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Abstract: In this manuscript the implicit Runge-Kutta (IRK) method, with three slopes of order five has been explained, 

and is applied to Van der pol stiff differential equation. Truncation error, of order five, has been estimated.  Stability of the 

procedure for the Van der pol equation, is analyzed by the Lyapunov method. To illustrate the structure of the method, an 

Algorithm is presented to solve this stiff problem. Results confirm the validity and the ability of this approach. 
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1. Introduction 

An Implicit Runge-Kutta method for solving differential 

equation ( , )y f t y′ =  with ν slopes is defined by the 

following equation: 
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And
1 2, 1 , , , , . . . ,i ja i j w w w νν≤ ≤ are 

parameters that will be determined. The function
jK is 

defined by a set of ν  implicit equation.( see [1] and [6] ) 

In electronic, the Van der Pol oscillator is a non-

conservative oscillator with non-linear damping. This 

problem was originally introduced by Van der pol (1926) in 

the study of electronic circuit by the following second order 

stiff differential equation 

2'' ( 1) ' 0.u u u uε+ − + =  

Where u is a function of the time ,t  and ε  is a positive 

scalar parameter indicating the nonlinearity and the 

strength of the damping. (see [4] p-121 & [1] p-16) 

2. The Implicit Runge-Kutta Method 

In this implicit method let's 3ν = , then we have the 

following equation 
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        (1) 

Where 
1 2 3, , , , 1, 2, 3i i i ia a a w i = are twelve arbitrary parameters, which should be determined. The Taylor series 

gives 

2 3 4

1

1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ...

2 6 24
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Where 
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Based on expansion of two-variable function, the equation iK in (1)  changes to: 

                       (3) 

 

These equations are implicit and we cannot easily obtain the explicit expression for
1 2
, ,K K

 
and

3
K . In order to 

determine
1 2, ,K K and

3K explicitly, we assume the following form 

                                       (4) 

Where , , ,i i i iA B E D , and iF are unknown to be determined. 

Substituting for
1 2, ,K K and 

3K from ( 4 ) into (3) , and on equating the terms with identical powers of h  in Taylors 

series, we obtain the following results: 
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Numerical method in equation (1) with the help of (4) may be written as 

2
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Where , , ,i i i iA B E D , and iF  are given by.(5) 

By equating the coefficients of the terms with the 

identical powers of h  in (6) and (2) , the following 

equations are obtained. which are the same as the system of 

equations Butcher introduced in ( [1] & [6]) 
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iw , 1, 2,3i = can be determined from (7 7 )a d− , and 

from (7 7 )e i− and three more the following equations 

1 2 3 , 1,2,3i i i ic a a a i= + + = , , , 1, 2,3
i j

a i j =  will be calculated.
 

Butcher (1964) introduced RK method based on the 

Radau and Lobatto quadrature formulas. In this procedure 

the coefficients ic are taken the Radau's roots of the 

Legendre polynomial of degree three: 

( )( )
2

32

1 2 32

4 6 4 6
1 0 , , 1 .

10 10

d
x x c c c

dx

− +− = ⇒ = = =  

The solution of the system (7) , after substitution of the 

values of ic  results in the following coefficient of Radau 

formula of order five: 
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3 6
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, 3 6
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1

1 3 6 3 6 9
9
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 −    − − − +−            +    + + − −+  = = =              − +             

 

Substitutions of these values in (1), leads to: 
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                     (8) 

 

3. Numerical Example 

To illustrate the method, let's apply IRK on the following 

stiff problem, which is known as Van der pol equation: 

2y'' (y 1) y' 0, (0) 2, '(0) 0.y y yε+ − + = = =  

In the first step by considering the new dependent 

variables, Van der pol equation is written, equivalently, as 

the following system of two first order differential equation: 

3

' ( , ) ( ), u(0) 2
3

2
' ( , ) , (0)

3

u
u f u v v u

v g u v u v

ε

ε


= = − − =


 = = − =


         (9) 

For applying iterative formula ( )8 , to the system ( )9 the 

parameters ,ui viK K  should be computed from the 

IRK_NEWTON ALG( ɛ, step size h, 0u , 0v ) 

 

 following formulas: 
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
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∑ ∑
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Where , 1, 2,3i j = . Then 

1 1 2 3

1 1 2 3
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3 6 3 6 9

1 6 6 1 6 6 1

3 6 3 6 9

n n u u u

n n v v v

u u K K K

v v K K K

+

+

 − += + + +



− + = + + +

  (10) 

Pseudo code Algorithm: Let's explain the above method 

with following Pseudo code of Newton iterative procedure 

for solving example ( )9 :( take , 1, 2,3i j = ) 

 
 

The results of applying this algorithm to the Van der pol 



10  Jafar Biazar and Meysam Navidyan:  Implicit Runge-Kutta Method for Van Der Pol Problem 

 

equation, are plotted for 10, 0.1hε = = , in the following 

Fig1.  

 

Fig. 1. The solution of Vsn der pol equation 

4. Truncation Error Analysis 

Definition:[6]  truncation error is the quantity T which 

must be added to the computed quantity in order that the 

result be exactly equal to the quantity that we are looking 

for. This means:  

( ) ( ) true computed quantity y exact soluy tion+ =T  

Then the exact value of ( )y t will satisfy  

1( ) ( ) ( , ( ), )n n n n ny t y t h t y t h Tϕ+ = + +  

Where ( , ( ), )n nt y t hϕ
 
is a function of the argument 

,t y , and h , and is called the increment function, and 

nT is the local truncation error. Let's taken 6( )y t t=  as 

computed quantity of (8 ) we get: 

5
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( ) 6 ( ) 6 ( )
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1 1
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n n n

n n n n n

n n n

f t y t

y t y t K K K T

t t h t h t h h t h

h t h T T h

+

+

=

− += + + + +

− − + += + = + + + +

+ + + ⇒ = −

 

The traditional value of the truncation error is usually 

considered as: 6 ( 6 )

6 ( ) .nT C h y ζ=  comparing with the 

above value  of truncation error results in 
6

1

7 20 00
C = − . 

So the truncation error is of 
6( )O h , i.e. the method 

(8) is of order five. (see [6] and [1]) 

5. Stability Analysis of the Van Der Pol 

System 

Definition 1. Stability and asymptotic stability: The 

solution of a system of equation say ( )X F X′ = , is stable, if 

for all 0t t≥ we get: [9] 

0 00 0 ( (t ) (t ) ( ) ( ) )x x x t x tεε δ δ ε∀ > ∃ > − < ⇒ − <  

and the solution is asymptotic stable, if it is stable and also 

0 0 0 00 ( (t ) (t ) (t) ( ) 0)x x x x tδ δ∃ > − < ⇒ − → , as 

t →∞  

Definition 2. Invariant set: A set such as nM R⊂  is 

invariant set of system of equation ( )X F X′ = , if from any 

0X M∈  conclude that 
0( , ) ,X t X M∈  for all t R∈ [9]. 

Theorem l. If the scalar positive definite function ( ),V X
 

called Lyapunov function, defined on the set 

{ }:n

pS X R X P= ∈ < , and ( ) 0V X′ ≤  
then the 

zero solution of ( )X F X′ = is stable [9]. 

Theorem 2. Let's the positive definite function 

( )V X exists as such ( ) 0V X′ ≤ on the open set Ω , 

in ( )X F X′ = , F is a function : nF RΩ →  , M includes 

all invariant subsets of E cλ⊂ , where 

{ }: 0nE X R V ′= ∈ = and { }: ( ) .nc X R V Xλ λ= ∈ ≤  

Then any solution 
0

( , )X t X Cλ∈
 
of ( )X F X′ = , converges 

into the M [11]. 

Corollary. Let's the assumptions of the  theorem 2 hold. 

If zero is only invariant point of E , then the zero solution 

of ( )X F X′ =  is asymptotically stable [11]. 

Stability of the system of equation (9) is proved in the 

following: 

Let's 2 21
( , ) ( )

2
V u v u v= + , which is positive definite on 

2R  and 
2

2
( , ) ( 1)

3

u
V u v uε′ = − − , then on the strip 

{ }2
( , ) : 3 3,u v R u vΩ= ∈ − < < −∞< < ∞ , we have 

( ) 0V X′ ≤ . It is obvious that for { }( , ) : 0E u v u= ∈Ω = , 

system ( )9 is converted into the following system: 
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'

' 0

u v

v

=
 =

 

Regarding the last corollary the set including zero is the 

only invariant subset of .E And ( )0,0 is the asymptotic 

stable point of (9) . To determine the asymptotic stability 

area, Let's consider the set of curves ( , ) ,V u v λ= where 

0, ( , ) .u vλ ≥ ∈Ω  
This set is obviously closed and the 

curves are symmetric with respect to the .u axis−  The 

function 
2

2

u is decreasing on the interval ( 3 , 0 ]−  and 

increases on the 0 3.u< <  For the constant ,λ the 

curve ( , )V u v λ=  cuts the borders at one of the points 

( 3, 0) ( 3, 0)or− . So the best value for the parameter λ is 

equal to 2 2( 3 ) ( 3 ) 3
( , )

2 2 2
m inλ −= = , and asymptotic 

stability area consists of the pointes in the closed circle 

{ }2 2( , ) : 3C u v u vλ = ∈Ω + ≤ . Then any limit cycle of the 

Van der pol equation is out of the circle 2 2 3u v+ = (see [1] 

p-16). 

6. Conclusions 

Since there are three different topics studied, conclusion 

is also divided in different parts; 

A-From truncation error section, we conclude that order 

of this implicit method is five, and this means that this 

numerical method is precise for polynomials of degree less 

than six. 

B- The disadvantage of the Runge-Kutta methods is that 

they involve considerably more computations, but have the 

advantage of self starting.  

C- Method ( )10  with 0.1h =  can only used until 

33ε = , and for 33ε > , the order of the method should  

increased or related step size decreased. 

D- From stability analysis section, we conclude that the 

method applied to the Van der pol equation is stable, And 

this means the formula of the numerical method is 

insensitive to small change in the local errors. 
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