the 

NDV model is globally asymptotically stable whenever R0<1. 
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Clearly 00 1L if R≤ ≤ɺ Equality is achieved at Ip = In = 0, Hence by Lassalle’s invariance principle, every solution in the 

invariant set for which t ≥ 0 approaches the DFE that is, )* = (Sn
0
, Sp

0
, 0, 0, 0, 0). Hence, the DFE is globally asymptotically 

stable when R0<1. 

3.5. Global Stability of the EE for NDV Model 

The global asymptotic stability analysis of the endemic equilibrium for the NDV model is obtained for the special case with 1 = 0 and without exogenous re infection. To achieve this, we use the nonlinear Lyapunov function of Goh-Volterra type. The 

new model equation with1 = 0, γ  = 0 and hcNρ ρ+ = becomes 
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   +
  − + − − +

ωΕ

  +

ω

  

Ε

Ω Ω(

 

From (2), at steady states 

* * * *
1( )Sp n nn nk Sρ β= ++I I  

(/ + �) = �����∗ 
��∗  !�∗ 
�����∗ 
��∗  !�∗#∗ , 

/ =  (Ω + d)��∗�∗  
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and 

(0 + �)= 
Ω ��∗��∗  

Substituting ρ  at steady state, gives 

( )* * * * * * * * *
.
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p
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Substituting the values of ( )dΩ + ,/ and ( )dδ +  at steady states, we have, 

*2 * *2.
* * * * * * * * * *

* * *
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Collecting terms with *
ndS ,

*
pdS ,

* * * * * * * *, ,n n n n n p p p p p p nS I S I S I and S Iβ β β β  gives, 
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Finally since the arithmetic mean exceeds the geometric mean, that is, 
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⋯
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Using similar approach we can also show that 
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* * * **
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n p p n p n pn

n n p p n p n p

S S S I E I E I IS
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Furthermore, since all the model parameters are non–

negative, it follows that 
.

0L ≤ for R0>1 with 
.

0L = if and only 

if Sn= Sn
*
, Sp = Sp

*
, E = E

*
, Ip = Ip

*
, In = In

*
. Hence the largest 

invariant subset of the set where 
.

0L = is the singleton {(Sn, Sp, 

E, Ip, In, R) = (Sn
*
, Sp

*
, E

*
, Ip

*
, In

*
)}. By Lasalle's invariance 

principle, it follows that every solution in D approaches the 

endemic equilibrium)2 for R0>1 as t→ ∞. 

The epidemiological implication of the above result is that 

Newcastle disease will remain endemic in the poultry for R0>1, 

whether the initial population contains a sufficient number of 

infected birds or not. 

3.6. Sensitivity Analysis on R0 

To determine the parameters most responsible for the 

transmission and spread of Newcastle disease, a sensitivity 

analysis is carried out. The normalised forward sensitivity 

index of R0 that depends differentiably on a parameter p is 

defined by 

S��T= UV�TV� W U ��TW 

In particular, sensitivity indices of the basic reproduction 

number, R0, with respect to the model parameters are 

computed as follows: 

UV�TV��W U���TW= 
������
��� 

XV�TV��Y U���TW = 
������
��� 

UV�TV	 W U 	�TW= 1 

UV�TV� W U ��TW= 
��Z (�
�) (���
���) 

UV�TVΩ W U Ω�TW= 
Ω�� (��
Ω�
��
��) (�
Ω
�) UV�TV� W U ��TW= 
�
� (�
�
�) 
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UV�TV� W U ��TW = - 
$�Ω� (��
Ω�
��
��) (�
�
�) UV�TV� W U ��TW=- 

[F (��
Ω�
��
��) (�
Ω
�) (�
�
�) (�
�
�) UV�TV� W U ��TW = - 
[G (��
Ω�
��
��) (�
Ω
�) (�
�
�) (�
�
�) 

The sensitivity index of the basic reproduction number to 

the model parameters indicates that an increase (or decrease) in 

the following values; �� , ��, \ , C, Ω  and /  will lead to an 

increase (or decrease) in the basic reproduction number. On the 

other hand, an increase (or decrease) in the death rates (d, 1) 

and recovery rate (0) leads to a corresponding decrease (or 

increase) in the basic reproduction number of the disease. 

3.7. Formulation of the Optimal Control Problem for NDV 

Given the initial population size of all the five classes of 

model (2), our goal is to find the best control strategy that would 

minimize the number of birds that die as a result of the disease, 

thereby increasing the number of productive birds and at the 

same time minimizing the cost of the strategy. The control 

strategies v1 (t), v2 (t) and v3 (t) represents the efficiency of the 

vaccine therapy in preventing new infection, the efficiency of 

drug in inhibiting the virus strain and effort on infected birds to 

increase the number of recovered birds respectively. 

Thus we seek to minimize the objective functional 

J (u,v) = ]  (^� + _�� +  =�� +  `F3 a23 + b* `G3 a33 + `H3 a43) 

with B>0, C>0, D>0, A1>0, A2>0, A3>0. Here we want to 

minimize the number of infectious birds while keeping the cost 

of vaccination and treatment / drug low. The quadratic form 

represents giving too much of vaccine to the birds which often 

leads to waste. The terms CIn and DIp represent the cost of 

infection while the terms
`F3 a23, 

`G3 a33 , 
`H3 a43represents the cost 

of the vaccination and drugs at the time t. 

The goal is to find an optimal control a2*
, a3*

 and a4*
such 

that, c(a2∗, a3∗, a4∗)= minΩ c (a2, a3, a4) 

where Ω = { a2 (t), a3(�), a4 (�) | 0 ≤ a2 (�),a3 (�), a4 (�) ≤ 1 

are measureable} 

Applying the Pontryagin’s Maximum Principle, we have the 

following result 

Theorem 3.5 

There exists an optimal control a2∗, a3∗, a4∗  and the 

corresponding solution (��∗, ��∗, E
*
, ��∗ , ��∗, R

*
) of the system (2) 

that minimizes J (a2, a3, a4) over Ω. Furthermore there exist ad 

joint functions,g� , ,g�,,#,,�� , ,�� , ,� such that, 

�hi��B  =Uj(1 − a2) +  ����� + �� (1 − a3) − (K + �)W ,g� −  C,g� −  ,#����� + �� (1 − a3) 

�hi��B  = ������ +  �� (1 − a3) +  � ,g� −  ,#  (����� + �� (1 − a3)) 

�h"�B = -B + (/ + 1 + �),#-/,�� 

�hk��B  = - D +����(1 − a3),g� + ����(1 − a3),g� − ����(1 − a3),# − ����(1 − a3),#+ (Ω + 1 + �),�� 

�hk��B  = - C + ��(1 − a3),!�  + ����(1 − a3),g� − ����(1 − a3),#– ����(1 − a3)+ (a4 + d),�� − a4,� 

�hm�B  =-γ,g� + (γ + d),� 

With transversality conditions 

( ) 0, 1, 2,3, 4,5, 6
i

T iλ = =                     (3) 

The control triplet a2∗, a3∗ K�� a4∗satisfies the optimality 

condition 

*

1

1

min 1,max(0, )sn n
c S

v
A

λ 
=  

 
                       (4) 

( )( ) ( )

( )*
min 1,max(0,

2
2

S I I S I In n p n sn p p p nE

x spE
v

A

β λ λ β

λ λ

+ − + +

−
=

 
 
 
 
  
 

  (5) 

*

3

3

)
1,max(0, R In n

I
v Min

A

λ λ −
=  

 
            (6) 

Proof: 

The proof follows with the Hamiltonian H, given by 

H = BE + CIn + DIp + 
`F3 a23 + 

`G3 a33 + `H3 a43 + ∑ ,opo:oq2  

Where fi for i = 1, 2, 3,……, 5 are the right hand sides of the 

model (2). 

The optimal control a2∗ , a3∗  and a4∗ can be solved from 

optimality conditions 

VrVsF = 0, VrVsG = 0, 
VrVsH = 0                        (7) 

Where 

VrVsF = sn nc Sλ - A1a2 = 0 

VrVsG = ( )( ) ( )( )n n p n E sn p p p n E spS I I S I Iβ λ λ β λ λ+ − + + − - 

A2a3 = 0 
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VrVsH = ( )R In nIλ λ−  - A3a4 = 0  

Hence the optimal effort necessary to control the disease is 

1

*
1

A

Sc
v nsnλ=                                   (8) 

2

*
2

))(())((

A
v

spEnIpIpSpsnEnIpInSn λλβλλβ −++−+
=       (9) 

( )
*
3

3

I
sn nInv

A

λ λ−
=                              (10) 

4. Discussion 

We explore the model with the following control measures; 

efficacy of vaccine therapy in preventing new infection (v1), 

efficacy of vaccine in inhibiting the virus strain (v2) and the 

effort to increase the number of recovered birds (v3), to study 

the effects of control practices on transmission of Newcastle 

disease. This is done under the following scenarios to compare 

numerical results. 

Strategy A: Optimal implementation of vaccine therapy (v1 

≠ 0), efficacy of vaccines (v2 ≠ 0), and effort to increase the 

number of recovered birds (v3 ≠ 0). 

Strategy B: Optimal implementation of vaccine therapy (v1 

≠ 0) and efficacy of vaccines (v2 ≠ 0) without any effort to 

increase the number of recovered birds (v3 = 0) 

Strategy C: Optimal implementation of vaccine therapy (v1 

≠ 0) and optimal effort to increase the number of recovered 

birds (v3 ≠ 0) without efficacy of vaccines (v2 = 0) 

Strategy D: Optimal effort to increase the number of 

recovered birds (v3 ≠ 0) and efficacy of vaccines (v2 ≠ 0) 

without optimal implementation of vaccine therapy (v1 = 0). 

Strategy E: Optimal effort to increase the number of 

recovered birds (v3 ≠ 0), withv1=v2=0. 

Strategy F: Optimal efficacy of vaccines (v2 ≠ 0), with 

v1=v3=0. 

Strategy G: optimal implementation of vaccine therapy (v1 ≠ 

0), with v2 =v3 = 0 

The latently infected, infected productive and infective non-

productive birds with and without control are plotted using the 

parameters values as in Table 2 below. 

Numerical Solution of the ND 

Table 2. Parameter values for Newcastle disease 

Parameter Estimated References 

µ 0.6 Bornall et al (2015) 

β 0.1 Sharma et al (2015) 

d 0.5 Qin &Zheng (2016) 

p 100 Elizabeth (2016) 

τ 0.033 Elizabeth (2016) 

ν 0.026 Elizabeth (2016) 

δ 0.026 Elizabeth (2016) 

Parameter Estimated References 

Ω 0.033 Hugo et al (2016) 

Ω 0.182 Hugo et al (2016) 

α 0.01 Hugo et al (2016) 

γ 0.16 Hugo et al (2016) 

d 0.2 Hugo et al (2016) 

nβ  0.03 Hugo et al (2016) 

pβ  0.003 Hugo et al (2016) 

 

Figure 2. A plot representing the population of latently infected birds with and 

without control. 

In Figure 2, we observe that in absence of any control 

measure, the number of latently infected birds will increase 

rapidly from the initial population size of 80 to 160 birds within 

1-3 days, whereas in the presence of control measures the 

population size will reduces to about 30 birds and goes to a 

stable state. This shows that the control measures are effective. 

 

Figure 3. A plot representing the population of infectious birds with and 

without control. 

The effect of the three control measures on the infectious 

classes can be seen in Figure 3. The number of non-productive 

infectious birds reduces to zero with control whereas the 

number of infectious productive reduces to about 8 birds and 

goes to its stable state when control is applied. This shows that 

the application of all three control measures tends to be more 

effective in the non- productive infectious bird population. 
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Figure 4. A plot representing the population of latently infected birds with 

optimal vaccination therapy (v1) and efficacy of vaccines (v2) without optimal 

effort to increase the number of recovered birds (v3). 

 

Figure 5. A plot representing the infectious bird population with optimal 

vaccination therapy (v1) and efficacy of vaccines (v2) without optimal effort to 

increase the number of recovered birds (v3). 

From Figures 4 and Figure 5, the combination of efficient 

vaccination therapy and optimal efficacy of the vaccines are 

significantly more effective in the infectious productive birds 

population, since the combination reduces the population size 

of the birds to zero with 9–10 days. 

 

Figure 6. A plot representing the latently infected bird population with optimal 

vaccination therapy (v1) and optimal effort to increase the number of recovered 

birds (v3) without optimal efficacy of vaccines (v2). 

 

Figure 7. A plot representing the infectious bird population with optimal 

vaccination therapy (v1) and optimal effort to increase the number of recovered 

birds (v3) without optimal efficacy of vaccines (v2). 

It is observed from Figure 6 that with this combination does 

not much effect on the latently infected birds at the early days 

of the outbreak, since the population size increases to about 

130 before it starts reducing to its stable state. 

From Figure 7, the infectious non -productive bird reduces 

to zero whereas the productive infectious bird population 

reduces to 9 birds on the 9
th

 day of the disease outbreak. 

From Figure 8 we see that optimal efficacy of the vaccine 

and effort to increase the number of recovered birds increases 

the number of latently infected birds population to about 129 at 

the early days of the infection whereas from Figure 9, the 

infectious productive birds reduces to 15 while the non -

productive birds reduces to zero. 

The results from Figure 10 show clearly, the effect of 

vaccination therapy on the latently infected birds. We observe 

that this programme will reduce the number of latently infected 

birds even if it not done more often. From Figure 11, we 

observe that this programme has effect on the infectious 

classes especially the non-productive infectious bird 

population, which reduces to zero after about 4 days. 

 

Figure 8. A plot representing the latently infected bird population with optimal 

efficacy of vaccines and optimal effort to increase the number of recovered 

birds (v3). without optimal vaccination therapy. 
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Figure 9. A plot representing the infected bird population with optimal efficacy 

of vaccines and optimal effort to increase the number of recovered birds (v3). 

without optimal vaccination therapy. 

 

Figure 10. A plot showing the effect of only optimal vaccination therapy on 

latently infected bird population. 

 

Figure 11. A plot showing the effect of only optimal vaccination therapy on the 

infectious bird population. 

 

Figure 12. A plot showing the effect of vaccine efficacy on latently infected 

bird population. 

 

Figure 13. A plot showing the effect of vaccine efficacy on the infectious bird 

population. 

The graph on Figure 12 shows that if the efficacy of the 

vaccine increases to about 60%, the number of latently infected 

birds will fall below the number without control. From Figure 

13, the efficacy of the vaccine has more impact on the infectious 

non -productive bird than the infectious productive bird. 

 

Figure 14. A graph showing the effect control v3 on the latently bird 

population. 
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Figure 15. A graph showing the effect control v3 on the infectious bird 

population. 

It is evident from Figure 15 that as the number of infectious 

productive birds reduces as a result of disease induced death, it 

drops to below 20 and then stabilises. The number of non-

productive birds will drop to zero. 

In this thesis, we considered the theoretical analysis of 

compartmental Newcastle disease (ND). The study is briefly 

summarised below; 

Firstly, stability analysis was carried out using the Lyaponuv 

function theory and Lasslle’s invariance principle for each of 

these disease models. Subsequently optimal control problems 

were formulated for the control models and was analysed using 

the pontryagin’s maximum principle. Sensitivity analysis was 

also carried out to find out how important each model 

parameters are to the disease transmissions. This was done 

using the normalized forward- sensitivity index. 

Finally, the results of the study were presented using 

numerical simulations for the disease models, for which each 

intervention strategies were discussed and results established. 

5. Conclusion 

The Newcastle disease model is divided into six 

compartments were we considered the productive and non -

productive bird populations. The DFE and EE is locally 

asymptotically stable if R0<1 and � > +$�$���
��  respectively and 

is established to be globally asymptotically stable if R0<1 for 

DFE and R0>1 for EE. The control strategies includes the 

control variable based on the efficiency of vaccine therapy (v1), 

the efficacy of the vaccine (v2) and effort to increase the 

number of recovered birds. We observed from the numerical 

results, that the control strategies did not have much impact on 

the infectious non -productive birds but had high impact on the 

latently infected and infectious productive birds. The 

combination of effective revaccination program and optimal 

efficacy of the vaccines was found to reduce the number of 

infectious productive birds, hence will increase the level of 

bird productivity. 

The work was motivated by the possibility that 

mathematical modelling could improve the understanding of 

the dynamics of this disease, particularly the impact of 

infection on poultry productivity. Based on the analysis of this 

study, we can conclude that poultry productivity can still be 

achieved even in the presence of perverse disease outbreak, if 

appropriate control measures are applied. Hence we 

recommend that control programs that follow the strategies 

stated for each of the diseases in this study, can be used 

effectively to prevent and reduce the spread of these diseases, 

in order to enjoy high poultry productivity in our poultry 

industries. 
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