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Abstract: Support vector machine is a powerful machine learning method in data classification. Using it for applied researches 

is easy but comprehending it for further development requires a lot of efforts. This report is a tutorial on support vector machine 

with full of mathematical proofs and example, which help researchers to understand it by the fastest way from theory to practice. 

The report focuses on theory of optimization which is the base of support vector machine. 
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1. Support Vector Machine 

 

Figure 1. Separating hyperplanes. 

Support vector machine (SVM) [1] is a supervised learning 

algorithm for classification and regression. Given a set of 

p-dimensional vectors in vector space, SVM finds the 

separating hyperplane that splits vector space into sub-set of 

vectors; each separated sub-set (so-called data set) is assigned 

by one class. There is the condition for this separating 

hyperplane: “it must maximize the margin between two 

sub-sets”. Fig. 1 [2] shows separating hyperplanes H1, H2, and 

H3 in which only H2 gets maximum margin according to this 

condition. 

Suppose we have some p-dimensional vectors; each of them 

belongs to one of two classes. We can find many p–1 

dimensional hyperplanes that classify such vectors but there is 

only one hyperplane that maximizes the margin between two 

classes. In other words, the nearest between one side of this 

hyperplane and other side of this hyperplane is maximized. 

Such hyperplane is called maximum-margin hyperplane and it 

is considered as the SVM classifier. 

Let {X1, X2,…, Xn} be the training set of n vectors Xi (s) and 

let yi = {+1, –1} be the class label of vector Xi. Each Xi is also 

called a data point with attention that vectors can be identified 

with data points and data point can be called point, in brief. It 

is necessary to determine the maximum-margin hyperplane 

that separates data points belonging to yi=+1 from data points 

belonging to yi=–1 as clear as possible. 

According to theory of geometry, arbitrary hyperplane is 

represented as a set of points satisfying hyperplane equation 

specified by (1). � � �� � � � 0               (1) 

Where the sign “�” denotes the dot product or scalar product 

and W is weight vector perpendicular to hyperplane and b is 

the bias. Vector W is also called perpendicular vector or 

normal vector and it is used to specify hyperplane. Suppose 

W=(w1, w2,…, wp) and Xi=(xi1, xi2,…, xip), the scalar product 
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� � �� is: 

� � �� � �� � � � 	
��
 � 	
��
 � � � 	���� � � 	����
�

��
  

Given scalar value w, the multiplication of w and vector Xi 

denoted wXi is a vector as follows: 	�� � �	��
, 	��
, … , 	���� 

Please distinguish scalar product � � ��  and 

multiplication wXi. 

The essence of SVM method is to find out weight vector W 

and bias b so that the hyperplane equation specified by (1) 

expresses the maximum-margin hyperplane that maximizes 

the margin between two classes of training set. 

The value b/|W| is the offset of the (maximum-margin) 

hyperplane from the origin along the weight vector W where 

|W| or ||W|| denotes length or module of vector W. 

|�| � ��� � √� � � � �	

 � 	

 � � � 	�


� �� 	�

�

��
  

Note that we use two notations |.| and ||.|| for denoting the 

length of vector. 

 

Figure 2. Maximum-margin hyperplane, parallel hyperplanes and weight 

vector W. 

Additionally, the value 2/|W| is the width of the margin as 

seen in fig. 2. To determine the margin, two parallel 

hyperplanes are constructed, one on each side of the 

maximum-margin hyperplane. Such two parallel hyperplanes 

are represented by two hyperplane equations, as shown in (2) 

as follows. � � �� � � � 1� � �� � � � �1�             (2) 

Fig. 2 [2] illustrates maximum-margin hyperplane, weight 

vector W and two parallel hyperplanes. As seen in the fig. 2, 

the margin is limited by such two parallel hyperplanes. 

Exactly, there are two margins (each one for a parallel 

hyperplane) but it is convenient for referring both margins as 

the unified single margin as usual. You can imagine such 

margin as a road and SVM method aims to maximize the 

width of such road. Data points lying on (or are very near to) 

two parallel hyperplanes are called support vectors because 

they construct mainly the maximum-margin hyperplane in the 

middle. This is the reason that the classification method is 

called support vector machine (SVM). 

To prevent vectors from falling into the margin, all vectors 

belonging to two classes yi=1 and yi=–1 have two following 

constraints, respectively: 

 � � �� � � ! 1 #for ��  belonging to class 1� � �12� � �� � � 3 �1 #for ��  belonging to class 1� � �12 

As seen in fig. 2, vectors (data points) belonging to classes 

yi=+1 and yi=–1 are depicted as black circles and white circles, 

respectively. Such two constraints are unified into the 

so-called classification constraint specified by (3) as follows: 1�#� � �� � �2 ! 1 4 1 � 1�#� � �� � �2 3 0   (3) 

As known, yi=+1 and yi=–1 represent two classes of data 

points. It is easy to infer that maximum-margin hyperplane 

which is the result of SVM method is the classifier that aims to 

determined which class (+1 or –1) a given data point X 

belongs to. Your attention please, each data point Xi in training 

set was assigned by a class yi before and maximum-margin 

hyperplane constructed from the training set is used to classify 

any different data point X. 

Because maximum-margin hyperplane is defined by weight 

vector W, it is easy to recognize that the essence of 

constructing maximum-margin hyperplane is to solve the 

constrained optimization problem as follows: 

minimize7,8 12 |�|
  subject to 1�#� � �� � �2 ! 1, <� � 1, =>>>>> 

Where |W| is the length of weight vector W and 1�#� ��� � �2 ! 1 is the classification constraint specified by (3). 

The reason of minimizing 


 |�|
  is that distance between 

two parallel hyperplanes is 2/|W| and we need to maximize 

such distance in order to maximize the margin for 

maximum-margin hyperplane. Then maximizing 2/|W| is to 

minimize 


 |�|. Because it is complex to compute the length 

|W|, we substitute 


 |�|
  for 



 |�| when |�|
  is equal to 

the scalar product � � � as follows: 
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|�|
 � ���
 � � � � � 	

 � 	

 � � � 	�
 

The constrained optimization problem is re-written, shown 

in (4) as below: 

minimize�,� ?#�2 = minimize�,� 12 |�|2@ubject to:B�#�, �2 = 1 − 1�#� ∘ �� − �2 ≤ 0, ∀� = 1, =>>>>>C    (4) 

Where ?#�2 = 

 |�|
 is called target function with regard 

to variable W. Function B�#�, �2 = 1 − 1�#� ∘ �� − �2  is 

called constraint function with regard to two variables W, b 

and it is derived from the classification constraint specified by 

(3). There are n constraints B�#�, �2 ≤ 0 because training set 

{X1, X2,…, Xn} has n data points Xi (s). Constraints B�#�, �2 ≤ 0 inside (3) implicate the perfect separation in 

which there is no data point falling into the margin (between 

two parallel hyperplanes, see fig. 2). On the other hand, the 

imperfect separation allows some data points to fall into the 

margin, which means that each constraint function gi(W,b) is 

subtracted by an error D� ≥ 0. The constraints become [3, p. 

5]: B�#�, �2 = 1 − 1�#� ∘ �� − �2 − D� ≤ 0, ∀� = 1, =>>>>> 

We have a n-component error vector ξ=(ξ1, ξ2,…, ξn) for n 

constraints. The penalty E ≥ 0 is added to the target function 

in order to penalize data points falling into the margin. The 

penalty C is a pre-defined constant. Thus, the target function 

f(W) becomes: 

?#�2 = 12 |�|
 + E � D�
�

��
  

If the positive penalty is infinity, E = +∞  then, target 

function f(W) may get maximal when all errors ξi must be 0, 

which leads to the perfect separation specified by (4). 

Equation (5) specifies the general form of constrained 

optimization originated from (4). 

minimize 

 |�|
 + E ∑ D����
7,8,Hsubject to:1 − 1�#� ∘ �� − �2 − D� ≤ 0, ∀� = 1, =>>>>> − D� ≤ 0, ∀� = 1, =>>>>>IJ
K

 (5) 

Where C ≥ 0 is the penalty. 

The Lagrangian function [4, p. 215] is constructed from 

constrained optimization problem specified by (5). Let L(W, b, 

ξ, λ, µ) be Lagrangian function where λ=(λ1, λ2,…, λn) and 

µ=(µ1, µ2,…, µn) are n-component vectors, λi ≥ 0 and µi ≥ 0, ∀� = 1, =>>>>>. We have: 

L#�, �, D, M, N2 = ?#�2 + � M�B�#�, �2�
��
 − N�D� = 12 |�|
 + E � D�

�
��
 + � M�#1 − 1�#� ∘ �� − �2 − D�2�

��
 − � N�D�
�

��

= 12 |�|
 + E � D�

�
��
 + � M�

�
��
 − � M�1�#� ∘ ��2�

��
 + � �M�1�
�

��
 − � M�D�
�

��
 − � N�D�
�

��

= 12 |�|
 − � ∘ O� M�1���

�
��
 P + � M�

�
��
 + � � M�1�

�
��
 + �#E − M� − N�2D�

�
��
  

In general, (6) represents Lagrangian function as follows: 

QL#�, �, D, M, N2 = 

 |�|
 − � ∘ #∑ M�1������
 2 + ∑ M����
 + � ∑ M�1� + ∑ #E + M� − N�2D����
���
�here D� ≥ 0, M� ≥ 0, N� ≥ 0, ∀� = 1, =>>>>>            (6) 

Note that λ=(λ1, λ2,…, λn) and µ=(µ1, µ2,…, µn) are called 

Lagrange multipliers or Karush-Kuhn-Tucker multipliers [5] 

or dual variables. The sign “∘” denotes scalar product and 

every training data point Xi was assigned by a class yi before. 

Suppose (W
*
, b

*
) is solution of constrained optimization 

problem specified by (5) then, the pair (W
*
, b

*
) is minimum 

point of target function f(W) or target function f(W) gets 

minimum at (W
*
, b

*
) with all constraints B�#�, �2 = 1 −1�#� ∘ �� − �2 + D� ≤ 0, ∀� = 1, =>>>>> . Note that W

*
 is called 

optimal weight vector and b
*
 is called optimal bias. It is easy 

to infer that the pair (W
*
, b

*
) represents the maximum-margin 

hyperplane and it is possible to identify (W
*
, b

*
) with the 

maximum-margin hyperplane. The ultimate goal of SVM 

method is to find out W
*
 and b

*
. According to Lagrangian 

duality theorem [4, p. 216] [6, p. 8], the pair (W
*
, b

*
) is the 

extreme point of Lagrangian function as follows: #�∗, �∗2 = argmin�,� L#�, �, D, M, N2M∗ = argmaxM≥0�min�,� L#�, �, M, N2�U      (7) 

Where Lagrangian function L(W, b, ξ, λ, µ) is specified by 

(6). 

Now it is necessary to solve the Lagrangian duality problem 

represented by (7) to find out W
*
. Thus, the Lagrangian 

function L(W, b, ξ, λ, µ) is minimized with respect to the 

primal variables W, b and maximized with respect to the dual 
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variables λ=(λ1, λ2,…, λn) and µ=(µ1, µ2,…, µn), in turn. If 

gradient of L(W, b, ξ, λ, µ) is equal to zero then, L(W, b, ξ, λ, µ) 

will gets minimum value with note that gradient of a 

multi-variable function is the vector whose components are 

first-order partial derivative of such function. Thus, setting the 

gradient of L(W, b, ξ, λ, µ) with respect to W, b, and ξ to zero, 

we have: 

VWW
XW
WYZL#�, �, D, M, N2Z� = 0ZL#�, �, D, M, N2Z� = 0ZL#�, �, D, M, N2ZD� = 0, ∀� = 1, =>>>>>

⟺
VWW
X
WWY� − � M�1���

�
��
 = 0

� M�1�
�

��
 = 0
E − M� − N� = 0, ∀� = 1, =>>>>>

⟹
VWW
X
WWY� = � M�1���

�
��


� M�1�
�

��
 = 0
M� = E − N� , ∀� = 1, =>>>>>

 

In general, W
*
 is determined by (8) as follows: 

\�∗ = ∑ M�1������
∑ M�1����
 = 0M� = E − N�, M� ≥ 0, N� ≥ 0, ∀� = 1, =>>>>>                                (8) 

It is required to determine Lagrange multipliers λ=(λ1, λ2,…, λn) in order to evaluate W
*
. Substituting (8) into Lagrangian 

function L(W, b, ξ, λ, µ) specified by (6), we have: 

]#M2 = min7,8 L#�, �, D, M, N2 = min7,8 O12 |�|
 − � ∘ O� M�1���
�

��
 P + � M�
�

��
 + � � M�1�
�

��
 + �#E + M� − N�2D�
�

��
 P
= 12 O� M�1���

�
��
 P
 − O� M�1���

�
��
 P ∘ O� M�1���

�
��
 P + � M�

�
��
  

(According to (8), L(W,b,ξ,λ,µ) gets minimum at � = ∑ M�1������
  and ∑ M�1����
 = 0 and M� = E − N�) 
= 12 O� M�1���

�
��
 P ∘ O� M�1���

�
��
 P − O� M�1���

�
��
 P ∘ O� M�1���

�
��
 P + � M�

�
��
 = − 12 O� M�1���

�
��
 P ∘ O� M�1���

�
��
 P + � M�

�
��
= − 12 � � M�M�1�1���� ∘ ����

��

�

��
 + � M�
�

��
  

Where l(λ) is called dual function represented by (9). 

]#M2 = min7,8 L#�, �, D, M, N2 = − 

 ∑ ∑ M�M�1�1���� ∘ ������
���
 + ∑ M����
               (9) 

According to Lagrangian duality problem represented by 

(7), λ=(λ1, λ2,…, λn) is calculated as the maximum point 

λ
*
=(λ1

*
, λ2

*
,…, λn

*
) of dual function l(λ). In conclusion, 

maximizing l(λ) is the main task of SVM method because the 

optimal weight vector W
*
 is calculated based on the optimal 

point λ
*
 of dual function l(λ) according to (8). 

�∗ = � M�1���
�

��
 = � M�∗1���
�

��
  

Maximizing l(λ) is quadratic programming (QP) problem, 

specified by (10). 

maximize^ − 

 ∑ ∑ M�M�1�1���� ∘ ������
���
 + ∑ M����
subject to:∑ M�1����
 = 00 ≤ M� ≤ E, ∀� = 1, =>>>>> IWJ
WK

 (10) 

The constraints 0 ≤ M� ≤ E, ∀� = 1, =>>>>>  are implied from 

the equations M� = E − N�, ∀� = 1, =>>>>> when N� ≥ 0, ∀� = 1, =>>>>>. 

The QP problem specified by (10) is also known as Wolfe 

problem [3, p. 42]. 

There are some methods to solve this QP problem but this 

report introduces a so-called Sequential Minimal 

Optimization (SMO) developed by author [7]. The SMO 

algorithm is very effective method to find out the optimal 

(maximum) point λ
*
 of dual function l(λ). 

]#M2 = − 12 � � M�M�1�1���� ∘ ����
��


�
��
 + � M�

�
��
  

Moreover SMO algorithm also finds out the optimal bias b
*
, 

which means that SVM classifier (W
*
, b

*
) is totally determined 

by SMO algorithm. The next section described SMO 

algorithm in detail. 
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2. Sequential Minimal Optimization 

The ideology of SMO algorithm is to divide the whole QP 

problem into many smallest optimization problems. Each 

smallest problem relates to only two Lagrange multipliers. For 

solving each smallest optimization problem, SMO algorithm 

includes two nested loops as shown in table 1 [7, pp. 8-9]: 

Table 1. Ideology of SMO algorithm. 

SMO algorithm solves each smallest optimization problem via two nested 

loops: 

1. The outer loop finds out the first Lagrange multiplier λi whose 

associated data point Xi violates KKT condition [5]. Violating KKT 

condition is known as the first choice heuristic. 

2. The inner loop finds out the second Lagrange multiplier λj according to 

the second choice heuristic. The second choice heuristic that 

maximizes optimization step will be described later. 

3. Two Lagrange multipliers λi and λj are optimized jointly according to 

QP problem specified by (10). 

SMO algorithm continues to solve another smallest optimization problem. 

SMO algorithm stops when there is convergence in which no data point 

violating KKT condition is found; consequently, all Lagrange multipliers λ1, 

λ2,…, λn are optimized. 

Before describing SMO algorithm in detailed, the KKT 

condition with subject to SVM is mentioned firstly because 

violating KKT condition is known as the first choice heuristic 

of SMO algorithm. KKT condition indicates both partial 

derivatives of Lagrangian function and complementary 

slackness are zero [5]. Referring (8) and (4), the KKT function 

of SVM is summarized as (11): 

VWX
WY� � ∑ M�1������
∑ M�1����
 � 0M� � E � N� , M� ! 0, N� ! 0, <�M�#1 � 1�#� � �� � �2 � D�2 � 0, <��N�D� � 0, <�

      (11) 

When we understand deeply convex optimization, the KKT 

condition is the same to the QP problem specified by (10) if 

target function and constraint sets are convex. Thus, the 

solution (W
*
, λ

*
) is saddle point of Lagrangian function. 

KKT condition is analyzed into three following cases [3, p. 

7]: 

1. If λi=0 then, µi = C – λi = C. It implies ξi=0 from 

equation N�D� � 0 . Then, from equation M�#1 �1�#� � �� � �2 � D�2 � 0 we have: 1 � 1�#� � �� � �2 3 0 

2. If 0 < λi < C then, we have 1 � 1�#� � �� � �2 � D� �0. Due to µi = C – λi > 0, it implies ξi=0 from equation N�D� � 0. It is easy to infer that: 1 � 1�#� � �� � �2 � 0 

3. If λi=C then, we have µi = C – λi = 0 and 1 �1�#� � �� � �2 � D� � 0. Due to µi = 0, it implies ξi ≥ 0 

from equation N�D� � 0 . Given ξi ≥ 0 the equation 1 � 1�#� � �� � �2 � D� � 0 leads to: 1 � 1�#� � �� � �2 ! 0 

Let _� � 1� � #� � �� � �2 be prediction error, we have: 1�_� � #1�2
 � 1�#� � �� � �2 � 1 � 1�#� � �� � �2 

The KKT condition implies: M� � 0 [ 1�_� 3 00 ` M� ` E [ 1�_� � 0M� � E [ 1�_� ! 0Where _�  is prediction error:_� � 1� � #� � �� � �2 IWJ
WK

           (12) 

Equation (12) expresses directed corollaries from KKT 

condition. It is commented on (12) that if Ei=0, the KKT 

condition is always satisfied. Data points Xi satisfying 

equation yiEi=0 lie on the margin (lie on the two parallel 

hyperplanes). These points are called support vectors. 

According to KKT corollary, support vectors are always 

associated with non-zero Lagrange multipliers such that 

0<λi<C. Note, such Lagrange multipliers 0<λi<C are also 

called non-boundary multipliers because they are not bounds 

such as 0 and C. So, support vectors are also known as 

non-boundary data points. It easy to infer from (8) 

�S � � M�1���
�

��
  

that support vectors along with their non-zero Lagrange 

multipliers form mainly the optimal weight vector W
*
 

representing the maximum-margin hyperplane – the SVM 

classifier. This is the reason that this classification approach is 

called support vector machine (SVM). Fig. 3 [8, p. 5] 

illustrates an example of support vectors. 

 

Figure 3. Support vectors. 

Violating KKT condition is the first choice heuristic of 

SMO algorithm. By negating three corollaries specified by 

(12), KKT condition is violated in three following cases: M� � 0 and 1�_� d 00 ` M� ` E and 1�_� e 0M� � E and 1�_� ` 0 

By logic induction, these cases are reduced into two cases 

specified by (13). 
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M� ` E and 1�_� d 0M� d 0 and 1�_� ` 0Where _�  is prediction error:_� � 1�#� � �� � �2 C       (13) 

Equation (13) is used to check whether given data point Xi 

violates KKT condition. 

 

Figure 4. Linear constraint of two Lagrange multipliers. 

The main task of SMO algorithm (see table 1) is to optimize 

jointly two Lagrange multipliers in order to solve each 

smallest optimization problem, which maximizes the dual 

function l(λ). 

]#M2 � � 12 � � M�M�1�1���� � ����
��


�
��
 � � M�

�
��
  

Where, 

� M�1�
�

��
 � 0
0 3 M� 3 E, <� � 1, =>>>>> 

Without loss of generality, two Lagrange multipliers λi and 

λj that will be optimized are λ1 and λ2 while all other 

multipliers λ3, λ4,…, λn are fixed. Old values of λ1 and λ2 are 

denoted M
fgh and M
fgh. Your attention please, old values are 

known as current values. Thus, λ1 and λ2 are optimized based 

on the set: M
fgh, M
fgh, λ2, λ3,…, λn. The old values M
fgh and 

M
fgh  are initialized by zero [3, p. 9]. From the condition ∑ M�1����
 � 0, we have: M
fgh1
 � M
fgh1
 � Mi1i � Mj1j � � � M�1� � 0 

and M
1
 � M
1
 � Mi1i � Mj1j � � � M�1� � 0 

It implies following equation of line with regard to two 

variables λ1 and λ2: M
1
 � M
1
 � M
fgh1
 � M
fgh1
          (14) 

Equation (14) specifies the linear constraint of two 

Lagrange multipliers λ1 and λ2. This constraint is drawn as 

diagonal lines in fig. 4 [3, p. 9]. 

In fig. 4, the box is bounded by the interval [0, C] of 

Lagrange multipliers, 0 3 M� 3 E. SMO algorithm moves λ1 

and λ2 along diagonal lines so as to maximize the dual function 

l(λ). Multiplying two sides of equation  M
1
 � M
1
 � M
fgh1
 � M
fgh1
  
by y1, we have: M
1
1
 � M
1
1
 � M
fgh1
1
 � M
fgh1
1
 [ M
 � @M
� M
fgh � @M
fgh 

Where s=y1y2. Let, k � M
 � @M
 � M
fgh � @M
fgh 

We have (15) as a variant of the linear constraint of two 

Lagrange multipliers λ1 and λ2 [3, p. 9]: M
 � k � @M
Where,@ � 1
1
k � M
 � @M
 � M
fgh � @M
fgh        (15) 

By fixing multipliers λ3, λ4,…, λn, all arithmetic 

combinations of M
fgh, M
fgh, λ3, λ4,…, λn are constants denoted 

by term “const”. The dual function l(λ) is re-written [3, pp. 

9-11]: 

]#M2 � � 12 � � M�M�1�1���� � ����
��


�
��
 � � M�

�
��


� � 12 O#M
2
1
1
#�
 � �
2 � #M
2
1
1
#�
 � �
2 � 2M
M
1
1
#�
 � �
2 � 2 O� M�M
1�1
#�� � �
2�
��i P

� 2 O� M�M
1�1
#�� � �
2�
��i P � lm=@nP � M
 � M
 � lm=@n 
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� � 12 o#�
 ∘ �
2#M
2
 + #�
 ∘ �
2#M
2
 + 2@#�
 ∘ �
2M
M
 + 2 O� M�M
1�1
#�� ∘ �
2�
��i P + 2 O� M�M
1�1
#�� ∘ �
2�

��i Pp
+ M
 + M
 + lm=@n 

Let, q

 = �
 ∘ �
 q

 = �
 ∘ �
 q

 = �
 ∘ �
 

Let �fgh be the optimal weight vector � = ∑ M�1������
  based on old values of two aforementioned Lagrange multipliers. 

Following linear constraint of two Lagrange multipliers specified by (14), we have: �fgh = M
fgh1
�
 + M
fgh1
�
 + ∑ M�1������i = ∑ M�1������
 = �  

Let, r� = ∑ M�1���� ∘ ������i = ∑ #M�1���2 ∘ �����i = #∑ M�1������i 2 ∘ �� = ��fgh − M
fgh1
�
 − M
fgh1
�
� ∘ �� = �fgh ∘ �� −M
fgh1
�
 ∘ �� − M
fgh1
�
 ∘ ��  

We have [3, p. 10]: 

]#M2 = − 12 #q

#M
2
 + q

#M
2
 + 2@q

M
M
 + 21
r
M
 + 21
r
M
2 + M
 + M
 + lm=@n 

= − 12 #q

#k − @M
2
 + q

#M
2
 + 2@q

#k − @M
2M
 + 21
r
#k − @M
2 + 21
r
M
2 + #k − @M
2 + M
 + lm=@n 

= − 12 #q

k
 − 2@q

kM
 + q

#M
2
 + q

#M
2
 + 2@q

kM
 − 2q

#M
2
 + 21
r
k − 2@1
r
M
 + 21
r
M
2 + #1 − @2M
+ k + lm=@n 

= − 12 #q

 + q

 − 2q

2#M
2
 + @q

kM
 − @q

kM
 + @1
r
M
 − 1
r
M
 + #1 − @2M
 − 12 q

k
 − 1
r
k + k + lm=@n 

= − 12 #q

 + q

 − 2q

2#M
2
 + @q

kM
 − @q

kM
 + @1
r
M
 − 1
r
M
 + #1 − @2M
 + lm=@n 

sBecause − 

 q

k
 − 1
r
k + k is also constantu  

= − 

 #q

 + q

 − 2q

2#M
2
 + #1 − @ + @q

k − @q

k + @1
r
 − 1
r
2M
 + lm=@n  

= − 

 #q

 + q

 − 2q

2#M
2
 + #1 − @ + @q

k − @q

k + 1
r
 − 1
r
2M
 + lm=@n  

Let v = q

 − 2q

 + q

 and assessing the coefficient of λ2, we have [3, p. 11]: 1 − @ + @q

k − @q

k + 1
r
 − 1
r
 = 1 − @ + @q

k − @q

k + 1
#r
 − r
2 = 1 − @ + @q

k − @q

k + 1
��wxy ∘ �
 − M
fgh1
�
 ∘ �
 − M
fgh1
�
 ∘ �
 − �wxy ∘ �
 + M
fgh1
�
 ∘ �
 + M
fgh1
�
 ∘ �
� 

= 1 − @ + @q

k − @q

k + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − M
fgh1
1
�
 ∘ �
 − M
fgh1
1
�
 ∘ �
 + M
fgh1
1
�
 ∘ �
+ M
fgh1
1
�
 ∘ �
 

= 1 − @ + @q

k − @q

k + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − M
fgh1
1
�
 ∘ �
 − M
fgh�
 ∘ �
 + M
fgh1
1
�
 ∘ �
 + M
fgh�
 ∘ �
 = 1 − @ + @q

k − @q

k + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − @q

M
fgh − q

M
fgh + @q

M
fgh + q

M
fgh 

= 1 − @ + @q

�M
fgh + @M
fgh� − @q

�M
fgh + @M
fgh� + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − @q

M
fgh − q

M
fgh + @q

M
fgh+ q

M
fgh 
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� 1 − @ + @q

M
fgh + q

M
fgh − @q

M
fgh − q

M
fgh + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − @q

M
fgh − q

M
fgh + @q

M
fgh+ q

M
fgh 

= 1 − @ + #@q

 − @q

 − @q

 + @q

2M
fgh + #q

 − q

 − q

 + q

2M
fgh + 1
��fgh ∘ �
 − �fgh ∘ �
� 

= 1 − @ + #q

 − 2q

 + q

2M
fgh + 1
��fgh ∘ �
 − �fgh ∘ �
� 

= 1 − @ + vM
fgh + 1
��fgh ∘ �
 − �fgh ∘ �
� 

#due to v = q

 − 2q

 + q

2 

= 1 − @ + vM
fgh + 1
 zs1
 − ��fgh ∘ �
 − �fgh�u − s1
 − ��fgh ∘ �
 − �fgh�u{ − 1
1
 + 1
1
 

(Where �fgh is the old value of the bias b) 

= 1 − @ + vM
fgh + 1
 zs1
 − ��fgh ∘ �
 − �fgh�u − s1
 − ��fgh ∘ �
 − �fgh�u{ − 1 + @ 

= vM
fgh + 1
 zs1
 − ��fgh ∘ �
 − �fgh�u − s1
 − ��fgh ∘ �
 − �fgh�u{ = vM
fgh + 1
�_
fgh − _
fgh� 

According to (13), _
fgh and _
fgh are old prediction errors on X2 and X1, respectively: _�fgh = 1� − ��wxy ∘ �� − �fgh� 

Recall that we had: 

]#M2 = − 12 #q

 + q

 − 2q

2#M
2
 + #1 − @ + @q

k − @q

k + 1
r
 − 1
r
2M
 + lm=@n 

Thus, equation (16) specifies dual function with subject to the second Lagrange multiplier λ2 that is optimized in conjunction 

with the first one λ1 by SMO algorithm. 

]#M
2 = − 

 v#M
2
 + svM
fgh + 1
�_
fgh − _
fgh�u M
 + lm=@nWhere_|old = 1| − s�m]} ∘ �| − �olduv = q

 − 2q

 + q

 = �
 ∘ �
 − 2�
 ∘ �
 + �
 ∘ �
�wxy = M
fgh1
�
 + M
fgh1
�
 + ∑ M�1������iM
 = k − @M
k = M
 + @M
 = M
fgh + @M
fgh@ = 1
1


                           (16) 

The first and second derivatives of dual function l(λ2) with regard to λ2 are: d]#M
2dM
 = −vM
 + vM
fgh + 1
�_
fgh − _
fgh� 

d
]#M
2d#M
2
 = −v 

The quantity η is always non-negative due to: v = �
 ∘ �
 − 2�
 ∘ �
 + �
 ∘ �
 = #�
 − �
2 ∘ #�
 − �
2 = |�
 − �
|
 ≥ 0 

Recall that the goal of QP problem is to maximize the dual function l(λ2) so as to find out the optimal multiplier (maximum 

point) M
∗ . The second derivative of l(λ2) is always non-negative and so, l(λ2) is concave function and there always exists the 

maximum point M
∗ . The function l(λ2) gets maximal if its first derivative is equal to zero: d]#M
2dM
 = 0 ⟹ −vM
 + vM
fgh + 1
�_
fgh − _
fgh� = 0 ⟹ M
 = M
fgh + 1
�_
fgh − _
fgh�v  
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Therefore, the new values of λ1 and λ2 that are solutions of the smallest optimization problem of SMO algorithm are: 

M
S � M
~�� � M
fgh � ��s�����������u�   

M
S � M
~�� � M
fgh � @M
fgh � @M
~�� � M
fgh � @M
fgh � @M
fgh � @ ��s�����������u� � M
fgh � @ ��s�����������u�   

Obviously, M
~�� is totally determined in accordance with M
~��, thus we should focus on M
~��. Because multipliers λi 

are bounded, 0 3 M� 3 E, it is required to find out the range of M
~��. Let L and U be lower bound and upper bound of M
~��, 

respectively. We have [3, pp. 11-13]: 

1. If s = 1, then λ1 + λ2 = γ. There are two sub-cases (see fig. 

5 [3, p. 12] ) as follows [3, p. 11]: 

If γ ≥ C then L = γ – C and U = C. 

If γ < C then L = 0 and U = γ. 

2. If s = –1, then λ1 – λ2 = γ. There are two sub-cases (see 

fig. 6 [3, p. 13]) as follows [3, pp. 11-12]: 

If γ ≥ 0 then L = 0 and U = C – γ. 

If γ < 0 then L = –γ and U = C. 

 

Figure 5. Lower bound and upper bound of two new multipliers in case s = 1. 

 

Figure 6. Lower bound and upper bound of two new multipliers in case s = 

–1. 

Table 2. SMO algorithm optimizes jointly two Lagrange multipliers. 

If η > 0: M
~�� � M
fgh � 1
�_
fgh � _
fgh�v  

M
S � M
~��,�g����h � \L if M
~�� ` LM
~�� if L 3 M
~�� 3 �� if � ` M
~��  

If η = 0: M
S � M
~��,�g����h � argmax^� �]#M
 � L2, ]#M
 � �2� 

Where prediction errors _�fgh and dual function l(λ2) are specified by (16). 

Lower bound L and upper bound U are described as follows: 

1. If s=1 and γ > C then L = γ – C and U = C. 

2. If s=1 and γ < C then L = 0 and U = γ. 
3. If s=–1 and γ > 0 then L = 0 and U = C – γ. 

4. If s=–1 and γ < 0 then L = –γ and U = C. 

Where k � M
 � @M
 � M
fgh � @M
fgh according to (15). 
Let ∆λ1 and ∆λ2 represent the changes in multipliers λ1 and λ2, respectively. ΔM
 � M
S � M
fgh ΔM
 � �@ΔM
 
The new value of the first multiplier λ1 is re-written in accordance with the 

change ∆λ1. M
S � M
~�� � M
fgh � ΔM
 

The value M
~�� is clipped as follows [3, p. 12]: 

M
~��,�g����h � \L if M
~�� ` LM
~�� if L 3 M
~�� 3 �� if � ` M
~��  

In the case η=0 that M
~�� is undetermined, M
~��,�g����h is 

assigned by which bound (L or U) maximizes the dual 

function l(λ2). M
~��,�g����h � argmax^� �]#M
 � L2, ]#M
 � �2�  if v � 0 

In general, table 2 summarizes how SMO algorithm 

optimizes jointly two Lagrange multipliers. 

Basic tasks of SMO algorithm to optimize jointly two 

Lagrange multipliers are now described in detailed. The 

ultimate goal of SVM method is to determine the classifier 

(W*, b*). Thus, SMO algorithm updates optimal weight W* and 

optimal bias b* based on the new values M
~�� and M
~�� at 

each optimization step. 

Table 3. SMO algorithm. 

All multipliers λi (s), weight vector W, and bias b are initialized by zero. 

SMO algorithm divides the whole QP problem into many smallest 

optimization problems. Each smallest optimization problem focuses on 
optimizing two joint multipliers. SMO algorithm solves each smallest 

optimization problem via two nested loops: 

1. The outer loop alternates one sweep through all data points and as 
many sweeps as possible through non-boundary data points (support 

vectors) so as to find out the data point Xi that violates KKT condition 

according to (13). The Lagrange multiplier λi associated with such Xi 
is selected as the first multiplier aforementioned as λ1. Violating KKT 

condition is known as the first choice heuristic of SMO algorithm. 
2. The inner loop browses all data points at the first sweep and 

non-boundary ones at later sweeps so as to find out the data point Xj 

that maximizes the deviation �_�fgh � _�fgh� where _�fgh and _�fgh are 

prediction errors on Xi and Xj, respectively, as seen in (16). The 

Lagrange multiplier λj associated with such Xj is selected as the second 

multiplier aforementioned as λ2. Maximizing the deviation �_
fgh �_
fgh� is known as the second choice heuristic of SMO algorithm. 

a. Two Lagrange multipliers λ1 and λ2 are optimized jointly, which 

results optimal multipliers M
~�� and M
~��, as seen in table 2. 
b. SMO algorithm updates optimal weight W* and optimal bias b* 

based on the new values M
~�� and M
~�� according to (17). 
SMO algorithm continues to solve another smallest optimization problem. 

SMO algorithm stops when there is convergence in which no data point 
violating KKT condition is found. Consequently, all Lagrange multipliers λ1, 

λ2,…, λn are optimized and the optimal SVM classifier (W*, b*) is totally 

determined. 
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Let �S � �~��  be the new (optimal) weight vector, 

according (11) we have: �~�� � ∑ M�1������
 � M
~��1
�
 � M
~��1
�
 � ∑ M�1������i   

Let �S � �fgh be the old weight vector: �fgh � ∑ M�1������
 � M
fgh1
�
 � M
fgh1
�
 � ∑ M�1������i   

It implies: �S � �~�� � M
~��1
�
 � M
fgh1
�
 � M
~��1
�
 �M
fgh1
�
 � �fgh  

Let _
~�� be the new prediction error on X2: _
~�� � 1
 � #�~�� � �
 � �~��2 

The new (optimal) bias �S � �~��  is determining by 

setting _
~�� � 0 with reason that the optimal classifier (W*, 

b*) has zero error. _
~�� � 0 4 1
 � #�~�� � �
 � �~��2 � 0 4 �~�� ��~�� � �
 � 1
  

In general, equation (17) specifies the optimal classifier (W
*
, 

b
*
) resulted from each optimization step of SMO algorithm. �S � �~�� � �M
~�� � M
fgh�1
�
��M
~�� � M
fgh�1
�
 � �fghWhere �fgh is the old value of weight vector,of course we have:�fgh � M
fgh1
�
 � M
fgh1
�
 � ∑ M�1������i

  (17) 

By extending the ideology shown in table 1, SMO 

algorithm is described particularly in table 3 [7, pp. 8-9] [3, p. 

14]. 

When both optimal weight vector W
*
 and optimal bias b

*
 

are determined by SMO algorithm or other methods, the 

maximum-margin hyperplane known as SVM classifier is 

totally determined. According to (1), the equation of 

maximum-margin hyperplane is expressed in (18) as follows: �S � � � �S � 0              (18) 

For any data point X, classification rule derived from 

maximum-margin hyperplane (SVM classifier) is used to 

classify such data point X. Let R be the classification rule, 

equation (19) specifies the classification rule as the sign 

function of point X. 

� � @�B=#�S � � � �S2 � ��1 if  �S � � � �S ! 0�1 if �S � � � �S ` 0   (19) 

After evaluating R with regard to X, if R(X) =1 then, X 

belongs to class +1; otherwise, X belongs to class –1. This is 

the simple process of data classification. 

The next section illustrates how to apply SMO into 

classifying data points where such data points are documents. 

 

3. An Example of Data Classification by 

SVM 

Given a set of classes C = {computer science, math}, a set 

of terms T = {computer, derivative} and the corpus �  = 

{doc1.txt, doc2.txt, doc3.txt, doc4.txt}. The training corpus 

(training data) is shown in following table 4 in which cell (i, j) 

indicates the number of times that term j (column j) occurs in 

document i (row i); in other words, each cell represents a term 

frequency and each row represents a document. There are four 

documents and each document belongs to only one class: 

computer science or math. 

Table 4. Term frequencies of documents (SVM). 

 computer derivative class 

doc1.txt 20 55 math 

doc2.txt 20 20 computer science 

doc3.txt 15 30 math 

doc4.txt 35 10 computer science 

Let Xi be data points representing documents doc1.txt, 

doc2.txt, doc3.txt, doc4.txt, doc5.txt. We have X1=(20,55), 

X2=(20,20), X3=(15,30), and X4=(35,10). Let yi=+1 and yi=–1 

represent classes “math” and “computer science”, respectively. 

Let x and y represent terms “computer” and “derivative”, 

respectively and so, for example, it is interpreted that the data 

point X1=(20,55) has abscissa x=20 and ordinate y=55. 

Therefore, term frequencies from table 4 is interpreted as 

SVM input training corpus shown in table 5. 

Table 5. Training corpus (SVM). 

 x y yi 

X1 20 55 +1 

X2 20 20 –1 

X3 15 30 +1 

X4 35 10 –1 

 

Figure 7. Data points in training data (SVM). 
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Data points X1, X2, X3, and X4 are depicted in fig. 7 in which 

classes “math” (yi=+1) and “computer” (yi=–1) are 

represented by shading and hollow circles, respectively. Note 

that fig. 7 and fig. 8 in this report are drawn by the software 

Graph http://www.padowan.dk developed by author Ivan 

Johansen [9]. 

By applying SMO algorithm described in table 3 into 

training corpus shown in table 5, it is easy to calculate optimal 

multiplier λ*, optimal weight vector W* and optimal bias b*. 

Firstly, all multipliers λi (s), weight vector W, and bias b are 

initialized by zero. This example focuses on perfect separation 

and so, E � �∞. M
 � M
 � Mi � Mj � 0 � = #0,02 � = 0 E = +∞ 

At the first sweep: 

The outer loop of SMO algorithm searches for a data point 

Xi that violates KKT condition according to (13) through all 

data points so as to select two multipliers that will be 

optimized jointly. We have: _
 = 1
 − #� ∘ �
 − �2 = 1 − �#0,02 ∘ #20,552 − 0� = 1 

Due to λ1=0 < C=+∞ and y1E1=1*1=1 > 0, point X1 violates 

KKT condition according to (13). Then, λ1 is selected as the 

first multiplier. The inner loop finds out the data point Xj that 

maximizes the deviation �_�fgh − _
fgh�. We have: 

_
 = 1
 − #� ∘ �
 − �2 = −1 − �#0,02 ∘ #20,202 − 0� =−1  |_
 − _
| = |−1 − 1| = 2  _i = 1i − #� ∘ �i − �2 = 1 − �#0,02 ∘ #15,302 − 0� = 1  |_i − _
| = |1 − 1| = 0  _j = 1j − #� ∘ �j − �2 = −1 − �#0,02 ∘ #35,102 − 0� =−1  |_j − _
| = |−1 − 1| = 2  

Because the deviation |_
 − _
| is maximal, the multiplier 

λ2 associated with X2 is selected as the second multiplier. Now 

λ1 and λ2 are optimized jointly according to table 2. v = �
 ∘ �
 − 2�
 ∘ �
 + �
 ∘ �
 = |�
 − �
|
 =|#20,552 − #20,202|
 = |#0,352|
 = 35
 = 1225  @ = 1
1
 = 1 ∗ #−12 = −1  k = M
fgh + @M
fgh = 0 + #−12 ∗ 0 = 0  

M
~�� = M
fgh + ��#�����2� = 0 + �
∗#�
�
2


� = 



�  

∆M
 = M
~�� − M
fgh = 



� − 0 = 



�  

M
~�� = M
fgh − 1
1
∆M
 = 0 − 1 ∗ #−12 ∗ 



� = 



�  

Optimal classifier (W
*
, b

*
) is updated according to (17). 

�∗ = �~�� = �M
~�� − M
fgh�1
�
 + �M
~�� − M
fgh�1
�
 +
�fgh = s 



� − 0u ∗ 1 ∗ #20,552 + s 



� − 0u ∗ #−12 ∗

#20,202 + #0,02 = s0, 
i�u  

�∗ = �~�� = �~�� ∘ �
 − 1
 = s0, 
i�u ∘ #20,202 − #−12 =
��   

Now we have: 

M
 = M
~�� = 



� , M
 = M
~�� = 



� , Mi = Mj = 0  

� = �∗ = s0, 
i�u  

� = �∗ = 
��   

The outer loop of SMO algorithm continues to search for 

another data point Xi that violates KKT condition according to 

(13) through all data points so as to select two other 

multipliers that will be optimized jointly. We have: 

_
 = 1
 − #� ∘ �
 − �2 = −1 − zs0, 
i�u ∘ #20,202 − 
�� { =0  

_i = 1i − #� ∘ �i − �2 = 1 − zs0, 
i�u ∘ #15,302 − 
�� { =
��   

Due to λ3=0 < C and y3E3=1*(10/7) > 0, point X3 violates 

KKT condition according to (13). Then, λ3 is selected as the 

first multiplier. The inner loop finds out the data point Xj that 

maximizes the deviation �_�fgh − _ifgh�. We have: 

_
 = 1
 − #� ∘ �
 − �2 = 1 − zs0, 
i�u ∘ #20,552 − 
�� { = 0  

|_
 − _i| = �0 − 
�� � = 
��   

_
 = 1
 − #� ∘ �
 − �2 = −1 − zs0, 
i�u ∘ #20,202 − 
�� { =0  

|_
 − _i| = �0 − 
�� � = 
��   

_j = 1j − #� ∘ �j − �2 = −1 − zs0, 
i�u ∘ #35,102 − 
�� { =��  

|_j − _i| = ��� − 
�� � = j�  

Because both deviations |_
 − _i|  and |_
 − _i|  are 

maximal, the multiplier λ2 associated with X2 is selected 
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randomly among {λ1, λ2} as the second multiplier. Now λ3 and 

λ2 are optimized jointly according to table 2. v � �i � �
 � 2�i ∘ �
 + �i ∘ �
 = |�i − �
|
 =|#15,302 − #20,202|
 = |#−5,102|
 = #−52
 + 10
 = 125  @ = 1i1
 = 1 ∗ #−12 = −1  

k = Mifgh + @M
fgh = 0 + #−12 ∗ 



� = − 



�  

L = −k = 



�  

� = E = +∞  

(L and U are lower bound and upper bound of M
~��) 

M
~�� = M
fgh + ��#���� 2� = 



� + �
∗s���¡¢ u

� = 
�


�  

∆M
 = M
~�� − M
fgh = 
�


� − 



� = 

��  

Mi~�� = Mifgh − 1i1
∆M
 = 0 − 1 ∗ #−12 ∗ 

�� = 

��  

Optimal classifier (W
*
, b

*
) is updated according to (17). 

�∗ = �~�� = �Mi~�� − Mifgh�1i�i + �M
~�� − M
fgh�1
�
 +
�fgh = s 

�� − 0u ∗ 1 ∗ #15,302 + s 
�


� − 



�u ∗ #−12 ∗

#20,202 + s0, 
i�u = s− 
i� , �i�u  

�∗ = �~�� = �~�� ∘ �
 − 1
 = s− 
i� , �i�u ∘ #20,202 −#−12 = 
i�   

Now we have: 

M
 = 



� , M
 = M
~�� = 
�


� , Mi = Mi~�� = 

�� , Mj = 0  

� = �∗ = s− 
i� , �i�u  

� = �∗ = 
i�   

The outer loop of SMO algorithm continues to search for 

another data point Xi that violates KKT condition according to 

(13) through all data points so as to select two other 

multipliers that will be optimized jointly. We have: 

_j = 1j − #� ∘ �j − �2 = −1 − zs− 
i� , �i�u ∘ #35,102 −

i� { = 
£�   

Due to λ4=0 < C and y4E4=(–1)*(18/7) < 0, point X4 does not 

violate KKT condition according to (13). Then, the first sweep 

of outer loop stops with the results as follows: 

M
 = 



� , M
 = M
~�� = 
�


� , Mi = Mi~�� = 

�� , Mj = 0  

� = �∗ = s− 
i� , �i�u  

� = �∗ = 
i�   

Note that λ1 is approximated to 0 because it is very small. 

At the second sweep: 

The outer loop of SMO algorithm searches for a data point 

Xi that violates KKT condition according to (13) through 

non-boundary data points so as to select two multipliers that 

will be optimized jointly. Recall that non-boundary data points 

(support vectors) are ones whose associated multipliers are not 

bounds 0 and C (0<λi<C). At the second sweep, there are three 

non-boundary data points X1, X2 and X3. We have: 

_
 = 1
 − #� ∘ �
 − �2 = 1 − zs− 
i� , �i�u ∘ #20,552 −

i� { = −4  

Due to M
 = 2/1225 > 0 and y1E1 = 1*(–4) < 0, point X1 

violates KKT condition according to (13). Then, λ1 is selected 

as the first multiplier. The inner loop finds out the data point Xj 

among non-boundary data points (0<λi<C) that maximizes the 

deviation �_�fgh − _
fgh�. We have: 

_
 = 1
 − #� ∘ �
 − �2 = −1 − zs− 
i� , �i�u ∘ #20,202 −

i� { = 0  

|_
 − _
| = |0 − #−42| = 4  

_i = 1i − #� ∘ �i − �2 = 1 − zs− 
i� , �i�u ∘ #15,302 −

i� { = 0  

|_i − _
| = |0 − #−42| = 4  

Because the deviation |_
 − _
| is maximal, the multiplier 

λ2 associated with X2 is selected as the second multiplier. Now 

λ1 and λ2 are optimized jointly according to table (2). v = �
 ∘ �
 − 2�
 ∘ �
 + �
 ∘ �
 = |�
 − �
|
 =|#20,552 − #20,202|
 = |#0,352|
 = 35
 = 1225  @ = 1
1
 = 1 ∗ #−12 = −1  

k = M
fgh + @M
fgh = 



� + #−12 ∗ 
�


� = − 
j


�  

L = −k = 
j


� = 

��  

� = E = +∞  

(L and U are lower bound and upper bound of M
~��) 

M
~�� = M
fgh + ��#�����2� = 
�


� + �
∗���#�j2�


� = 
�


� −j


� = 




� < L = 

��  

⟹ M
~�� = L = 

��  
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ΔM
 = M
~�� − M
fgh = 

�� − 
�


� = − 



�  

M
~�� = M
fgh − 1
1
ΔM
 = 



� − 1 ∗ #−12 ∗ s− 



�u = 0  

Optimal classifier (W
*
, b

*
) is updated according to (17). 

�∗ = �~�� = �M
~�� − M
fgh�1
�
 + �M
~�� − M
fgh�1
�
 +
�fgh = s0 − 



�u ∗ 1 ∗ #20,552 + s 

�� − 
�


�u ∗ #−12 ∗

#20,202 + s− 
i� , �i�u = s− 
i� , ji�u  

�∗ = �~�� = �~�� ∘ �
 − 1
= z− 235 , 435{ ∘ #20,202 − #−12 = 157  

The second sweep stops with results as follows: 

M
 = M
~�� = 0, M
 = M
~�� = 

�� , Mi = 

�� , Mj = 0  

� = �∗ = s− 
i� , ji�u  

� = �∗ = 
��   

At the third sweep: 

The outer loop of SMO algorithm searches for a data point 

Xi that violates KKT condition according to (13) through 

non-boundary data points so as to select two multipliers that 

will be optimized jointly. Recall that non-boundary data points 

(support vectors) are ones whose associated multipliers are not 

bounds 0 and C (0<λi<C). At the third sweep, there are only 

two non-boundary data points X2 and X3. We have: 

_
 = 1
 − #� ∘ �
 − �2 = −1 − zs− 
i� , ji�u ∘ #20,202 −

�� { = 0   

_i = 1i − #� ∘ �i − �2 = 1 − zs− 
i� , ji�u ∘ #15,302 −

�� { = j�  

Due to Mi = 2/175 < E = +∞ and y3E3 = 1*(4/7) > 0, 

point X3 violates KKT condition according to (13). Then, λ3 is 

selected as the first multiplier. Because there are only two 

non-boundary data points X2 and X3, the second multiplier is λ2. 

Now λ3 and λ2 are optimized jointly according to table (2). 

v = �i ∘ �
 − 2�i ∘ �
 + �i ∘ �
 = |�i − �
|
 =|#15,302 − #20,202|
 = |#−5,102|
 = #−52
 + #102
 =125  

@ = 1i1
 = 1 ∗ #−12 = −1    

k = Mifgh + @M
fgh = 

�� + #−12 ∗ 

�� = 0  

L = 0  

� = E − k = +∞  

(L and U are lower bound and upper bound of M
~��) 

M
~�� = M
fgh + 1
#_
 − _i2v = 2175 + −1 ∗ s0 − j�u125 = 2125 

∆M
 = M
~�� − M
fgh = 2125 − 2175 = 4875 

Mi~�� = Mifgh − 1i1
∆M
 = 2175 − 1 ∗ #−12 ∗ 4875 = 2125 

Optimal classifier (W
*
, b

*
) is updated according to (17). 

�∗ = �~�� = �Mi~�� − Mifgh�1i�i + �M
~�� − M
fgh�1
�
 +
�fgh = s 


� − 

��u ∗ 1 ∗ #15,302 + s 


� − 

��u ∗ 1 ∗

#20,202 + s− 
i� , ji�u = s 
£
�� , 

i�u  

�∗ = �~�� = �~�� ∘ �
 − 1
 = s 
£
�� , 

i�u ∘ #20,202 −#−12 = ij�i�   

The third sweep stops with results as follows: 

M
 = 0, M
 = M
~�� = 2125 , Mi = Mi~�� = 2125 , Mj = 0 

� = �∗ = s 
£
�� , 

i�u  

� = �∗ = ij�i�   

After the third sweep, two non-boundary multipliers were 

optimized jointly. You can sweep more times to get more 

optimal results because data point X3 still violates KKT 

condition as follows: 

_i = 1i − #� ∘ �i − �2 = 1 − zs 
£
�� , 

i�u ∘ #15,302 −
ij�i� { = − i
i�  

Due to Mi = 2/125 > 0 and y3E3 = 1*(–32/35) < 0, point 

X3 violates KKT condition according to (13). But it takes a lot 

of sweeps so that SMO algorithm reaches absolute 

convergence (E3=0 and hence, no KKT violation) because the 

penalty C is set to be +∞, which implicates the perfect 

separation. This is the reason that we can stop the SMO 

algorithm at the third sweep in this example. In general, you 

can totally stop the SMO algorithm after optimizing two last 

multipliers which implies that all multipliers were optimized. 

As a result, W
*
 and b

*
 were determined: 

�∗ = s 
£
�� , 

i�u  

�∗ = ij�i�   

The maximum-margin hyperplane (SVM classifier) is 
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totally determined as below: 

�S � � � �S � 0 [ s 
£
�� , 

i�u � #�, 12 � ij�i� � 0  

[ 1 � �0.3� � 28.9  

 

Figure 8. An example of maximum-margin hyperplane. 

The SVM classifier 1 � �0.3� � 28.9 is depicted in fig. 8. 

Where the maximum-margin hyperplane is draw as bold 

line. Data points X2 and X3 are support vectors because their 

associated multipliers λ2 and λ3 are non-zero 

(0<λ2=2/125<C=+∞, 0<λ3=2/125<C=+∞). Your attention 

please, that weight vector W is depicted as an arrow indicates 

mainly its direction. The scale of weight vector � � #18/175,12/352 

in fig. 8 is very small. 

Derived from the above classifier 1 � �0.3� � 28.9, the 

classification rule is: 

� � @�B=#0.3� � 1 � 28.9 2 �  �1 if 0.3� � 1 � 28.9 ! 0�1 if 0.3� � 1 � 28.9 ` 0 

Now we apply classification rule � � @�B=#0.3� � 1 � 28.9 2 

into document classification. Suppose the numbers of times 

that terms “computer” and “derivative” occur in document D 

are 40 and 10, respectively. We need to determine which class 

document D=(40, 10) is belongs to. We have: �#ª2 � @�B=#0.3 S 40 � 10 � 28.92 � @�B=#�6.92 � �1 

Hence, it is easy to infer that document D belongs to class 

“computer science” (yi = –1). 

4. Conclusion 

In general, the main ideology of SVM is to determine the 

separating hyperplane that maximizes the margin between two 

classes of training data. Based on theory of optimization, such 

optimal hyperplane is specified by the weight vector W
*
 and 

the bias b
*
 which are solutions of constrained optimization 

problem. It is proved that there always exist these solutions 

but the main issue of SVM is how to find out them when the 

constrained optimization problem is transformed into 

quadratic programming (QP) problem. SMO which is the 

most effective algorithm divides the whole QP problem into 

many smallest optimization problems. Each smallest 

optimization problem focuses on optimizing two joint 

multipliers. It is possible to state that SMO is the best 

implementation version of the “architecture” SVM. 

SVM is extended by concept of kernel function. The dot 

product in separating hyperplane equation is the simplest 

kernel function. Kernel function is useful in case of 

requirement of data transformation [1, p. 21]. There are many 

pre-defined kernel functions available for SVM. Readers are 

recommended to research more about kernel functions [10]. 
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