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Abstract: This paper deals with the study of bifurcation behavior of a capacitive nano-beam considering electrostatic, 

Casimir and van der Waals forces. A modified mass-spring model has been implemented for analysis of the nano-beam 

behavior. The model has been adjusted and corrected with Euler-Bernoulli beam model, because of its less accuracy compared 

to distributed models. Fixed or equilibrium points of the nano-beam have been obtained, and has been shown that with 

variation of the applied voltage and the length of the nano-beam as control parameters the number of equilibrium points is 

changed. The stability of the fixed points has been investigated drawing motion trajectories in phase portraits and basins of 

attractions and repulsion have been illustrated. Critical values of the applied voltage and the length of the nano-beam leading to 

qualitative changes in the nano-beam behavior have been obtained.  

Keywords: Nano-Beam, Electrostatic Force, Van der Waals Force, Casimir, Stability 

 

1. Introduction 

With the fast growth of nano scale technology, the 

possibility of substituting this new technology with micro 

technology, due to high speed and low energy consuming has 

been increased. NEM devices such as, nano-tweezers [1-2], 

super sensitive sensor [3-4], resonators [5], electrostatic 

switches [6-7], random access memory [8], vapor and strain 

sensors [9] are widely designed, analyzed, fabricated and 

used.  

Electrostatically actuated devices form a broad class of 

MEMS and NEMS devices due to their simplicity, as they 

require few mechanical components and small voltage levels 

for actuation [10]. In such devices, a conductive flexible 

beam/plate is suspended over a ground plate and a potential 

difference is applied between them. As the 

micro/nanostructure is balanced between electrostatic 

attractive force and mechanical (elastic) restoring force, both 

electrostatic and elastic restoring force are increased when 

the electrostatic voltage increases. When the voltage reaches 

the critical value, pull-in instability occurs. Pull-in is a 

situation at which the elastic restoring force can no longer 

balance the electrostatic force. Further increase of the voltage 

will cause the structure to have dramatic displacement jump, 

resulting in structural collapse and failure. Pull-in instability 

is a snap-through like behavior and it is saddle-node 

bifurcation type of instability [11].  

In NEM systems, by decreasing the geometric dimension, 

Casimir and van der Waals (vdW) effects play a major role, 

especially, in terms of the mechanical behavior of these 
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systems. More than five decades ago, Hendrik Brugt Gerhard 

Casimir (1909–2000) predicts that the ground-state energy of 

photons is alternated in the presence of two parallel perfectly 

conducting metal plates in such a way as to lead to an 

observable macroscopic force between them [12-13]. His 

brief article discusses the discovery, formulation, physical 

significance, and impact of one of the phenomena that bears 

his name, the eponymous Casimir effect [13]. The vdW force 

is related to the electrostatic interaction between dipoles at 

the atomic scale [14]. One of the most important differences 

between these two forces is that the Casimir force between 

plates depends only on the spacial properties of the objects 

whereas the vdW force depends on both the material 

properties as well as the geometric properties [15]. 

The pull-in phenomenon is widely applied in many 

micro/nano-machined devices that require bi-stability for 

their operation, such as NEM switches [16]. Many studies 

have been concentrated in the analysis of statitcal as well as 

dynamical stability of micro structures [17-20]. In nano scale, 

Dequesnes et al [6] have studied the Pull-in phenomena and 

pull-in voltage of a carbon-based nano-electromechanical 

switch. Fathi and Muhammad investigated chaotic behavior 

of a curved carbon nanotube under harmonic excitation [21]. 

Vakili-Tahami et al [15] have studied static and dynamic 

pull-in phenomenon of capacitive nano-beam, using Euler-

Bernoulli beam model. Lin and Zhao [13, 16, and 22] have 

researched static and dynamic behavior of nano-beam and 

presented new parameter for detachment length and showed 

that there are two equilibrium points in extremity. In other 

paper [23], they have studied stability and bifurcation 

behavior of electrostatic torsional NEM varactor and also 

they used mass-spring model for their researches.  

In spite of many research accomplished on the stability of 

MEMS and NEMS structures, there is not enough 

comprehensive study explaining their stability from 

bifurcation view point. Therefore, in order to show the 

equilibrium positions of a NEMS structure and their stability, 

this paper as a case study considers a nano-beam suspended 

over a conductive plate actuated by an electrostatic force 

applying a DC polarization voltage. The nonlinear equation 

of dynamic motion of the Euler–Bernoulli nano-beam using a 

one term Galerkin weighted residual method is replaced by a 

lumped mass-spring model. Due to the low accuracy of this 

model in studying of static and dynamic behavior of the 

nano-beam in comparison with the distributed model, the 

mass-spring model is attuned with beam one to increase its 

accuracy using corrective coefficients. Equilibrium position 

or fixed points is identified by solving equation of static 

deflection, and is illustrated in the state-control space. 

Furthermore, motion trajectories of nano-beam are drawn in 

phase portraits. 

2. Model Description 

Figures 1. a and 1. b show schematic views of a NEM 

switch and its cross-section, respectively. It consists of a 

nano-beam suspended over a stationary conductor plate, with 

length L, thickness h, width b, and initial gap of 0G . The 

nano-beam is considered isotropic with Young modulus E, 

density ρ  and cross section moment of inertia I.  

Attractive electrostatic force due to an applied voltage as 

well as vdW and Casimir forces pulls the nano-beam down 

towards the substrate. The minimum length of the nano-beam 

in which vdW and Casimir forces lead the nano-beam to 

collapse on the substrate (in lack of the electrostatic force), is 

known as the detachment length. 

 

Figure 1. Schematic view of a beam-based NEM switch: a) A beam-based NEM switch, b) Cross section of the nano beam. 

 
Figure 2. Mass-spring model of nano-beam. 

In order to simplify the analysis of bifurcation behavior of 

the nano beam, the model shown in Figure 1 is substituted by 

a mass-spring model, which is shown in Figure 2. In the next 

section the mathematical model of the nano beam based on 

mass-spring assumption and its adjustments with the Euler-

Bernolli beam model will be presented.  

3. Mathematical Modeling and Solution 

Considering a continuum based Euler-Bernoulli beam theory, 

governing equation for dynamic motion of a capacitive nano-

beam taking into account vdW and Casimir forces with 
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distributed parameters can be obtained as following [24]:  
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is the transversal deflection of the nano-beam, 

S is the cross section area of the nano-beam and extq  is the 

sum of electrostatic, vdW and Casimir forces, so: 

                 (2) 

When the actuating voltage is applied between the nano-

beam and substrate, the electrostatic force per unit length is 

computed using a standard parallel capacitance model [25] 

and is equal with: 
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and the vdW force per unit length of the nano-beam is given 

by [26]: 
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Also, Casimir force between nano beam and substrate is 

given by [12]: 
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in equations (3)-(5) 12 2 1 2
0 8.854 10 C N mε − − −= ×  is the 

permittivity of vacuum within the gap, V is the electrical 

potential difference applied to the beam and substrate, 0G  is 

the initial gap between the beam and substrate, and 
2 2

1A Cπ ρ=  is Hamaker constant, which lies in the range of 

19(0.4 4) 10 J−− ×  [27], 
341.055 10 .h J s−= ×  is the Planck's 

constant and 
8 12.998 10c ms−= × is the speed of light. 

In order to compose a lumped mass-spring model for the 

nano-beam, “Eq. (1)” is replace by “Eq. (6)” [16] 
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where m is the mass of the nano-beam and equals to SLρ , K 

is the equivalent elasticity stiffness of the nano-beam which 

for fixed-fixed and cantilever nano-beam are equal to 

3

384EI

L
 and 

3

8EI

L
, respectively, and ˆ( )y t

 
is the deflection of 

mass in the lumped model [16].  

In order to enhance the accuracy of the mass-spring model 

and adjusting this model with the distributed model, 

equivalent mass as well as corrective coefficients of, 0a , 0b

and 0c are applied as: 
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where eqm  is the equivalent mass of the nano-beam, and 0a

(electrostatic corrective coefficient), 0b  (vdW corrective 

coefficient), and 0c  (Casimir corrective coefficient) are 

determined from equating of the first natural frequency, static 

pull-in voltage and detachment length of the mass-spring 

with those obtained using distributed model, respectively.  

For convenience “Eq. (1)” and “Eq. (7)” can be rewritten 

in a non-dimensional form using the following non-

dimensional parameters: 
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where t ∗  for the mass-spring and Euler-Bernoulli beam 

model equals to 
eqm

K
and

4SL

EI

ρ
, respectively. Therefore 

“Eq. (1)” and “Eq. (7)” can be changed as:  
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where β
 
and β ′ are non-dimensional parameters of the vdW 

force, γ and γ ′ are non-dimensional parameters of the 

Casimir force and α and α ′  are the non-dimensional 

parameters of the electrostatic force in the mass-spring and 

distributed model, respectively. These parameters are: 
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The governing equation for the static deflection of the 

Euler-Bernoulli nano-beam using “Eq. (9)” is given as: 

4 2

4 2 3 4(1 ) (1 ) (1 )

d w V

dx w w w

α β γ′ ′ ′
= + +

− − −
            (12) 

4. Results and Discussion 

4.1. Determination of Corrective Coefficients 

The natural frequency of the corrective mass-spring and 

CasimirvdWelectext qqqq ++=
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the distributed model (in the absence of electrostatic, vdW, 

and Casimir forces) are computed and equalized to the each 

other. So equivalent mass of the nano-beam for the fixed-

fixed and cantilever beam can be obtained respectively, as: 

0.65cantileverm m′ = , 0.74fixed fixedm m−′ =           (13) 

The values of pull-in voltage and detachment parameters 

for the mass-spring and the distributed model are obtained 

using SSLM and Galerkin based reduced order model [15, 

24]. In order to obtain coefficient 0b , 0c  and 0a , detachment 

parameters and pull-in voltage of the distributed and the 

mass-spring model are equalized to each other. These 

parameters for cantilever and fixed-fixed nano-beam are:  

0 0.68cantileverb = , 0 0.79
fixed fixed

b
− =  

0 0.69cantileverc = , 0 0.8
fixed fixed

c
− =  

0 0.71cantilevera = , 0 0.82
fixed fixed

a
− =               (14) 

4.2. Bifurcation Analysis Without Imposing Electrostatic 

Force 

This section deals with equilibrium points of nano-beam 

considering vdW and Casimir forces. With attention to 

dimensionless Eq. (10), physically equilibrium or fixed 

points exist in the range of 0 1y< < . However, 

mathematically, these points may also exist in the range of 

1y > . By setting w y= ɺ , Eq. (10) can be transformed into 

the following form: 

dy
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=  
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         (15) 

At the equilibrium points, the nano-beam is at rest, hence 

considering Eq. (15), equilibrium points are obtained by the 

following equation: 

0w =  

2

2 3 4
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             (16) 

For obtaining of fixed points without the electrostatic 

force, following equation must be solved by setting 0V = . 

2 2 4( , , , , ) (1 ) (1 ) (1 ) 0f V y V y y y yα β γ α β γ= − + − + − − =  

(17) 

The order of algebraic Eq. (17); is five with respect to y , 

having at most three real roots. Positions of the fixed points 

in the state-control space versus detachment parameters as a 

control parameter; β are illustrated in Figure 3.  

In order to check stability in the vicinity of each 

equilibrium point, the following Jacobian matrix is used [16]. 
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with eigenvalues of the Jacobean satisfies in 
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. For
2 0λ < , it has two 

pure imaginary roots, which means that the equilibrium point 

1 1( , )y β is a center point. Applying the same method to the 

other equilibrium point 2 1( , )y β , its eigenvalues satisfy

2 0λ > , indicating two real eigenvalues, one is positive, and 

the other is negative. This means that the equilibrium point is 

an unstable saddle point [16]. Using this method, the stability 

in the vicinity of each equilibrium point in Figure 3 can be 

identified. In this paper, continuous and dashed curves 

represent stable and unstable branches, for state control 

spaces, respectively.  

 

Figure 3. Equilibrium points of a static nonlinear model as β  is varied. 

As shown in Figure 3 for a given β  there exist at most 

three fixed points. Based on the illustrated motion trajectories 

in phase portraits, the first and third fixed point is a stable 

center and the second one is an unstable saddle node.  

As shown in Figure 3, by increasing the control parameter 

β , two physically fixed points are getting close together. For 

example for 0 60G nm=  in 0.035β = , which is called as 

detachment length in NEMS literatures, they meet together in 

a saddle node bifurcation point. Figs. 4-7 present motion 

trajectories of the nano-beam for different values of β  for 

0 60G nm=  with different initial values.  
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Figure 4. Phase diagram with given 0β = . 

 

Figure 5. Phase diagram with given 0.01β = . 

 

Figure 6. Phase diagram with given 0.02β = . 

 

Figure 7. Phase diagram with given 0.035β = . 

As shown in Figs. 5-6 there are a basin of attraction of 

stable centers and a region of repulsion of unstable saddle 

node. Of course, it must be noted that the substrate position 

acts as a singular point and velocity of the system near this 

singular point tends to infinity. The basin of attraction of the 

first stable center is bounded by a closed orbit. Depending on 

the location of the initial condition, the system can be stable 

or unstable. Figures 5-7 show that with increasing the 

parameter β  the basin of attraction of stable centre is 

contracted; and when β  equals to the detachment parameter, 

there is no physically basin of attraction and the system will 

be unstable for any initial condition. In this paper, continues, 

dashed and bold curves represent, periodic, unstable and 

Homoclinic trajectories for the phase portraits, respectively.  

Figs. 8 and 9 show equilibrium points versus β and γ , 

which either vdW or Casimir force considered, respectively.  

 

Figure 8. Equilibrium points of a static nonlinear model as β  is varied for

0γ = . 

 

Figure 9 Equilibrium points of a static nonlinear model as γ  is varied for

0β =  

As shown in Figure 8 and 9 for 0.106β <  and 0.082γ <  

there exist two and three fixed points, respectively. Based on 

Jacobian matrix (Eq. (18)) the first fixed point is a stable 

center and the second one is an unstable saddle. The third 

fixed point in the case of 0β =  is stable center.  

By increasing the control parameter β  and γ  two 

physically fixed points are becoming close together and for

0.106β = and 0.082γ = , which is called as detachment 

parameter in the NEMS literatures, they meet eachother in a 
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saddle node bifurcation point. Figs. 10 and 11 present motion 

trajectories of the nano-beam for given different parameter of 

β and γ .  

 

Figure 10. phase diagram with given 0.03β = and 0γ = . 

 

Figure 11. phase diagram with given 0.03γ = and 0β = . 

4.3. Bifurcation Analysis with Considering VDW, Casimir 

and Electrostatic Forces 

Fixed points of the nano-beam in the presence of the 

electrostatic force and considering vdW and Casimir forces 

can be obtained by solving Eq (17). Order of algebraic “Eq. 

(17)” is five, with respect to y, and the number of pure real 

roots depends on the value of applied voltage. Figure 12 

depicts equilibrium points for a nano-beam versus applied 

voltage as a control parameter. The cantilever nano-beam 

properties are L=500nm, h=20nm, b=50nm, E=169GPa and

0 60G nm= . The stability in the vicinity of each fixed point 

can be recognized with the mentioned procedure and using 

Jacobin matrix, presented in Eq. (18). As shown in Figure 12 

for 12.11 pull inV V −< = there are three fixed points and for 

12.11 pull inV V −> = there excists only one fixed point.  

 

Figure 12. Equilibrium points of a static nonlinear model as V  is varied. 

Figs. 13-16 show phase diagrams of the nano-beam in the 

presence of electrostatic force with different applied voltages. 

As shown in these figures there exist center and saddle type 

fixed points. Figures 13-15 show that by increasing the 

applied voltage, the basin of attraction of stable centre is 

contracted and when V=12.11V which known as pull-in 

voltage in MEMS and NEMS literatures there is no 

physically basin of attraction and the system is unstable for 

every initial condition. This scenario represents saddle node 

bifurcation. 

 

Figure 13. Phase diagram with given 0V = . 

 

Figure 14. Phase diagram with given 4V = . 
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Figure 15. Phase diagram with given 8V = . 

 

Figure 16. Phase diagram with given 12.11pull inV V −= = . 

In the following by neglecting the Casimir force (i.e. 

considering vdW force with imposing electrostatic force), the 

bifurcation behavior of a nano-beam is investigated. As will 

be shown, by neglecting this force, some new phenomena 

come out, which have not been addressed before. 

Figs. 17-19 depict equilibrium points for nano-beams 

versus applied voltage as a control parameter. Fixed-fixed 

nano-beams properties are b=10nm, h=3nm, 0 4G nm= , and 

the length of the each nano-beam is written in the related 

figures. Increasing the length of nano-beams causes to 

increase the effects of vdW forces, but decreases the pull-in 

voltage [15]. For example as shown in Figs. 17-19 when the 

length of nano-beams is equal to 65nm and 80nm, two 

equilibrium points in each voltage range of 0 2.92V< <  

and 0 2.68V< <  appear. Also, in the range of 

2.92 pull inV V −< <  and 2.68 pull inV V −< < respectively, four 

equilibrium points are produced, where the third and fourth 

fixed points are physically impossible because of its 

location in the beneath of the substrate. However, there are 

only two equilibrium points in voltage range 

0 pull inV V −< <  for the nano-beam with length of 100nm. 

For the mentioned nano-beams by increasing the control 

parameter V the physically possible fixed points are getting 

close together and in the pull-in voltage, they emerge as a 

saddle node bifurcation point. 

 
Figure 17. Variation of equilibrium points with length 65nm. 

 
Figure 18. Variation of equilibrium points with length 80nm. 

 
Figure 19. Variation of equilibrium points with length 100nm. 

In Figs. 20-24 the phase diagram of the nano-beam with 

length of 65nm are presented. As shown there exist a center 

and a saddle type fixed points in the range of 0 1y< <  with 

the voltage range 0 2.92V< < . By increasing the applied 

voltage, these points getting closer to each other, and it is 

observed that, another saddle and center fixed points in 1y >  

in voltage range of 2.92V >  appear. With increasing applied 

voltage, these fixed points move away from each other. In 
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2.92V v=  and
pull inV V −=  saddle and center points located 

in the upper side of the substrate coalesces and the basin of 

attraction disappears.  

 
Figure 20. Phase diagram for nano-beam with length 65 nm and given 

voltage 1 V. 

 
Figure 21. Phase diagram for nano-beam with length 65 nm and given 

voltage 2 V. 

 
Figure 22. Phase diagram for nano-beam with length 65 nm and given 

voltage 2.92 V. 

As mentioned a saddle type fixed point appearing in the 

beneath of the substrate, depends on the value of applied 

voltage and the length of the nano-beam. Since this saddle 

type fixed point is so close to the substrate position, a 

detailed view of motion trajectories is shown in Figs. 23. b 

and 24. b. 

 
Figure 23a. Phase diagram for the nano-beam with length 65 nm and given 

voltage 4 V. 

 
Figure 23b. A detailed view of the phase diagram about the fixed points 

located under the substrate with length 65 nm and given voltage 4 V. 

 
Figure 24a. Phase diagram for nano-beam with length 65 nm and given 

voltage 4.5 V. 
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Figure 24b. A detailed view of the phase diagram about the fixed points 

located under the substrate with length 65 nm and given voltage 4.5 V. 

For completeness purpose only, the bifurcation behavior of 

the nano-beam is also studied by neglecting VdW force. 

Figure 25 shows equilibrium points versus applied voltage 

for a nano-beam with considering only Casimir force and 

imposing electrostatic force. As shown in this figure the 

nano-beam has three fixed points in the range of

0 pull inV V −< < , which first and third points are stable center, 

and the second one is unstable saddle node. For the 

pull inV V− <  the nano-beam has only one mathematically 

stable center point. As shown in this figure, saddle node 

bifurcation occurs in pull inV V −= . Also, Figure 26 depicts 

motion trajectory of the nano-beam for input voltage 6V.  

 

Figure 25. Equilibrium points of a with given 
42.37 10γ −= × , 310α −= and 

0β = model as V  is varied. 

 

Figure 26. Phase diagram with given 
42.37 10γ −= × , 310α −= , 0β = and 

V=6V. 

4.4. Dynamic Response of Nano-Beam to Step DC Voltage 

Dynamic response of the nano-beam system (nano switch) 

to a step DC voltage is numerically studied using Galerkin 

method [15]. For this cantilever nano-beam with L=500nm, 

h=20nm, b=50nm, E=169GPa, and 0 60G nm=  the 

calculated dynamic pull-in voltage is Vpullin=11.13 which is 

about 91.8% of the static pull-in voltages (Figure 12), 

indicating that the results are in good agreement with the 

reported works [28]. Figure 27 shows the time history of 

dimensionless deflection for this nano-beam with actuating 

step voltage of 11.12V. We note that the nano-beam 

oscillates with this applied voltage, and dose not collapse. As 

shown in Figure 28 by a small increase of the actuating step 

voltage by only about 0.01V the nano-beam collapses. Figure 

28 shows the dynamic pull-in phenomenon (collapse point) 

with step DC voltages of 11.13V.  

 

Figure 27. Time history of nano-switch subjected to step-wise 11.12DCV =
V. 
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Figure 28. Time history of nano-switch subjected to step-wise 11.13DCV =
V. 

The phase portrait of the nano-beam with various step DC 

voltages is shown in Figure 29. This figure shows a 

metamorphosis of how a periodic orbit approaches 

homoclinic orbit at dynamic pull-in voltage. Indeed the 

periodic orbit is ended at dynamic pull-in voltage where a 

homoclinic orbit is formed. In another words when applied 

voltage approaches dynamic pull-in voltage the periods of the 

closed orbits tend to infinity. It can be said that there happens 

a homoclinic bifurcation [29] when the periodic orbit collides 

with a saddle point at dynamic pull-in voltage. 

 
Figure 29. Phase portrait of the nano-beam. 

5. Conclusion 

In this article, Bifurcation behavior of a capacitive nano-

beam was studied considering vdW and Casimir forces. A 

one degree of freedom mass-spring model was used and due 

to its low accuracy the elements of the model, considering 

static and dynamic behavior of the nano-beam in a 

distributed model, was adjusted using corrective coefficients. 

In order to determine values of the corrective coefficients, 

natural frequency, detachment parameter and static pull-in 

voltage of the nano-beam was obtained using distributed and 

mass-spring models, and then was equalized to each other. 

Solving equation of static deflection, fixed points or 

equilibrium position of the nano-beam is determined. 

Results were showed that when the nano-beam is subjected 

to vdW and Casimir forces or only Casimir force, there exist 

three fixed points’ in maximum, which first and third fixed 

points are stable center and second once is unstable saddle 

node. But when only vdW force was considered, it was 

showed that nano-beam has two equilibrium positions in 

maximum: the first is a stable center and the second is an 

unstable saddle node. 

In all cases it was shown that, with increasing the nano-

beam length as control parameter physically fixed points get 

near together and in a length well-known as detachment 

length they meet together by undergoing to a saddle node 

bifurcation.  

Fixed points of nano-beam with imposing electrostatic 

force were obtained too. Results were showed that when 

vdW and Casimir forces or only Casimir force were 

considered, three fixed points appear in the range of 

0 pull inV V −< <  which first and third ones are stable center 

and second once is an unstable saddle node. Furthermore it 

was shown that saddle node bifurcation occurs in

pull inV V −= . 

When the nano-beam is subjected to vdW and electrostatic 

forces depends on the nano-beam length and the applied 

voltage an extra fixed point can be founded in the beneath of 

the substrate, which physically are impractical. With 

increasing the applied voltage as control parameter the fixed 

points located in the upper side of the nano-beam approach 

together and in a voltage well-known as pull-in voltage they 

meet together by undergoing to a saddle node bifurcation and 

the basin of attraction in phase plane in the upper side of the 

nano-beam disappears. 

The dynamic response and the dynamic pull-in phenomena 

of the nano-beam have been obtained. The results showed 

that by increasing the value of the step-wise DC voltage to a 

critical value or dynamic pull-in voltage, the nano-beam goes 

to an unstable condition through a homoclinic bifurcation. It 

has also shown that the dynamic pull-in voltage at the 

presence of Casimir and vdW forces is about 91.8 % of the 

static pull-in voltage. The obtained results can be useful for 

NEMS community in behavioral studying of NEMS 

structures. 
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