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Abstract: This paper presents a survey of Singular Perturbations Approximation (SPA) method and meta-heuristic 

techniques for order reduction of linear systems in discrete case. A comparison of intelligent techniques to determine the 

reduced order model of higher order linear systems is presented. Two approaches are considered: Particle Swarm Optimization 

(PSO) and Shuffled Frog Leaping Algorithm (SFLA). These methods are employed to reduce the higher order model and based 

on the minimization of the Mean Square Error (MSE) between the transient responses of original higher order model and the 

reduced order model pertaining to a unit step input. Each method is illustrated through numerical examples. 

Keywords: Order Reduction Techniques, Singular Perturbations Approximations Method, Meta-Heuristics Methods,  
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1. Introduction 

Reduction of high order systems (HOS) to lower order 

models has been an important subject area in control 

engineering for many years. The exact analysis of high order 

systems is both tedious and costly. The problem of reducing a 

HOS to its reduced order model (ROM) is considered 

important in analysis, synthesis and simulation of practical 

systems. 

The model order reduction problem has been investigated 

in literature extensively, [1], [2], [3], [4], [5], [6], [7], [8], [9], 

[10], [11], [12], [13], several methods are available for large-

scale system modeling [14]. Most of the conventional 

methods, developed so far, are mostly available in continuous 

domain [15]. However, the high order systems can be 

reduced in continuous as well as in discrete domain. 

In recent years, one of the most promising research fields 

has been "Evolutionary Techniques" [16], [17], an area 

utilizing analogies with nature or social systems. These 

methods are stochastic search techniques with biological 

foundation. 

Recently, Particle Swarm Optimization (PSO) and 

Shuffled Frog Leaping Algorithm (SFLA) appeared as a 

promising algorithm for handling the optimization problems 

in discrete case. 

PSO [18] is a population-based stochastic optimization 

technique, inspired by social behavior of bird flocking or fish 

schooling. PSO shares many similarities with the Genetic 

Algorithms (GAs) [19], such as initialization of population of 

random solutions and search for the optimal by updating 

generations. 

However, unlike GAs, PSO has no evolution operators, 

such as crossover and mutation. One of the most promising 

advantages of PSO over the GAs is its algorithmic simplicity 

when it uses a few parameters and is easy to implement. 

Instead of using genes in GAs, SFLA [20] uses memes to 

improve spreading and convergence ratio. SFLA, in essence, 

combines the benefit of the local search tool of PSO and the 

idea of mixing information from parallel local searches, to 

move toward a global solution which is called a Shuffled 

Complex Solution. 

This paper presents the application and performance 

comparison of SPA method, PSO and SFLA optimization 

techniques, for order reduction of linear systems in discrete case. 
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2. Order Reduction Techniques 

Given a high order discrete time stable system of nth-order, 

G(z), that is described by the z-transfer function: 

G(z) = 
N(z)

D(z)
 = 

∑ aiz
in-1

i=0

∑ bjz
in

j=0

              (1) 

where ai and bj are scalar constants. 

The purpose is to find a reduced rth-order model, R(z), 

that has a transfer function (r < n): 

R(z) = 
Nr(z)

Dr(z)
 = 

∑ ciz
i�-1

i=0

∑ djz
i�

j=0

              (2) 

where �i and �j are scalar constants. 

The R(z) approximates G(z)  in some sense and retains 

the important characteristics of G(z). 

2.1. Singular Perturbation Approximation Method 

In mathematics, more precisely in perturbation theory, a 

singular perturbation problem is a problem containing a small 

parameter that cannot be approximated by setting the 

parameter value to zero. This is in contrast to regular 

perturbation problems, for which an approximation can be 

obtained by simply setting the small parameter to zero. 

The perturbation methods [21] are commonly used by 

mathematicians to approach the equations of many systems. 

They provide solutions approached by switching to the limit 

close to the real system. The approach by the method of 

multi-time scale systems, or singular perturbation [21], [22] 

enables the supply of simplified models by decoupling slow 

and fast dynamics of the global system and guarantees the 

fact that each model takes into account the dynamics of the 

other. 

The discrete systems with the property of two-time scale 

[22], [23] and can be written under the following form: 

�x1(k+1)

x2(k+1)
� = �A11 A*12

A21 A*22

	 � x1(k)

µ x2(k)
� + � B1

B*2

	  u(k)     (3) 


 = � C1 C*2� � x1

µ x2
	                    (4) 

with: 


1���ϵ �n1: slow vectors of the system  


2���ϵ �n2: fast vectors of the system  

A*ij=
Aij

µ
, B*2=

B2

µ
, C*2=

C2

µ
, n1+n2=n 

�: separability degree. 

The main difficulty of singular perturbation method is to 

show the small µ parameter of way to describe the system in 

the standard form. The separation of states, into those are 

slow and those are fast, is generally non trivial. A 

permutation and/or scaling of states are required to obtain 

separable model. 

Some analytical methods of dynamics identification and 

iterative techniques allow, in most cases, to get around this 

difficulty. 

The verification of two-time scale conditions (5) requires a 

packaging of the characteristic matrix’s system. The 

arrangement often requires changes such as permutation and 

calibration. 

A11 invertible, 

�A11
-1� < min � �

��‖A0‖�‖A12‖‖L0‖�
‖A0‖�‖A12‖‖L0‖

�‖A0‖�‖A12‖‖A0‖‖�0‖�2���‖A0‖‖A12‖‖L0‖�� (5) 

with: L0 = -A21 A11
-1

 

The "arrow form characteristic" matrix [1] is proving very 

interesting as well for analysis and synthesis of systems that 

for the order reduction of the process. 

Consider the following n-th order discrete time system: 

x(k+1) = A x(k) + B u(k)              (6) 

y(k) = C  x(k)                  (7) 

where k is the time index, u(k) is the input, x ∈ R
n
 is the 

state vector, u ∈ R
p
 and y ∈ R

m
 are the input and output 

vectors, respectively, and A ∈ R
n×n

, B ∈ R
n×p

, C ∈ R
m×n

 

are matrices of appropriate dimensions with n, p and m being 

the system order, number of inputs and number of outputs 

respectively. 

The corresponding desired reduced r-th order model is 

defined as follows: 

xr(k+1) = Ar xr(k) + Br u(k)           (8) 


r(k) = Cr xr(k)                (9) 

where 
r��� is the r-state vector, 
r��� is the reduced order 

model output of the system at the kth sampling instant and Ar, 

Br and Cr are matrices with appropriate dimensions. 

Using SPA method the reduced model is obtained as 

follows [24]: 

Ar = A22 + A21 �11
-1

 A12           (10) 

Br = B1 + A21 �11
-1

 B2            (11) 

Cr = C1 + C2 �11
-1

 A12            (12) 

To test the performance of the previous method, we 

propose a comparison with meta-heuristic-based techniques 

for order reduction. 

2.2. Meta-Heuristic-Based Techniques for Order Reduction 

In conventional mathematical optimization techniques, 

problem formulation must satisfy mathematical restrictions 

with advanced computer algorithm requirement, and may 

suffer from numerical problems. Further, in a complex 

system consisting of number of controllers, the optimization 

of several controller parameters using the conventional 

optimization is very complicated process and sometimes gets 

struck at local minima resulting in sub-optimal controller 

parameters. 
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Recently, meta-heuristics-based techniques for order 

reduction have appeared [25], [26] and are now ahead of the 

conventional methods, they are generally based on PSO and 

SFLA. The process steps of the meta-heuristic-based 

techniques procedure, for model order reduction, are 

illustrated by the block diagram shown in Figure 1. 
 

 

Figure 1. Meta-heuristic methods for model order reduction procedure. 

2.3. Overview of Particle Swarm Optimization Method 

In recent years, one of the most promising research field 

has been "Heuristics from Nature", an area utilizing analogies 

with nature or social systems. 

The Particle Swarm Optimization [27], [28], [29] is an 

evolutionary computational model that optimizes a problem 

by improving a candidate solution. It is a population-based 

search algorithm where each individual is referred to as 

particle and represents a candidate solution. These particles 

are attracted towards the best solution found by particle’s 

neighborhood and by the particle. 

Each particle has a position and velocity vector 

representing the potential solution to the problem. 

The PSO use the following equations to update its velocity 

and position [26]: 

 (k+1) = w  (k)+c1r1!pbest -	x(k)'+c2r2!gbest	-	x(k)'	 (13) 
�k+1� = x(k) +  (k+1)            (14) 

where x and   represent the velocity and the position of the 

particle, respectively, c1 and c2  are positive constants 

referred to as acceleration constants; r1	and r2	are random 

numbers between 0 and 1; pbest  refers to the best position 

found by the particle and gbest  refers to the global best 

position and finally w is the inertia weight. 

The computational flow chart of PSO algorithm, employed 

in the present study for the model reduction, is shown in 

Figure 2. 

 

Figure 2. Flowchart of PSO for order reduction. 

2.4. Overview Shuffled Frog Leaping Algorithm 

The Shuffled Frog Leaping Algorithm method is a member 

of wide category of swarm intelligence methods for solving 

the optimization problems presented for the first time by 

Eusuff and Lansey in 2003 [30]. SFLA is combination of 

"meme-based genetic algorithm" or "Memetic Algorithm" 

and Particle Swarm Optimization. This algorithm has been 

inspired from memetic evolution of a group of frogs when 

seeking for food. In this method, a solution to a given 

problem is presented in the form of a string, called "frog". 

 

Figure 3. Flowchart of SFLA. 
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The initial population of frogs is partitioned into groups or 

subsets called "memeplexes" and the number of frogs in each 

subset is equal. SFLA is based on two search techniques: 

local search and global information exchange techniques [31]. 

Based on local search, the frogs in each subset improve their 

positions to have more foods (to reach the best solution). In 

second technique, obtained information between subsets is 

compared to each other (after each local search in subsets). 

The algorithm is iterative according to the flowchart 

illustrated in Figure 3. 

The initial population is generated randomly. Then, the 

frogs are sorted in a descending order according to their 

fitness. Afterward, the entire population is partitioned into m 

mempelexes and the number of frogs in each memeplex is 

equal. In this process, the first frog goes to the first 

memeplex, the second frog goes to the second memeplex, the 

frog m goes to the m-th memeplex, and frog m+1 goes to the 

first, etc. The next step is based on local search. Within each 

memeplex, the frogs with the worst, the best and global best 

fitness are identified as Xw, Xb and Xg respectively. Then the 

position of the worst frog is adjusted as follows: 

D = rand × (Xb	- Xg)             (15) 

X	w	new = X w
current + D              (16) 

where -Dmax	≤	D	≤	Dmax , rand is a random number in the 

range of �0 1� and D	is the step size vector and Dmax is the 

maximum allowed change in a frog’s position. 

If the new frog position does not improve, then equations 

(15) and (16) are repeated with respect to the global best frog 

(Xg replaces Xb). If no improvement becomes impossible in 

this latter case, then a random frog is generated to replace the 

old frog position. The shuffling process continues until 

convergence criteria are satisfied. 

3. Experimental Results 

3.1. Comparison of Methods 

PSO and SFLA techniques have attracted considerable 

attention among various optimization techniques. Since the 

three approaches are supposed to find a solution to a given 

objective function but employ different strategies and 

computational effort, it is appropriate to compare their 

performance. 

The estimation process is performed-based on the 

calculation of the fitness function defined as: 

Fitness	=	 1

1	+	MSE
              (17) 

MSE = 
1

N
 ∑ [y(i) - y

r
(i)]

2N
i=1          (18) 

and N is the number of elements in the output vectors, y and 

y
r

 are the original and reduced order models' responses 

respectively. 

The above procedures for SPA method, PSO and SFLA in 

the present work is implemented in MATLAB. A number of 

examples were solved using the above given procedures and 

the results were satisfactory. 

Altogether two examples are given in this section: 8th 

order and 4th order complex systems in discrete case. The 

results in the form of step response are shown in figures 4 

and 6 and the comparison of "normalized fitness to 1" 

between the unit step responses of original and reduced 

systems obtained using proposed methods have been given in 

tables 3 and 4 for all the examples. 

3.2. Example 1 

To illustrate the proposed techniques and evaluate the 

performances of all approaches in this paper, consider the 

following 8th order complex discrete system given by [19]: 

G1�z�= 0.0701z7+0.0465z6- 0.0087z5+0.0063z4-0.0215z3-0.0109z2+0.0018z-0.0003

z8-0.0701z7-0.0465z6+0.0087z5-0.0063z4+0.0215z3+0.0109z2-0.0018z+0.0003
	 (19) 

From the transfer function G1�z�  we deduced the state-

space model of the 8th order discrete system described by 

equations (6) and (7): 

A11
1 = )0.0701 0.0930 -0.0348 0.0252

0.5 0 0 0

0 0.5 0 0

0 0 1 0

*      (20) 

It is clear that the matrix A11
1  is invertible and the two-time 

scale conditions (5) are verified. 

The initial parameters for PSO and SFLA methods are 

given in tables 1 and 2. 

Table 1. Initial parameters of PSO. 

Parameters Values 

Population size 100 

c1 1.5 

c2 1.5 

wmax 0.9 

wmin 0.4 

Table 2. Initial parameters of SFLA. 

Parameters Values 

Number of memeplexes 10 

Number of frog in each memplex 10 

Number of iteration in each memplex 10 

Using SPA method, PSO and SFLA methods, a 2nd order 

reduced model is obtained, as seen in Table 3 along with 

other reduced model of recently published work [19]. 

In addition to that, simulating the initial and reduced 

models is performed, the results, in the form of step 

responses, are seen in Figure 4 and the comparison of fitness 

"normalized to 1", between the unit step responses of original 

and reduced systems obtained using proposed meta-heuristic 

methods, have been given in Table 3. 
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Figure 4. Step responses comparison between original and reduced order 

models of example 1. 

From the Figure 4 it is observed that the step responses of 

evolutionary reduced order models using PSO and SFLA 

methods are closely matching with the step response of 

higher order original system. 

The figures 5 and 7 give an indication of fitness progress 

and speed convergence of objective function with the number 

of generations matching PSO and SFLA approaches. 

 

Figure 5. Convergence of fitness function of example 1. 

The superiority of the meta-heuristic PSO and SFLA 

approaches can be clearly seen where the best and average 

fitness "normalized to 1" are more important, close to 1, 

compared to SPA method seen in Table 3. 

Table 3. Comparison of reduced order models. 

Meta-heuristic Method Transfer Function of Reduced Model Best Fitness "Normalized to 1" Average Fitness "Normalized to 1" 

SPA method R1�z�= 0.07301	z		-	0.0417

z2	-	1.098	z	+	0.4357
  0.9990 - 

PSO R1(z)	= 0.07894	z		-	0.05654

z2	-	1.119	z	+	0.3667
	 	 0.9998 0.9995 

SFLA R1(z)	= 0.07156	z	-	0.03114

z2	-	0.9744	z	+	0.3981
	 	 0.9995 0.9994 

GAs [19] R1(z)	= 0.075	z	-	0.0462

z2	-	1.1502	z	+	0.4673
  0.9994 - 

 

3.3. Example 2 

Consider, an another example, a 4th order complex system 

given by [19]: 

G2(z)	=	 0.0547377	z3
-0.40473	z2-0.000319216	z-0.216608	z4-1.36078	z3

+0.875599	z2-0.551205	z+0.282145
       (21) 

From the transfer function G2�z�  we deduced the state-

space model of the 4th order discrete system described by 

equations (6) and (7): 

A11
2 	=	 �1.3610 -0.8756

1 0
�                (22) 

It is clear that the matrix A11
2  is invertible and the two-time 

scale conditions (5) are verified. 

The initial parameters for PSO and SFLA methods are 

given in tables 1 and 2. 

A 2nd order reduced model is obtained, as seen in Table 4 

along with other reduced model of recently published work 

[19]. 

In addition to that, simulating the initial and reduced 

models is performed, the results, in the form of step 

responses, are seen in Figure 6 and the comparison of fitness 

"normalized to 1", between the unit step responses of original 

and reduced systems obtained using proposed meta-heuristic 

methods, have been given in Table 4. 

Table 4. Comparison of reduced order models. 

Meta-heuristic Method Transfer Function of Reduced Model Best Fitness "Normalized to 1" Average Fitness "Normalized to 1" 

SPA method R2(z)	= 0.4758	z	-	0.3020

z2	-	1.531	z	+	0.7071
	 	 0.9702 - 

PSO R2(z)	= 0.4921	z		-	0.3121

z2	-	1.508	z	+	0.6909
	 	 0.9961 0.9810 

SFLA R2(z)	= 0.5029	z		-	0.3503

z2	-	1.512	z	+	0.6666
	 	 0.9918 0.9766 

GAs [19] R2(z)	= 0.5062	z	-	0.3513

z2	-	1.5126	z	+	0.6671
  0.9910 - 
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Figure 6. Step responses comparison between original and reduced order 

models of example 2. 

 

Figure 7. Convergence of fitness function of example 2. 

From Figure 6, it can be seen that the step responses of the 

proposed reduced order models are exactly matching with the 

higher order original system. The responses of evolutionary 

reduced model by PSO and SFLA are very close to that of 

original model. 

 The superiority of the meta-heuristic PSO and SFLA 

approaches can be clearly seen in Table 4 where the 

performance index, the best and average fitness "normalized 

to 1", of PSO and SFLA methods is compared with SPA 

method. 

4. Conclusion 

In this paper, three meta-heuristics approaches for 

reducing a high order large scale linear system into a lower 

order system have been proposed. Particle Swarm 

Optimization and Shuffled Frog Leaping Algorithm-based 

evolutionary optimization techniques are employed for the 

order reduction to attain reduced order models. The obtained 

results are compared with a recently published and existing 

well known method of model order reduction, the Genetic 

Algorithms, and with Singular Perturbations Approximation 

method to show their superiority. 

It is clear, from results presented, that both PSO and SFLA 

methods give minimum Mean Square Error, i.e. fitness 

"normalized to 1", compared to GAs order reduction 

technique [19] and SPA method. Also, a comparison of the 

proposed methods has been presented. It is observed that 

both the proposed methods preserve steady state value and 

stability in the reduced models and the error between the 

initial or final values of the responses of original and reduced 

order models is very less. However, PSO method seems to 

achieve better results in view of its simplicity, easy 

implementation and better response. 

Improvement of the quality of reduced order model 

obtained using PSO and SFLA methods in case of linear 

discrete systems using the proposed method was expected, 

but in order to use the approach further for more varieties of 

systems as well as for application of reduced order models in 

different areas, specific systems have to be modeled and the 

same need to be studied using the proposed method. 

The methods are applied for real, complex and discrete 

systems and the work is in progress to make them 

generalized for continuous systems. 
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