

Applied and Computational Mathematics
2017; 6(4-1): 1-15

http://www.sciencepublishinggroup.com/j/acm

doi: 10.11648/j.acm.s.2017060401.11

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online)

Tutorial on Support Vector Machine

Loc Nguyen

Sunflower Soft Company, Ho Chi Minh City, Vietnam

Email address:
ng_phloc@yahoo.com

To cite this article:
Loc Nguyen. Tutorial on Support Vector Machine. Applied and Computational Mathematics. Special Issue: Some Novel Algorithms for Global

Optimization and Relevant Subjects. Vol. 6, No. 4-1, 2017, pp. 1-15. doi: 10.11648/j.acm.s.2017060401.11

Received: September 7, 2015; Accepted: September 8, 2015; Published: June 17, 2016

Abstract: Support vector machine is a powerful machine learning method in data classification. Using it for applied researches

is easy but comprehending it for further development requires a lot of efforts. This report is a tutorial on support vector machine

with full of mathematical proofs and example, which help researchers to understand it by the fastest way from theory to practice.

The report focuses on theory of optimization which is the base of support vector machine.

Keywords: Support Vector Machine, Optimization, Separating Hyperplane, Sequential Minimal Optimization

1. Support Vector Machine

Figure 1. Separating hyperplanes.

Support vector machine (SVM) [1] is a supervised learning

algorithm for classification and regression. Given a set of

p-dimensional vectors in vector space, SVM finds the

separating hyperplane that splits vector space into sub-set of

vectors; each separated sub-set (so-called data set) is assigned

by one class. There is the condition for this separating

hyperplane: “it must maximize the margin between two

sub-sets”. Fig. 1 [2] shows separating hyperplanes H1, H2, and

H3 in which only H2 gets maximum margin according to this

condition.

Suppose we have some p-dimensional vectors; each of them

belongs to one of two classes. We can find many p–1

dimensional hyperplanes that classify such vectors but there is

only one hyperplane that maximizes the margin between two

classes. In other words, the nearest between one side of this

hyperplane and other side of this hyperplane is maximized.

Such hyperplane is called maximum-margin hyperplane and it

is considered as the SVM classifier.

Let {X1, X2,…, Xn} be the training set of n vectors Xi (s) and

let yi = {+1, –1} be the class label of vector Xi. Each Xi is also

called a data point with attention that vectors can be identified

with data points and data point can be called point, in brief. It

is necessary to determine the maximum-margin hyperplane

that separates data points belonging to yi=+1 from data points

belonging to yi=–1 as clear as possible.

According to theory of geometry, arbitrary hyperplane is

represented as a set of points satisfying hyperplane equation

specified by (1). � � �� � � � 0 (1)

Where the sign “�” denotes the dot product or scalar product

and W is weight vector perpendicular to hyperplane and b is

the bias. Vector W is also called perpendicular vector or

normal vector and it is used to specify hyperplane. Suppose

W=(w1, w2,…, wp) and Xi=(xi1, xi2,…, xip), the scalar product

2 Loc Nguyen: Tutorial on Support Vector Machine

� � �� is:

� � �� � �� � � � 	
��
 � 	
��
 � � � 	���� � � 	����
�

��

Given scalar value w, the multiplication of w and vector Xi

denoted wXi is a vector as follows: 	�� � �	��
, 	��
, … , 	����

Please distinguish scalar product � � �� and

multiplication wXi.

The essence of SVM method is to find out weight vector W

and bias b so that the hyperplane equation specified by (1)

expresses the maximum-margin hyperplane that maximizes

the margin between two classes of training set.

The value b/|W| is the offset of the (maximum-margin)

hyperplane from the origin along the weight vector W where

|W| or ||W|| denotes length or module of vector W.

|�| � ��� � √� � � � �	

 � 	

 � � � 	�

� �� 	�

�

��

Note that we use two notations |.| and ||.|| for denoting the

length of vector.

Figure 2. Maximum-margin hyperplane, parallel hyperplanes and weight

vector W.

Additionally, the value 2/|W| is the width of the margin as

seen in fig. 2. To determine the margin, two parallel

hyperplanes are constructed, one on each side of the

maximum-margin hyperplane. Such two parallel hyperplanes

are represented by two hyperplane equations, as shown in (2)

as follows. � � �� � � � 1� � �� � � � �1� (2)

Fig. 2 [2] illustrates maximum-margin hyperplane, weight

vector W and two parallel hyperplanes. As seen in the fig. 2,

the margin is limited by such two parallel hyperplanes.

Exactly, there are two margins (each one for a parallel

hyperplane) but it is convenient for referring both margins as

the unified single margin as usual. You can imagine such

margin as a road and SVM method aims to maximize the

width of such road. Data points lying on (or are very near to)

two parallel hyperplanes are called support vectors because

they construct mainly the maximum-margin hyperplane in the

middle. This is the reason that the classification method is

called support vector machine (SVM).

To prevent vectors from falling into the margin, all vectors

belonging to two classes yi=1 and yi=–1 have two following

constraints, respectively:

 � � �� � � ! 1 #for �� belonging to class 1� � �12� � �� � � 3 �1 #for �� belonging to class 1� � �12

As seen in fig. 2, vectors (data points) belonging to classes

yi=+1 and yi=–1 are depicted as black circles and white circles,

respectively. Such two constraints are unified into the

so-called classification constraint specified by (3) as follows: 1�#� � �� � �2 ! 1 4 1 � 1�#� � �� � �2 3 0 (3)

As known, yi=+1 and yi=–1 represent two classes of data

points. It is easy to infer that maximum-margin hyperplane

which is the result of SVM method is the classifier that aims to

determined which class (+1 or –1) a given data point X

belongs to. Your attention please, each data point Xi in training

set was assigned by a class yi before and maximum-margin

hyperplane constructed from the training set is used to classify

any different data point X.

Because maximum-margin hyperplane is defined by weight

vector W, it is easy to recognize that the essence of

constructing maximum-margin hyperplane is to solve the

constrained optimization problem as follows:

minimize7,8 12 |�|
 subject to 1�#� � �� � �2 ! 1, <� � 1, =>>>>>

Where |W| is the length of weight vector W and 1�#� ��� � �2 ! 1 is the classification constraint specified by (3).

The reason of minimizing

 |�|
 is that distance between

two parallel hyperplanes is 2/|W| and we need to maximize

such distance in order to maximize the margin for

maximum-margin hyperplane. Then maximizing 2/|W| is to

minimize

 |�|. Because it is complex to compute the length

|W|, we substitute

 |�|
 for

 |�| when |�|
 is equal to

the scalar product � � � as follows:

 Applied and Computational Mathematics 2017; 6(4-1): 1-15 3

|�|
 � ���
 � � � � � 	

 � 	

 � � � 	�

The constrained optimization problem is re-written, shown

in (4) as below:

minimize�,� ?#�2 = minimize�,� 12 |�|2@ubject to:B�#�, �2 = 1 − 1�#� ∘ �� − �2 ≤ 0, ∀� = 1, =>>>>>C (4)

Where ?#�2 =

 |�|
 is called target function with regard

to variable W. Function B�#�, �2 = 1 − 1�#� ∘ �� − �2 is

called constraint function with regard to two variables W, b

and it is derived from the classification constraint specified by

(3). There are n constraints B�#�, �2 ≤ 0 because training set

{X1, X2,…, Xn} has n data points Xi (s). Constraints B�#�, �2 ≤ 0 inside (3) implicate the perfect separation in

which there is no data point falling into the margin (between

two parallel hyperplanes, see fig. 2). On the other hand, the

imperfect separation allows some data points to fall into the

margin, which means that each constraint function gi(W,b) is

subtracted by an error D� ≥ 0. The constraints become [3, p.

5]: B�#�, �2 = 1 − 1�#� ∘ �� − �2 − D� ≤ 0, ∀� = 1, =>>>>>

We have a n-component error vector ξ=(ξ1, ξ2,…, ξn) for n

constraints. The penalty E ≥ 0 is added to the target function

in order to penalize data points falling into the margin. The

penalty C is a pre-defined constant. Thus, the target function

f(W) becomes:

?#�2 = 12 |�|
 + E � D�
�

��

If the positive penalty is infinity, E = +∞ then, target

function f(W) may get maximal when all errors ξi must be 0,

which leads to the perfect separation specified by (4).

Equation (5) specifies the general form of constrained

optimization originated from (4).

minimize

 |�|
 + E ∑ D����
7,8,Hsubject to:1 − 1�#� ∘ �� − �2 − D� ≤ 0, ∀� = 1, =>>>>> − D� ≤ 0, ∀� = 1, =>>>>>IJ
K

 (5)

Where C ≥ 0 is the penalty.

The Lagrangian function [4, p. 215] is constructed from

constrained optimization problem specified by (5). Let L(W, b,

ξ, λ, µ) be Lagrangian function where λ=(λ1, λ2,…, λn) and

µ=(µ1, µ2,…, µn) are n-component vectors, λi ≥ 0 and µi ≥ 0, ∀� = 1, =>>>>>. We have:

L#�, �, D, M, N2 = ?#�2 + � M�B�#�, �2�
��
 − N�D� = 12 |�|
 + E � D�

�
��
 + � M�#1 − 1�#� ∘ �� − �2 − D�2�

��
 − � N�D�
�

��

= 12 |�|
 + E � D�

�
��
 + � M�

�
��
 − � M�1�#� ∘ ��2�

��
 + � �M�1�
�

��
 − � M�D�
�

��
 − � N�D�
�

��

= 12 |�|
 − � ∘ O� M�1���

�
��
 P + � M�

�
��
 + � � M�1�

�
��
 + �#E − M� − N�2D�

�
��

In general, (6) represents Lagrangian function as follows:

QL#�, �, D, M, N2 =

 |�|
 − � ∘ #∑ M�1������
 2 + ∑ M����
 + � ∑ M�1� + ∑ #E + M� − N�2D����
���
�here D� ≥ 0, M� ≥ 0, N� ≥ 0, ∀� = 1, =>>>>> (6)

Note that λ=(λ1, λ2,…, λn) and µ=(µ1, µ2,…, µn) are called

Lagrange multipliers or Karush-Kuhn-Tucker multipliers [5]

or dual variables. The sign “∘” denotes scalar product and

every training data point Xi was assigned by a class yi before.

Suppose (W
*
, b

*
) is solution of constrained optimization

problem specified by (5) then, the pair (W
*
, b

*
) is minimum

point of target function f(W) or target function f(W) gets

minimum at (W
*
, b

*
) with all constraints B�#�, �2 = 1 −1�#� ∘ �� − �2 + D� ≤ 0, ∀� = 1, =>>>>> . Note that W

*
 is called

optimal weight vector and b
*
 is called optimal bias. It is easy

to infer that the pair (W
*
, b

*
) represents the maximum-margin

hyperplane and it is possible to identify (W
*
, b

*
) with the

maximum-margin hyperplane. The ultimate goal of SVM

method is to find out W
*
 and b

*
. According to Lagrangian

duality theorem [4, p. 216] [6, p. 8], the pair (W
*
, b

*
) is the

extreme point of Lagrangian function as follows: #�∗, �∗2 = argmin�,� L#�, �, D, M, N2M∗ = argmaxM≥0�min�,� L#�, �, M, N2�U (7)

Where Lagrangian function L(W, b, ξ, λ, µ) is specified by

(6).

Now it is necessary to solve the Lagrangian duality problem

represented by (7) to find out W
*
. Thus, the Lagrangian

function L(W, b, ξ, λ, µ) is minimized with respect to the

primal variables W, b and maximized with respect to the dual

4 Loc Nguyen: Tutorial on Support Vector Machine

variables λ=(λ1, λ2,…, λn) and µ=(µ1, µ2,…, µn), in turn. If

gradient of L(W, b, ξ, λ, µ) is equal to zero then, L(W, b, ξ, λ, µ)

will gets minimum value with note that gradient of a

multi-variable function is the vector whose components are

first-order partial derivative of such function. Thus, setting the

gradient of L(W, b, ξ, λ, µ) with respect to W, b, and ξ to zero,

we have:

VWW
XW
WYZL#�, �, D, M, N2Z� = 0ZL#�, �, D, M, N2Z� = 0ZL#�, �, D, M, N2ZD� = 0, ∀� = 1, =>>>>>

⟺
VWW
X
WWY� − � M�1���

�
��
 = 0

� M�1�
�

��
 = 0
E − M� − N� = 0, ∀� = 1, =>>>>>

⟹
VWW
X
WWY� = � M�1���

�
��

� M�1�
�

��
 = 0
M� = E − N� , ∀� = 1, =>>>>>

In general, W
*
 is determined by (8) as follows:

\�∗ = ∑ M�1������
∑ M�1����
 = 0M� = E − N�, M� ≥ 0, N� ≥ 0, ∀� = 1, =>>>>> (8)

It is required to determine Lagrange multipliers λ=(λ1, λ2,…, λn) in order to evaluate W
*
. Substituting (8) into Lagrangian

function L(W, b, ξ, λ, µ) specified by (6), we have:

]#M2 = min7,8 L#�, �, D, M, N2 = min7,8 O12 |�|
 − � ∘ O� M�1���
�

��
 P + � M�
�

��
 + � � M�1�
�

��
 + �#E + M� − N�2D�
�

��
 P
= 12 O� M�1���

�
��
 P
 − O� M�1���

�
��
 P ∘ O� M�1���

�
��
 P + � M�

�
��

(According to (8), L(W,b,ξ,λ,µ) gets minimum at � = ∑ M�1������
 and ∑ M�1����
 = 0 and M� = E − N�)
= 12 O� M�1���

�
��
 P ∘ O� M�1���

�
��
 P − O� M�1���

�
��
 P ∘ O� M�1���

�
��
 P + � M�

�
��
 = − 12 O� M�1���

�
��
 P ∘ O� M�1���

�
��
 P + � M�

�
��
= − 12 � � M�M�1�1���� ∘ ����

��

�

��
 + � M�
�

��

Where l(λ) is called dual function represented by (9).

]#M2 = min7,8 L#�, �, D, M, N2 = −

 ∑ ∑ M�M�1�1���� ∘ ������
���
 + ∑ M����
 (9)

According to Lagrangian duality problem represented by

(7), λ=(λ1, λ2,…, λn) is calculated as the maximum point

λ
*
=(λ1

*
, λ2

*
,…, λn

*
) of dual function l(λ). In conclusion,

maximizing l(λ) is the main task of SVM method because the

optimal weight vector W
*
 is calculated based on the optimal

point λ
*
 of dual function l(λ) according to (8).

�∗ = � M�1���
�

��
 = � M�∗1���
�

��

Maximizing l(λ) is quadratic programming (QP) problem,

specified by (10).

maximize^ −

 ∑ ∑ M�M�1�1���� ∘ ������
���
 + ∑ M����
subject to:∑ M�1����
 = 00 ≤ M� ≤ E, ∀� = 1, =>>>>> IWJ
WK

 (10)

The constraints 0 ≤ M� ≤ E, ∀� = 1, =>>>>> are implied from

the equations M� = E − N�, ∀� = 1, =>>>>> when N� ≥ 0, ∀� = 1, =>>>>>.

The QP problem specified by (10) is also known as Wolfe

problem [3, p. 42].

There are some methods to solve this QP problem but this

report introduces a so-called Sequential Minimal

Optimization (SMO) developed by author [7]. The SMO

algorithm is very effective method to find out the optimal

(maximum) point λ
*
 of dual function l(λ).

]#M2 = − 12 � � M�M�1�1���� ∘ ����
��

�
��
 + � M�

�
��

Moreover SMO algorithm also finds out the optimal bias b
*
,

which means that SVM classifier (W
*
, b

*
) is totally determined

by SMO algorithm. The next section described SMO

algorithm in detail.

 Applied and Computational Mathematics 2017; 6(4-1): 1-15 5

2. Sequential Minimal Optimization

The ideology of SMO algorithm is to divide the whole QP

problem into many smallest optimization problems. Each

smallest problem relates to only two Lagrange multipliers. For

solving each smallest optimization problem, SMO algorithm

includes two nested loops as shown in table 1 [7, pp. 8-9]:

Table 1. Ideology of SMO algorithm.

SMO algorithm solves each smallest optimization problem via two nested

loops:

1. The outer loop finds out the first Lagrange multiplier λi whose

associated data point Xi violates KKT condition [5]. Violating KKT

condition is known as the first choice heuristic.

2. The inner loop finds out the second Lagrange multiplier λj according to

the second choice heuristic. The second choice heuristic that

maximizes optimization step will be described later.

3. Two Lagrange multipliers λi and λj are optimized jointly according to

QP problem specified by (10).

SMO algorithm continues to solve another smallest optimization problem.

SMO algorithm stops when there is convergence in which no data point

violating KKT condition is found; consequently, all Lagrange multipliers λ1,

λ2,…, λn are optimized.

Before describing SMO algorithm in detailed, the KKT

condition with subject to SVM is mentioned firstly because

violating KKT condition is known as the first choice heuristic

of SMO algorithm. KKT condition indicates both partial

derivatives of Lagrangian function and complementary

slackness are zero [5]. Referring (8) and (4), the KKT function

of SVM is summarized as (11):

VWX
WY� � ∑ M�1������
∑ M�1����
 � 0M� � E � N� , M� ! 0, N� ! 0, <�M�#1 � 1�#� � �� � �2 � D�2 � 0, <��N�D� � 0, <�

 (11)

When we understand deeply convex optimization, the KKT

condition is the same to the QP problem specified by (10) if

target function and constraint sets are convex. Thus, the

solution (W
*
, λ

*
) is saddle point of Lagrangian function.

KKT condition is analyzed into three following cases [3, p.

7]:

1. If λi=0 then, µi = C – λi = C. It implies ξi=0 from

equation N�D� � 0 . Then, from equation M�#1 �1�#� � �� � �2 � D�2 � 0 we have: 1 � 1�#� � �� � �2 3 0

2. If 0 < λi < C then, we have 1 � 1�#� � �� � �2 � D� �0. Due to µi = C – λi > 0, it implies ξi=0 from equation N�D� � 0. It is easy to infer that: 1 � 1�#� � �� � �2 � 0

3. If λi=C then, we have µi = C – λi = 0 and 1 �1�#� � �� � �2 � D� � 0. Due to µi = 0, it implies ξi ≥ 0

from equation N�D� � 0 . Given ξi ≥ 0 the equation 1 � 1�#� � �� � �2 � D� � 0 leads to: 1 � 1�#� � �� � �2 ! 0

Let _� � 1� � #� � �� � �2 be prediction error, we have: 1�_� � #1�2
 � 1�#� � �� � �2 � 1 � 1�#� � �� � �2

The KKT condition implies: M� � 0 [1�_� 3 00 ` M� ` E [1�_� � 0M� � E [1�_� ! 0Where _� is prediction error:_� � 1� � #� � �� � �2 IWJ
WK

 (12)

Equation (12) expresses directed corollaries from KKT

condition. It is commented on (12) that if Ei=0, the KKT

condition is always satisfied. Data points Xi satisfying

equation yiEi=0 lie on the margin (lie on the two parallel

hyperplanes). These points are called support vectors.

According to KKT corollary, support vectors are always

associated with non-zero Lagrange multipliers such that

0<λi<C. Note, such Lagrange multipliers 0<λi<C are also

called non-boundary multipliers because they are not bounds

such as 0 and C. So, support vectors are also known as

non-boundary data points. It easy to infer from (8)

�S � � M�1���
�

��

that support vectors along with their non-zero Lagrange

multipliers form mainly the optimal weight vector W
*

representing the maximum-margin hyperplane – the SVM

classifier. This is the reason that this classification approach is

called support vector machine (SVM). Fig. 3 [8, p. 5]

illustrates an example of support vectors.

Figure 3. Support vectors.

Violating KKT condition is the first choice heuristic of

SMO algorithm. By negating three corollaries specified by

(12), KKT condition is violated in three following cases: M� � 0 and 1�_� d 00 ` M� ` E and 1�_� e 0M� � E and 1�_� ` 0

By logic induction, these cases are reduced into two cases

specified by (13).

6 Loc Nguyen: Tutorial on Support Vector Machine

M� ` E and 1�_� d 0M� d 0 and 1�_� ` 0Where _� is prediction error:_� � 1�#� � �� � �2 C (13)

Equation (13) is used to check whether given data point Xi

violates KKT condition.

Figure 4. Linear constraint of two Lagrange multipliers.

The main task of SMO algorithm (see table 1) is to optimize

jointly two Lagrange multipliers in order to solve each

smallest optimization problem, which maximizes the dual

function l(λ).

]#M2 � � 12 � � M�M�1�1���� � ����
��

�
��
 � � M�

�
��

Where,

� M�1�
�

��
 � 0
0 3 M� 3 E, <� � 1, =>>>>>

Without loss of generality, two Lagrange multipliers λi and

λj that will be optimized are λ1 and λ2 while all other

multipliers λ3, λ4,…, λn are fixed. Old values of λ1 and λ2 are

denoted M
fgh and M
fgh. Your attention please, old values are

known as current values. Thus, λ1 and λ2 are optimized based

on the set: M
fgh, M
fgh, λ2, λ3,…, λn. The old values M
fgh and

M
fgh are initialized by zero [3, p. 9]. From the condition ∑ M�1����
 � 0, we have: M
fgh1
 � M
fgh1
 � Mi1i � Mj1j � � � M�1� � 0

and M
1
 � M
1
 � Mi1i � Mj1j � � � M�1� � 0

It implies following equation of line with regard to two

variables λ1 and λ2: M
1
 � M
1
 � M
fgh1
 � M
fgh1
 (14)

Equation (14) specifies the linear constraint of two

Lagrange multipliers λ1 and λ2. This constraint is drawn as

diagonal lines in fig. 4 [3, p. 9].

In fig. 4, the box is bounded by the interval [0, C] of

Lagrange multipliers, 0 3 M� 3 E. SMO algorithm moves λ1

and λ2 along diagonal lines so as to maximize the dual function

l(λ). Multiplying two sides of equation M
1
 � M
1
 � M
fgh1
 � M
fgh1

by y1, we have: M
1
1
 � M
1
1
 � M
fgh1
1
 � M
fgh1
1
 [M
 � @M
� M
fgh � @M
fgh

Where s=y1y2. Let, k � M
 � @M
 � M
fgh � @M
fgh

We have (15) as a variant of the linear constraint of two

Lagrange multipliers λ1 and λ2 [3, p. 9]: M
 � k � @M
Where,@ � 1
1
k � M
 � @M
 � M
fgh � @M
fgh (15)

By fixing multipliers λ3, λ4,…, λn, all arithmetic

combinations of M
fgh, M
fgh, λ3, λ4,…, λn are constants denoted

by term “const”. The dual function l(λ) is re-written [3, pp.

9-11]:

]#M2 � � 12 � � M�M�1�1���� � ����
��

�
��
 � � M�

�
��

� � 12 O#M
2
1
1
#�
 � �
2 � #M
2
1
1
#�
 � �
2 � 2M
M
1
1
#�
 � �
2 � 2 O� M�M
1�1
#�� � �
2�
��i P

� 2 O� M�M
1�1
#�� � �
2�
��i P � lm=@nP � M
 � M
 � lm=@n

 Applied and Computational Mathematics 2017; 6(4-1): 1-15 7

� � 12 o#�
 ∘ �
2#M
2
 + #�
 ∘ �
2#M
2
 + 2@#�
 ∘ �
2M
M
 + 2 O� M�M
1�1
#�� ∘ �
2�
��i P + 2 O� M�M
1�1
#�� ∘ �
2�

��i Pp
+ M
 + M
 + lm=@n

Let, q

 = �
 ∘ �
 q

 = �
 ∘ �
 q

 = �
 ∘ �

Let �fgh be the optimal weight vector � = ∑ M�1������
 based on old values of two aforementioned Lagrange multipliers.

Following linear constraint of two Lagrange multipliers specified by (14), we have: �fgh = M
fgh1
�
 + M
fgh1
�
 + ∑ M�1������i = ∑ M�1������
 = �

Let, r� = ∑ M�1���� ∘ ������i = ∑ #M�1���2 ∘ �����i = #∑ M�1������i 2 ∘ �� = ��fgh − M
fgh1
�
 − M
fgh1
�
� ∘ �� = �fgh ∘ �� −M
fgh1
�
 ∘ �� − M
fgh1
�
 ∘ ��

We have [3, p. 10]:

]#M2 = − 12 #q

#M
2
 + q

#M
2
 + 2@q

M
M
 + 21
r
M
 + 21
r
M
2 + M
 + M
 + lm=@n

= − 12 #q

#k − @M
2
 + q

#M
2
 + 2@q

#k − @M
2M
 + 21
r
#k − @M
2 + 21
r
M
2 + #k − @M
2 + M
 + lm=@n

= − 12 #q

k
 − 2@q

kM
 + q

#M
2
 + q

#M
2
 + 2@q

kM
 − 2q

#M
2
 + 21
r
k − 2@1
r
M
 + 21
r
M
2 + #1 − @2M
+ k + lm=@n

= − 12 #q

 + q

 − 2q

2#M
2
 + @q

kM
 − @q

kM
 + @1
r
M
 − 1
r
M
 + #1 − @2M
 − 12 q

k
 − 1
r
k + k + lm=@n

= − 12 #q

 + q

 − 2q

2#M
2
 + @q

kM
 − @q

kM
 + @1
r
M
 − 1
r
M
 + #1 − @2M
 + lm=@n

sBecause −

 q

k
 − 1
r
k + k is also constantu

= −

 #q

 + q

 − 2q

2#M
2
 + #1 − @ + @q

k − @q

k + @1
r
 − 1
r
2M
 + lm=@n

= −

 #q

 + q

 − 2q

2#M
2
 + #1 − @ + @q

k − @q

k + 1
r
 − 1
r
2M
 + lm=@n

Let v = q

 − 2q

 + q

 and assessing the coefficient of λ2, we have [3, p. 11]: 1 − @ + @q

k − @q

k + 1
r
 − 1
r
 = 1 − @ + @q

k − @q

k + 1
#r
 − r
2 = 1 − @ + @q

k − @q

k + 1
��wxy ∘ �
 − M
fgh1
�
 ∘ �
 − M
fgh1
�
 ∘ �
 − �wxy ∘ �
 + M
fgh1
�
 ∘ �
 + M
fgh1
�
 ∘ �
�

= 1 − @ + @q

k − @q

k + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − M
fgh1
1
�
 ∘ �
 − M
fgh1
1
�
 ∘ �
 + M
fgh1
1
�
 ∘ �
+ M
fgh1
1
�
 ∘ �

= 1 − @ + @q

k − @q

k + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − M
fgh1
1
�
 ∘ �
 − M
fgh�
 ∘ �
 + M
fgh1
1
�
 ∘ �
 + M
fgh�
 ∘ �
 = 1 − @ + @q

k − @q

k + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − @q

M
fgh − q

M
fgh + @q

M
fgh + q

M
fgh

= 1 − @ + @q

�M
fgh + @M
fgh� − @q

�M
fgh + @M
fgh� + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − @q

M
fgh − q

M
fgh + @q

M
fgh+ q

M
fgh

8 Loc Nguyen: Tutorial on Support Vector Machine

� 1 − @ + @q

M
fgh + q

M
fgh − @q

M
fgh − q

M
fgh + 1
#�wxy ∘ �
 − �wxy ∘ �
2 − @q

M
fgh − q

M
fgh + @q

M
fgh+ q

M
fgh

= 1 − @ + #@q

 − @q

 − @q

 + @q

2M
fgh + #q

 − q

 − q

 + q

2M
fgh + 1
��fgh ∘ �
 − �fgh ∘ �
�

= 1 − @ + #q

 − 2q

 + q

2M
fgh + 1
��fgh ∘ �
 − �fgh ∘ �
�

= 1 − @ + vM
fgh + 1
��fgh ∘ �
 − �fgh ∘ �
�

#due to v = q

 − 2q

 + q

2

= 1 − @ + vM
fgh + 1
 zs1
 − ��fgh ∘ �
 − �fgh�u − s1
 − ��fgh ∘ �
 − �fgh�u{ − 1
1
 + 1
1

(Where �fgh is the old value of the bias b)

= 1 − @ + vM
fgh + 1
 zs1
 − ��fgh ∘ �
 − �fgh�u − s1
 − ��fgh ∘ �
 − �fgh�u{ − 1 + @

= vM
fgh + 1
 zs1
 − ��fgh ∘ �
 − �fgh�u − s1
 − ��fgh ∘ �
 − �fgh�u{ = vM
fgh + 1
�_
fgh − _
fgh�

According to (13), _
fgh and _
fgh are old prediction errors on X2 and X1, respectively: _�fgh = 1� − ��wxy ∘ �� − �fgh�

Recall that we had:

]#M2 = − 12 #q

 + q

 − 2q

2#M
2
 + #1 − @ + @q

k − @q

k + 1
r
 − 1
r
2M
 + lm=@n

Thus, equation (16) specifies dual function with subject to the second Lagrange multiplier λ2 that is optimized in conjunction

with the first one λ1 by SMO algorithm.

]#M
2 = −

 v#M
2
 + svM
fgh + 1
�_
fgh − _
fgh�u M
 + lm=@nWhere_|old = 1| − s�m]} ∘ �| − �olduv = q

 − 2q

 + q

 = �
 ∘ �
 − 2�
 ∘ �
 + �
 ∘ �
�wxy = M
fgh1
�
 + M
fgh1
�
 + ∑ M�1������iM
 = k − @M
k = M
 + @M
 = M
fgh + @M
fgh@ = 1
1

 (16)

The first and second derivatives of dual function l(λ2) with regard to λ2 are: d]#M
2dM
 = −vM
 + vM
fgh + 1
�_
fgh − _
fgh�

d
]#M
2d#M
2
 = −v

The quantity η is always non-negative due to: v = �
 ∘ �
 − 2�
 ∘ �
 + �
 ∘ �
 = #�
 − �
2 ∘ #�
 − �
2 = |�
 − �
|
 ≥ 0

Recall that the goal of QP problem is to maximize the dual function l(λ2) so as to find out the optimal multiplier (maximum

point) M
∗ . The second derivative of l(λ2) is always non-negative and so, l(λ2) is concave function and there always exists the

maximum point M
∗ . The function l(λ2) gets maximal if its first derivative is equal to zero: d]#M
2dM
 = 0 ⟹ −vM
 + vM
fgh + 1
�_
fgh − _
fgh� = 0 ⟹ M
 = M
fgh + 1
�_
fgh − _
fgh�v

 Applied and Computational Mathematics 2017; 6(4-1): 1-15 9

Therefore, the new values of λ1 and λ2 that are solutions of the smallest optimization problem of SMO algorithm are:

M
S � M
~�� � M
fgh � ��s�����������u�

M
S � M
~�� � M
fgh � @M
fgh � @M
~�� � M
fgh � @M
fgh � @M
fgh � @ ��s�����������u� � M
fgh � @ ��s�����������u�

Obviously, M
~�� is totally determined in accordance with M
~��, thus we should focus on M
~��. Because multipliers λi

are bounded, 0 3 M� 3 E, it is required to find out the range of M
~��. Let L and U be lower bound and upper bound of M
~��,

respectively. We have [3, pp. 11-13]:

1. If s = 1, then λ1 + λ2 = γ. There are two sub-cases (see fig.

5 [3, p. 12]) as follows [3, p. 11]:

If γ ≥ C then L = γ – C and U = C.

If γ < C then L = 0 and U = γ.

2. If s = –1, then λ1 – λ2 = γ. There are two sub-cases (see

fig. 6 [3, p. 13]) as follows [3, pp. 11-12]:

If γ ≥ 0 then L = 0 and U = C – γ.

If γ < 0 then L = –γ and U = C.

Figure 5. Lower bound and upper bound of two new multipliers in case s = 1.

Figure 6. Lower bound and upper bound of two new multipliers in case s =

–1.

Table 2. SMO algorithm optimizes jointly two Lagrange multipliers.

If η > 0: M
~�� � M
fgh � 1
�_
fgh � _
fgh�v

M
S � M
~��,�g����h � \L if M
~�� ` LM
~�� if L 3 M
~�� 3 �� if � ` M
~��

If η = 0: M
S � M
~��,�g����h � argmax^� �]#M
 � L2,]#M
 � �2�

Where prediction errors _�fgh and dual function l(λ2) are specified by (16).

Lower bound L and upper bound U are described as follows:

1. If s=1 and γ > C then L = γ – C and U = C.

2. If s=1 and γ < C then L = 0 and U = γ.
3. If s=–1 and γ > 0 then L = 0 and U = C – γ.

4. If s=–1 and γ < 0 then L = –γ and U = C.

Where k � M
 � @M
 � M
fgh � @M
fgh according to (15).
Let ∆λ1 and ∆λ2 represent the changes in multipliers λ1 and λ2, respectively. ΔM
 � M
S � M
fgh ΔM
 � �@ΔM

The new value of the first multiplier λ1 is re-written in accordance with the

change ∆λ1. M
S � M
~�� � M
fgh � ΔM

The value M
~�� is clipped as follows [3, p. 12]:

M
~��,�g����h � \L if M
~�� ` LM
~�� if L 3 M
~�� 3 �� if � ` M
~��

In the case η=0 that M
~�� is undetermined, M
~��,�g����h is

assigned by which bound (L or U) maximizes the dual

function l(λ2). M
~��,�g����h � argmax^� �]#M
 � L2,]#M
 � �2� if v � 0

In general, table 2 summarizes how SMO algorithm

optimizes jointly two Lagrange multipliers.

Basic tasks of SMO algorithm to optimize jointly two

Lagrange multipliers are now described in detailed. The

ultimate goal of SVM method is to determine the classifier

(W*, b*). Thus, SMO algorithm updates optimal weight W* and

optimal bias b* based on the new values M
~�� and M
~�� at

each optimization step.

Table 3. SMO algorithm.

All multipliers λi (s), weight vector W, and bias b are initialized by zero.

SMO algorithm divides the whole QP problem into many smallest

optimization problems. Each smallest optimization problem focuses on
optimizing two joint multipliers. SMO algorithm solves each smallest

optimization problem via two nested loops:

1. The outer loop alternates one sweep through all data points and as
many sweeps as possible through non-boundary data points (support

vectors) so as to find out the data point Xi that violates KKT condition

according to (13). The Lagrange multiplier λi associated with such Xi
is selected as the first multiplier aforementioned as λ1. Violating KKT

condition is known as the first choice heuristic of SMO algorithm.
2. The inner loop browses all data points at the first sweep and

non-boundary ones at later sweeps so as to find out the data point Xj

that maximizes the deviation �_�fgh � _�fgh� where _�fgh and _�fgh are

prediction errors on Xi and Xj, respectively, as seen in (16). The

Lagrange multiplier λj associated with such Xj is selected as the second

multiplier aforementioned as λ2. Maximizing the deviation �_
fgh �_
fgh� is known as the second choice heuristic of SMO algorithm.

a. Two Lagrange multipliers λ1 and λ2 are optimized jointly, which

results optimal multipliers M
~�� and M
~��, as seen in table 2.
b. SMO algorithm updates optimal weight W* and optimal bias b*

based on the new values M
~�� and M
~�� according to (17).
SMO algorithm continues to solve another smallest optimization problem.

SMO algorithm stops when there is convergence in which no data point
violating KKT condition is found. Consequently, all Lagrange multipliers λ1,

λ2,…, λn are optimized and the optimal SVM classifier (W*, b*) is totally

determined.

10 Loc Nguyen: Tutorial on Support Vector Machine

Let �S � �~�� be the new (optimal) weight vector,

according (11) we have: �~�� � ∑ M�1������
 � M
~��1
�
 � M
~��1
�
 � ∑ M�1������i

Let �S � �fgh be the old weight vector: �fgh � ∑ M�1������
 � M
fgh1
�
 � M
fgh1
�
 � ∑ M�1������i

It implies: �S � �~�� � M
~��1
�
 � M
fgh1
�
 � M
~��1
�
 �M
fgh1
�
 � �fgh

Let _
~�� be the new prediction error on X2: _
~�� � 1
 � #�~�� � �
 � �~��2

The new (optimal) bias �S � �~�� is determining by

setting _
~�� � 0 with reason that the optimal classifier (W*,

b*) has zero error. _
~�� � 0 4 1
 � #�~�� � �
 � �~��2 � 0 4 �~�� ��~�� � �
 � 1

In general, equation (17) specifies the optimal classifier (W
*
,

b
*
) resulted from each optimization step of SMO algorithm. �S � �~�� � �M
~�� � M
fgh�1
�
��M
~�� � M
fgh�1
�
 � �fghWhere �fgh is the old value of weight vector,of course we have:�fgh � M
fgh1
�
 � M
fgh1
�
 � ∑ M�1������i

 (17)

By extending the ideology shown in table 1, SMO

algorithm is described particularly in table 3 [7, pp. 8-9] [3, p.

14].

When both optimal weight vector W
*
 and optimal bias b

*

are determined by SMO algorithm or other methods, the

maximum-margin hyperplane known as SVM classifier is

totally determined. According to (1), the equation of

maximum-margin hyperplane is expressed in (18) as follows: �S � � � �S � 0 (18)

For any data point X, classification rule derived from

maximum-margin hyperplane (SVM classifier) is used to

classify such data point X. Let R be the classification rule,

equation (19) specifies the classification rule as the sign

function of point X.

� � @�B=#�S � � � �S2 � ��1 if �S � � � �S ! 0�1 if �S � � � �S ` 0 (19)

After evaluating R with regard to X, if R(X) =1 then, X

belongs to class +1; otherwise, X belongs to class –1. This is

the simple process of data classification.

The next section illustrates how to apply SMO into

classifying data points where such data points are documents.

3. An Example of Data Classification by

SVM

Given a set of classes C = {computer science, math}, a set

of terms T = {computer, derivative} and the corpus � =

{doc1.txt, doc2.txt, doc3.txt, doc4.txt}. The training corpus

(training data) is shown in following table 4 in which cell (i, j)

indicates the number of times that term j (column j) occurs in

document i (row i); in other words, each cell represents a term

frequency and each row represents a document. There are four

documents and each document belongs to only one class:

computer science or math.

Table 4. Term frequencies of documents (SVM).

 computer derivative class

doc1.txt 20 55 math

doc2.txt 20 20 computer science

doc3.txt 15 30 math

doc4.txt 35 10 computer science

Let Xi be data points representing documents doc1.txt,

doc2.txt, doc3.txt, doc4.txt, doc5.txt. We have X1=(20,55),

X2=(20,20), X3=(15,30), and X4=(35,10). Let yi=+1 and yi=–1

represent classes “math” and “computer science”, respectively.

Let x and y represent terms “computer” and “derivative”,

respectively and so, for example, it is interpreted that the data

point X1=(20,55) has abscissa x=20 and ordinate y=55.

Therefore, term frequencies from table 4 is interpreted as

SVM input training corpus shown in table 5.

Table 5. Training corpus (SVM).

 x y yi

X1 20 55 +1

X2 20 20 –1

X3 15 30 +1

X4 35 10 –1

Figure 7. Data points in training data (SVM).

 Applied and Computational Mathematics 2017; 6(4-1): 1-15 11

Data points X1, X2, X3, and X4 are depicted in fig. 7 in which

classes “math” (yi=+1) and “computer” (yi=–1) are

represented by shading and hollow circles, respectively. Note

that fig. 7 and fig. 8 in this report are drawn by the software

Graph http://www.padowan.dk developed by author Ivan

Johansen [9].

By applying SMO algorithm described in table 3 into

training corpus shown in table 5, it is easy to calculate optimal

multiplier λ*, optimal weight vector W* and optimal bias b*.

Firstly, all multipliers λi (s), weight vector W, and bias b are

initialized by zero. This example focuses on perfect separation

and so, E � �∞. M
 � M
 � Mi � Mj � 0 � = #0,02 � = 0 E = +∞

At the first sweep:

The outer loop of SMO algorithm searches for a data point

Xi that violates KKT condition according to (13) through all

data points so as to select two multipliers that will be

optimized jointly. We have: _
 = 1
 − #� ∘ �
 − �2 = 1 − �#0,02 ∘ #20,552 − 0� = 1

Due to λ1=0 < C=+∞ and y1E1=1*1=1 > 0, point X1 violates

KKT condition according to (13). Then, λ1 is selected as the

first multiplier. The inner loop finds out the data point Xj that

maximizes the deviation �_�fgh − _
fgh�. We have:

_
 = 1
 − #� ∘ �
 − �2 = −1 − �#0,02 ∘ #20,202 − 0� =−1 |_
 − _
| = |−1 − 1| = 2 _i = 1i − #� ∘ �i − �2 = 1 − �#0,02 ∘ #15,302 − 0� = 1 |_i − _
| = |1 − 1| = 0 _j = 1j − #� ∘ �j − �2 = −1 − �#0,02 ∘ #35,102 − 0� =−1 |_j − _
| = |−1 − 1| = 2

Because the deviation |_
 − _
| is maximal, the multiplier

λ2 associated with X2 is selected as the second multiplier. Now

λ1 and λ2 are optimized jointly according to table 2. v = �
 ∘ �
 − 2�
 ∘ �
 + �
 ∘ �
 = |�
 − �
|
 =|#20,552 − #20,202|
 = |#0,352|
 = 35
 = 1225 @ = 1
1
 = 1 ∗ #−12 = −1 k = M
fgh + @M
fgh = 0 + #−12 ∗ 0 = 0

M
~�� = M
fgh + ��#�����2� = 0 + �
∗#�
�
2

� =

�

∆M
 = M
~�� − M
fgh =

� − 0 =

�

M
~�� = M
fgh − 1
1
∆M
 = 0 − 1 ∗ #−12 ∗

� =

�

Optimal classifier (W
*
, b

*
) is updated according to (17).

�∗ = �~�� = �M
~�� − M
fgh�1
�
 + �M
~�� − M
fgh�1
�
 +
�fgh = s

� − 0u ∗ 1 ∗ #20,552 + s

� − 0u ∗ #−12 ∗

#20,202 + #0,02 = s0,
i�u

�∗ = �~�� = �~�� ∘ �
 − 1
 = s0,
i�u ∘ #20,202 − #−12 =
��

Now we have:

M
 = M
~�� =

� , M
 = M
~�� =

� , Mi = Mj = 0

� = �∗ = s0,
i�u

� = �∗ =
��

The outer loop of SMO algorithm continues to search for

another data point Xi that violates KKT condition according to

(13) through all data points so as to select two other

multipliers that will be optimized jointly. We have:

_
 = 1
 − #� ∘ �
 − �2 = −1 − zs0,
i�u ∘ #20,202 −
�� { =0

_i = 1i − #� ∘ �i − �2 = 1 − zs0,
i�u ∘ #15,302 −
�� { =
��

Due to λ3=0 < C and y3E3=1*(10/7) > 0, point X3 violates

KKT condition according to (13). Then, λ3 is selected as the

first multiplier. The inner loop finds out the data point Xj that

maximizes the deviation �_�fgh − _ifgh�. We have:

_
 = 1
 − #� ∘ �
 − �2 = 1 − zs0,
i�u ∘ #20,552 −
�� { = 0

|_
 − _i| = �0 −
�� � =
��

_
 = 1
 − #� ∘ �
 − �2 = −1 − zs0,
i�u ∘ #20,202 −
�� { =0

|_
 − _i| = �0 −
�� � =
��

_j = 1j − #� ∘ �j − �2 = −1 − zs0,
i�u ∘ #35,102 −
�� { =��

|_j − _i| = ��� −
�� � = j�

Because both deviations |_
 − _i| and |_
 − _i| are

maximal, the multiplier λ2 associated with X2 is selected

12 Loc Nguyen: Tutorial on Support Vector Machine

randomly among {λ1, λ2} as the second multiplier. Now λ3 and

λ2 are optimized jointly according to table 2. v � �i � �
 � 2�i ∘ �
 + �i ∘ �
 = |�i − �
|
 =|#15,302 − #20,202|
 = |#−5,102|
 = #−52
 + 10
 = 125 @ = 1i1
 = 1 ∗ #−12 = −1

k = Mifgh + @M
fgh = 0 + #−12 ∗

� = −

�

L = −k =

�

� = E = +∞

(L and U are lower bound and upper bound of M
~��)

M
~�� = M
fgh + ��#���� 2� =

� + �
∗s���¡¢ u

� =
�

�

∆M
 = M
~�� − M
fgh =
�

� −

� =

��

Mi~�� = Mifgh − 1i1
∆M
 = 0 − 1 ∗ #−12 ∗

�� =

��

Optimal classifier (W
*
, b

*
) is updated according to (17).

�∗ = �~�� = �Mi~�� − Mifgh�1i�i + �M
~�� − M
fgh�1
�
 +
�fgh = s

�� − 0u ∗ 1 ∗ #15,302 + s
�

� −

�u ∗ #−12 ∗

#20,202 + s0,
i�u = s−
i� , �i�u

�∗ = �~�� = �~�� ∘ �
 − 1
 = s−
i� , �i�u ∘ #20,202 −#−12 =
i�

Now we have:

M
 =

� , M
 = M
~�� =
�

� , Mi = Mi~�� =

�� , Mj = 0

� = �∗ = s−
i� , �i�u

� = �∗ =
i�

The outer loop of SMO algorithm continues to search for

another data point Xi that violates KKT condition according to

(13) through all data points so as to select two other

multipliers that will be optimized jointly. We have:

_j = 1j − #� ∘ �j − �2 = −1 − zs−
i� , �i�u ∘ #35,102 −

i� { =
£�

Due to λ4=0 < C and y4E4=(–1)*(18/7) < 0, point X4 does not

violate KKT condition according to (13). Then, the first sweep

of outer loop stops with the results as follows:

M
 =

� , M
 = M
~�� =
�

� , Mi = Mi~�� =

�� , Mj = 0

� = �∗ = s−
i� , �i�u

� = �∗ =
i�

Note that λ1 is approximated to 0 because it is very small.

At the second sweep:

The outer loop of SMO algorithm searches for a data point

Xi that violates KKT condition according to (13) through

non-boundary data points so as to select two multipliers that

will be optimized jointly. Recall that non-boundary data points

(support vectors) are ones whose associated multipliers are not

bounds 0 and C (0<λi<C). At the second sweep, there are three

non-boundary data points X1, X2 and X3. We have:

_
 = 1
 − #� ∘ �
 − �2 = 1 − zs−
i� , �i�u ∘ #20,552 −

i� { = −4

Due to M
 = 2/1225 > 0 and y1E1 = 1*(–4) < 0, point X1

violates KKT condition according to (13). Then, λ1 is selected

as the first multiplier. The inner loop finds out the data point Xj

among non-boundary data points (0<λi<C) that maximizes the

deviation �_�fgh − _
fgh�. We have:

_
 = 1
 − #� ∘ �
 − �2 = −1 − zs−
i� , �i�u ∘ #20,202 −

i� { = 0

|_
 − _
| = |0 − #−42| = 4

_i = 1i − #� ∘ �i − �2 = 1 − zs−
i� , �i�u ∘ #15,302 −

i� { = 0

|_i − _
| = |0 − #−42| = 4

Because the deviation |_
 − _
| is maximal, the multiplier

λ2 associated with X2 is selected as the second multiplier. Now

λ1 and λ2 are optimized jointly according to table (2). v = �
 ∘ �
 − 2�
 ∘ �
 + �
 ∘ �
 = |�
 − �
|
 =|#20,552 − #20,202|
 = |#0,352|
 = 35
 = 1225 @ = 1
1
 = 1 ∗ #−12 = −1

k = M
fgh + @M
fgh =

� + #−12 ∗
�

� = −
j

�

L = −k =
j

� =

��

� = E = +∞

(L and U are lower bound and upper bound of M
~��)

M
~�� = M
fgh + ��#�����2� =
�

� + �
∗���#�j2�

� =
�

� −j

� =

� < L =

��

⟹ M
~�� = L =

��

 Applied and Computational Mathematics 2017; 6(4-1): 1-15 13

ΔM
 = M
~�� − M
fgh =

�� −
�

� = −

�

M
~�� = M
fgh − 1
1
ΔM
 =

� − 1 ∗ #−12 ∗ s−

�u = 0

Optimal classifier (W
*
, b

*
) is updated according to (17).

�∗ = �~�� = �M
~�� − M
fgh�1
�
 + �M
~�� − M
fgh�1
�
 +
�fgh = s0 −

�u ∗ 1 ∗ #20,552 + s

�� −
�

�u ∗ #−12 ∗

#20,202 + s−
i� , �i�u = s−
i� , ji�u

�∗ = �~�� = �~�� ∘ �
 − 1
= z− 235 , 435{ ∘ #20,202 − #−12 = 157

The second sweep stops with results as follows:

M
 = M
~�� = 0, M
 = M
~�� =

�� , Mi =

�� , Mj = 0

� = �∗ = s−
i� , ji�u

� = �∗ =
��

At the third sweep:

The outer loop of SMO algorithm searches for a data point

Xi that violates KKT condition according to (13) through

non-boundary data points so as to select two multipliers that

will be optimized jointly. Recall that non-boundary data points

(support vectors) are ones whose associated multipliers are not

bounds 0 and C (0<λi<C). At the third sweep, there are only

two non-boundary data points X2 and X3. We have:

_
 = 1
 − #� ∘ �
 − �2 = −1 − zs−
i� , ji�u ∘ #20,202 −

�� { = 0

_i = 1i − #� ∘ �i − �2 = 1 − zs−
i� , ji�u ∘ #15,302 −

�� { = j�

Due to Mi = 2/175 < E = +∞ and y3E3 = 1*(4/7) > 0,

point X3 violates KKT condition according to (13). Then, λ3 is

selected as the first multiplier. Because there are only two

non-boundary data points X2 and X3, the second multiplier is λ2.

Now λ3 and λ2 are optimized jointly according to table (2).

v = �i ∘ �
 − 2�i ∘ �
 + �i ∘ �
 = |�i − �
|
 =|#15,302 − #20,202|
 = |#−5,102|
 = #−52
 + #102
 =125

@ = 1i1
 = 1 ∗ #−12 = −1

k = Mifgh + @M
fgh =

�� + #−12 ∗

�� = 0

L = 0

� = E − k = +∞

(L and U are lower bound and upper bound of M
~��)

M
~�� = M
fgh + 1
#_
 − _i2v = 2175 + −1 ∗ s0 − j�u125 = 2125

∆M
 = M
~�� − M
fgh = 2125 − 2175 = 4875

Mi~�� = Mifgh − 1i1
∆M
 = 2175 − 1 ∗ #−12 ∗ 4875 = 2125

Optimal classifier (W
*
, b

*
) is updated according to (17).

�∗ = �~�� = �Mi~�� − Mifgh�1i�i + �M
~�� − M
fgh�1
�
 +
�fgh = s

� −

��u ∗ 1 ∗ #15,302 + s

� −

��u ∗ 1 ∗

#20,202 + s−
i� , ji�u = s
£
�� ,

i�u

�∗ = �~�� = �~�� ∘ �
 − 1
 = s
£
�� ,

i�u ∘ #20,202 −#−12 = ij�i�

The third sweep stops with results as follows:

M
 = 0, M
 = M
~�� = 2125 , Mi = Mi~�� = 2125 , Mj = 0

� = �∗ = s
£
�� ,

i�u

� = �∗ = ij�i�

After the third sweep, two non-boundary multipliers were

optimized jointly. You can sweep more times to get more

optimal results because data point X3 still violates KKT

condition as follows:

_i = 1i − #� ∘ �i − �2 = 1 − zs
£
�� ,

i�u ∘ #15,302 −
ij�i� { = − i
i�

Due to Mi = 2/125 > 0 and y3E3 = 1*(–32/35) < 0, point

X3 violates KKT condition according to (13). But it takes a lot

of sweeps so that SMO algorithm reaches absolute

convergence (E3=0 and hence, no KKT violation) because the

penalty C is set to be +∞, which implicates the perfect

separation. This is the reason that we can stop the SMO

algorithm at the third sweep in this example. In general, you

can totally stop the SMO algorithm after optimizing two last

multipliers which implies that all multipliers were optimized.

As a result, W
*
 and b

*
 were determined:

�∗ = s
£
�� ,

i�u

�∗ = ij�i�

The maximum-margin hyperplane (SVM classifier) is

14 Loc Nguyen: Tutorial on Support Vector Machine

totally determined as below:

�S � � � �S � 0 [s
£
�� ,

i�u � #�, 12 � ij�i� � 0

[1 � �0.3� � 28.9

Figure 8. An example of maximum-margin hyperplane.

The SVM classifier 1 � �0.3� � 28.9 is depicted in fig. 8.

Where the maximum-margin hyperplane is draw as bold

line. Data points X2 and X3 are support vectors because their

associated multipliers λ2 and λ3 are non-zero

(0<λ2=2/125<C=+∞, 0<λ3=2/125<C=+∞). Your attention

please, that weight vector W is depicted as an arrow indicates

mainly its direction. The scale of weight vector � � #18/175,12/352

in fig. 8 is very small.

Derived from the above classifier 1 � �0.3� � 28.9, the

classification rule is:

� � @�B=#0.3� � 1 � 28.9 2 � �1 if 0.3� � 1 � 28.9 ! 0�1 if 0.3� � 1 � 28.9 ` 0

Now we apply classification rule � � @�B=#0.3� � 1 � 28.9 2

into document classification. Suppose the numbers of times

that terms “computer” and “derivative” occur in document D

are 40 and 10, respectively. We need to determine which class

document D=(40, 10) is belongs to. We have: �#ª2 � @�B=#0.3 S 40 � 10 � 28.92 � @�B=#�6.92 � �1

Hence, it is easy to infer that document D belongs to class

“computer science” (yi = –1).

4. Conclusion

In general, the main ideology of SVM is to determine the

separating hyperplane that maximizes the margin between two

classes of training data. Based on theory of optimization, such

optimal hyperplane is specified by the weight vector W
*
 and

the bias b
*
 which are solutions of constrained optimization

problem. It is proved that there always exist these solutions

but the main issue of SVM is how to find out them when the

constrained optimization problem is transformed into

quadratic programming (QP) problem. SMO which is the

most effective algorithm divides the whole QP problem into

many smallest optimization problems. Each smallest

optimization problem focuses on optimizing two joint

multipliers. It is possible to state that SMO is the best

implementation version of the “architecture” SVM.

SVM is extended by concept of kernel function. The dot

product in separating hyperplane equation is the simplest

kernel function. Kernel function is useful in case of

requirement of data transformation [1, p. 21]. There are many

pre-defined kernel functions available for SVM. Readers are

recommended to research more about kernel functions [10].

 Applied and Computational Mathematics 2017; 6(4-1): 1-15 15

References

[1] M. Law, "A Simple Introduction to Support Vector Machines,"
2006.

[2] Wikibooks, "Support Vector Machines," Wikimedia
Foundation, 1 January 2008. [Online]. Available:
http://en.wikibooks.org/wiki/Support_Vector_Machines.
[Accessed 2008].

[3] V. G. Honavar, "Sequential Minimal Optimization for SVM,"
Vasant Honavar homepage, Ames, Iowa, USA.

[4] S. Boyd and L. Vandenberghe, Convex Optimization, New
York, NY: Cambridge University Press, 2009, p. 716.

[5] Wikipedia, "Karush–Kuhn–Tucker conditions," Wikimedia
Foundation, 4 August 2014. [Online]. Available:
http://en.wikipedia.org/wiki/Karush–Kuhn–Tucker_conditions.
[Accessed 16 November 2014].

[6] Y.-B. Jia, "Lagrange Multipliers," 2013.

[7] J. C. Platt, "Sequential Minimal Optimization: A Fast
Algorithm for Training Support Vector Machines," Microsoft
Research, 1998.

[8] A. W. Moore, "Support Vector Machines," Available at
http://www. cs. cmu. edu/~awm/tutorials, 2001.

[9] I. Johansen, Graph software, GNU General Public License,
2012. G. Eason, B. Noble, and I. N. Sneddon, “On certain
integrals of Lipschitz-Hankel type involving products of Bessel
functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp.
529–551, April 1955. (References).

[10] N. Cristianini, "Support Vector and Kernel Machines," in The
28th International Conference on Machine Learning (ICML),
Bellevue, Washington, USA, 2001.

