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Abstract: Mobile path planning is rich field of employing artificial intelligence and machine learning algorithms to obtain the 

most effective outcomes. The Path planning task is a problem. The goal of path design is to find the quickest and most 

obstacle-free route from a starting point to a destination state. A set of states (position and orientation) or waypoints can make up 

the path. A map of the surroundings, as well as the start and target states, are needed for path planning. Path planning applications 

are diverse and unlimited, such as Automated robot navigation, autonomous vehicle Robotic surgery, digital animation of 

characters, and others. Different algorithms provide different solutions to this problem; usually the metric used to evaluate certain 

path effectiveness doesn’t take into consideration the physical attributes of the mobile robot. In this paper, an attempt is made to 

find the best path in terms of distance and smoothness (minim number of rotations); the smoothness means decreasing power 

consumption since the rotations take a lot of power to be executed. A traditional genetic algorithm is used to find the best path, 

and then modification is used to improve the path's characteristics. The experimental results obtained using MATLAB Simulator 

indicate that the enhanced approach applied in the genetic algorithm provides much better outcomes, the path edges are 

minimized along with the path length. 
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1. Introduction 

The importance of mobile robots has grown over time as 

they have been used for medical, industrial, educational, and 

transportation purposes, among other things. Path planning 

emerges as a rich area of research that can befit and provoke 

exciting applications such as aircraft trajectory planning [1-3], 

cruise missile path planning [4] and others. The optimal path 

is not just the shortest path; it's also defined as a collision-free 

trajectory; each path comes with specific constraints 

depending on the area of application used in. What is 

considered optimal for one mobile robot or application may 

not be considered optimal for another. because of several 

factors such as the physical characteristics of the robot, the 

application environment, and the application constraints 

These factors can be interrupted as the starting and finishing 

time, the robot's ability and performance, and the number of 

nods and obstacles a head. The Genetic Algorithm is one of 

the search algorithms that depend on iterative attempts to find 

the optimal solution. The Genetic Algorithm (GA), Ant 

Colony Algorithm, and Annealing algorithm are natural-based 

algorithms used extensively in path planning. Qinggang Su et 

al. [5] propose a modification to the ant colony algorithm in 

finding the optimal path and path correction. To get fast 

convergence the obtained path is shorter and avoids redundant 

paths, which is a big disadvantage in the ant colony algorithm. 

It also provides path smoothness. Chunyu Ju et al. [6] discuss 

the work of the A-star algorithm in finding the best path under 

certain conditions. They improve and modify the A-star 

algorithm by using the shortest line segment between two 

point’s notions to provide a much shorter path for certain 

environments. 

Genetic Algorithms (GA), in particular, provide global 

optimal solutions and handle constraints very well. GA can 

provide an optimal solution in a topology that keeps updating. 

GA implies providing several solutions. GA is used in 
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combination with artificial algorithms in image processing 

applications and data mining. For its appealing characteristics, 

GA attracts researchers more and more to explore its potential. 

For instance, Chaymaa Laminia et al. [7] suggest a modification 

to traditional GA by improving the crossover operator in a static 

environment. The modification gives much better fitness values. 

Their work was compared with three other literatures and 

showed better results in comparison. Lee et al. [8] work on the 

initial population that is provided to GA before starting, which 

is usually set up as random. The proposed work suggests 

improved GA performance in finding the best path for mobile 

robots. On the other hand, Tuncer A. et al. [9] proposed 

modifications to the GA operations, more specifically on the 

mutation operator, to enhance GA work and the ability to find 

optimal paths for path planning problems in dynamic 

environments. Their work showed good results in a comparison 

of traditional GA solutions. The operator modifications make 

GA coverage much faster, which means finding the best path in 

a shorter execution time. The work constraints may depend on 

the robot or the environment, but fixed consideration must be 

included, such as the safety and the power consumption of the 

robot's movement. Different algorithms than genetic algorithm 

used for path planning such as A* algorithm, the A* algorithm 

was originally developed for use in the gaming industry [10-12], 

but as artificial intelligence has advanced, it has since been 

enhanced and customized for use in applications such as robot 

path planning, intelligent urban transportation, graph theory, 

and automatic control. 

This paper takes these constraints under consideration, 

finding an optimal path using a modified genetic algorithm 

operator based on the gene reallocating along the path, in 

order to minimize the rotation angle and provide path 

smoothing, which ultimately leads to reduced power 

consumption; of course, a shorter path is still achieved. The 

results proved the proposed system's feasibility in path 

planning. The rest of the paper is organized as follows: 

Section 2 presents genetic algorithms for path planning; the 

paper's methodology is introduced in Section 3; simulation 

and results are presented in Section 4; and finally, conclusions 

in Section 5. 

2. Genetic Algorithm for Path Planning 

Genetic algorithm [13] is iterative algorithm work through 

several generation, each generation consist of multiple solutions 

these solutions called chromosome and each chromosome 

consist of several genes as shown in the Figure 1. 

 

Figure 1. Genetic algorithm. 

In the following section, GA is applied. Every GA needs to 

be defined. First, how is the chromosome going to be coded? 

Second, the population initialization which is a critical phase 

that impacts the outcome. Third, the needed fitness function to 

express the problem properly, finally, the GA operator’s 

selection, crossover, and mutation. GA is basically working 

through multiple iterations (search) to find the optimal 

solution under certain constraints. 

2.1. Environment Modeling 

The studied environment in this paper will be static, random, 

and 2-D planer graphics with arbitrary irregular Figure 2 

polygons. The safe distance will be the point from the start to 

the finish point without hitting any obstacles. A 2-D planar 

graphic, with varying levels of complexity, is used. 

 

Figure 2. 2-D planer graphics with arbitrary irregular polygons. 

First, confirm that you have the correct template for your 

paper size. This template has been tailored for output on the 

A4 paper size. 

2.2. Chromosome Encoding 

There are s multiple scenarios of chromosome coding, it could 

be real, binary or tree coding etc. In this paper real coding chosen 

due to multiple reasons, firstly no time wasted in encoding and 

decoding these chromosome, secondly sometimes binary 

encoding falls under something called hamming cliff which 

means that any two similar chromosomes when they are in binary 

seems to be most a part and there is no indication that they are 

similar. Thirdly real coding enables us to apply multiple kinds of 

operators to obtained new solutions (chromosomes). After 

choosing the proper chromosome coding, the chromosome itself 

is a collection of points, these points constitute the chosen path or 

the line segments that together combined given path, each 

chromosome will be a set of points, where each chromosome is 

different solution, these points called also nods. Each 

chromosome will be the path form source (S) to destination (D) 

through different nodes (��, ��, ��,…,��), each node is a point 

of (x, y) coordinates shown in Figure 3. 
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Figure 3. Chromosome genes (nodes). 

2.3. Population Initialization 

Population initializations are a very important step which 

can speed up converging time, and a void being trapped in 

local minima. The initial populations are a collection of 

multiple possible solutions. Each solution is called a 

chromosome. Each chromosome is a collection of nodes. The 

node is a point with x and y that represents its coordinates in 

the 2-D plane, which connects a segment line along the path. 

For that the initial population will be a random number of 

coordinates that must be bound by the work space, which 

starts from the start point (S) and finishes at the finish point 

(D). Assuming the start point to be S(��, 	�
	and the finish 

point D to be ��
 , 	

, the generated population points (�� , 	�) 
must be less than ��
 , 	

, and bigger than (��, 	�
. 

Where ���� ∈ ��� , �
�, 		��� ∈ �	� , 	
� 
����� � ��
 � ��
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 � 	�
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Where rand state for function in MATLAB which gives 

every time different random variables range between 0 to 1. 

2.4. Fitness Function 

The metric used to evaluate the solutions' feasibility is the 

fitness function; of course, any fitness function used in path 

planning must take path length under consideration. When a 

new set of solutions (chromosome) came up, each solution 

was tested against the fitness function. If its fitness was 0, then 

this solution hit an obstacle. Otherwise, it will be measured by 

the inverse of the path length. �������� �!��"� � 0 

�������� �!��"� � $∑ &�'()*+'(
,��-()*+-(
,./*(0*      (3) 

C is constant number; it can be any Constant number. 

2.5. Genetic Algorithm Operators 

First, Select operator: which select best solutions based on 

fitness function, and make sure it will pass on to the next 

generation, the selection method is roulette (means fitness 

zero not passed on to next generation). 

 

Figure 4. Chromosome single crossover operators. 

Second, Crossover operator: which means two 

chromosome of the same generation used to give new off 

spring, by mixing their gene. Two types of crossover operator 

there is one and two point crossover. In this paper single point 

crossover used; shown in Figure 4. 

Third, the Mutation operator: choose a solution with genes 

and mutate it. The mutation differs based on the gene coding. 

If it's binary, the ones become zeros and vice versa. If its real 

number is the complement of the number (gene) shown in 

Figure 5. The mutation is achieved randomly with a certain 

probability to ensure the diversity; the mutation probability in 

this paper is set up to be 0.01. 

 

Figure 5. Chromosome mutates operators. 

3. Methodology 

This paper contribution is new gene operator added to the 

traditional work of genetic algorithm; this operator is added to 

enhance the GA performance. This operator consists of 

several steps which are: Path correction operator, vertx 

identfication operator and gene realocating operator the whole 

process shown in Figure 6. 

 

Figure 6. Flow chart showing the methodology. 
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Starting with the environment inserted, traditional GA is 

applied and the path is obtained. The path is taken along with 

the environment to the path correction operator, which will be 

applied as much as possible to provide smoothness and 

shorten the path. The vertex identification operator will be 

applied, the vertex becomes known and this information is 

used by the genes reallocation operator. If the modified path is 

still not optimal, re-do the path correction and vertex 

identification until the optimal features are achieved. 

3.1. Path Correction Operator 

Each solution is group of points that joins the line segments 

that represents the path, in attempt to enhance the selected 

path these points changed, and must be re mapped into the 

enhanced line. In this operator must identity the mapping 

process see Figure 6. 

 

Figure 7. Path correction. 

Let's assume that a path consisting of S, D, was found 

during the work, an alternative path which could give a direct 

line between S and D without hitting any obstacles, which 

means that there is no need for, for that, must be projected into 

the new path through the following equations: 

1�2 � 2∗�'3+'(
4+� � ��	2 � 2∗�-3+-(
4+� � 	�               (4) 

The projection of, ��, ��  will be ��5 	���	��5 , the main 

purposes of path correction Figure 7 to get a shorter path 

(straight lines always shorter), secondly to smoothen the path. 

3.2. Vertex Identification Operator 

After the path correction, the fitness is becoming better and 

better because the path is shortened. Obviously, another issue 

emerged which is the existence of large rotation angles, these 

angles needs further analysis. The path correction operator 

can't resolve this issue, since the nodes distributed along the 

path are not around these angles (vertex). To solve this issue, 

first we need to identify the nodes that are on the top of large 

rotation angles and call them vertex. To obtain the value of 

each rotation angle, we use the following equation. If it's less 

than 180, then it needs further analysis and is called a vertex. 

The angle between the two lines of the i+1-th node is: 6��� ���! cos: �'(+'()*
�'(),+'()*
��-(+-()*
�-(),+-()*
&��'(+'()*
,��-(+-()*
,
��'(),+'()*
,��-(),+-()*
,
;  (5) 

3.3. Gene Reallocation Operator 

After identifying the vertex gene, the other nodes are called 

variable genes, called variables because they need to be 

reallocated and redistributed along the path. The purpose of 

reallocating is to be able to apply a path correction operator 

since the initial setup failed to be applicable to path correction. 

The reallocation applies in certain conditions. Firstly, the 

rotation angles, if they are large, then more genes need to be 

allocated there because more smoothing is required, and the 

smoothing, as we said earlier, happened using path correction 

operators. Secondly, the number of genes distributed on the 

left and right sides of the vertex is determined by the longest 

side (longest sides mean more genes). Then path correction 

can be applied again and again until no further smoothing can 

be accomplished. 

In the following figure 8, in Figure (a) the two vertex 

identified the rest of the nodes called variable genes (<�, <�, 

etc). Figure (b), the variable genes pulled closer to the vertexes, 

Figure (c) the path correction is applied the vertex 2 gone, and 

certain smoothing is obtained, the vertex one angle still less 

than 180 and need much more work and analysis, So more 

variable genes are pulled toward the vertex. The genes 

distrusted left and right the vertex according to the length. 

Figure (d) path correction is applied again and more 

smoothing happed. 

 

Figure 8. Gene Reallocation. 

The probability of getting more genes is related to the angle 

of vertex value. The larger the angle, the more the angle 

attracts variable genes. The following equations express this 

idea: 

=� � >(∑ >(3(0*                 (6) 

Each vertex has two sides, the longer the side the more 

variable genes; the following shoes the probability of doing 

so: 
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As you can see the length is critical in giving higher 

probability. 

To map the new location of the variable genes the following 

equations indicate the new coordinate in relation to the old 

coordinate for the left side: 

�4 � 4∗('()*+'()
�(���)

+
'()*�'(

�
            (8) 

	4 =
4∗(-()*+-)

�(���)
+

-()*�-

�
            (9) 

And for the right side: 

�4 =
4∗('(),+'()*)

�(H��)
����           (10) 

	4 =
4∗(-(),+-()*)

�(H��)
	���           (11) 

4. Simulation Experiments 

Several 2-D environment model used to test our proposed 

system, in comparison with traditional Genetic algorithm, 

these environment are: irregular environment (IE), narrow 

winding environment (NWE) and complex maze environment 

(CME) which defined in [14, 15]. The GA parameters are: 

initial population size is 100; crossover probability is 0.8; 

mutation probability is 0.01; the number of generation is 30. 

4.1. Irregular Environment 

Figure 9 shows IE (irregular environment) model, the start 

point from (0, 0) and the finish point at (20, 20), in blue old 

traditional GA, and in red the modified enhanced GA through 

our operators. As its noticed the red path is much shorter and 

the genes allocated along critical areas where collision can 

occurred. 

 

Figure 9. Results on irregular environment. 

4.2. Narrow Winding Environment 

Figure 10 shows the second environments mode which 

called narrow winding environment (NEW) with starting 

point (0, 0) and finishing point at (30, 30), is environment is 

the hardest since its contains too many angles, and consumes 

much processing time. We need to minimize the rotation angle 

besides the path length, as its shown on the figure the 

Enhanced work shows better performance in term of rotation 

angles and in terms of path length. 

 

Figure 10. Results on narrow winding environment. 

4.3. Complex Maze Environment 

Finally; compel maze environments (CME) model which 

shown in Figure 11. The start point at (0, 0) and the finish 

point at (45, 45), the path as smooth as possible, the genes 

concentrated around the corners, and of course to Collision 

happening. 

 

Figure 11. Results on compel maze environments. 

In Table 1, The number of genes distributed among the 

trajectory was 25 genes with c (constant in the fitness function) 

is 1.5 equation (3), as shown in Table 1 the path before and 
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after the enhancement process is much shorter, the path is 

much smoother (minimum rotation) which means less power 

consumption. For choosing the proper C value, several values 

chosen, c=1.5, 10, 20 in Table 2 and Table 3. 

Table 1. The Results with # of genes=25, c=1.5. 

Env. B-PathLeng B-AngleSum A-PathLeng A-AngleSum 

IE 37.1643 266.3442 30.0056 74.3501 

NWE 126.9587 766.1434 94.9717 605.9191 

CME 88.5064 197.8526 87.7036 177.3879 

Table 2. The Results with # of genes=25, c=10. 

Env. B-PathLeng B-AngleSum A-PathLeng A-AngleSum 

IE 33.2453 139.2297 29.9795 68.6291 

NWE 114.7109 698.0758 91.0472 638.8225 

CME 81.7010 404.2745 77.9695 219.3877 

In Table 2, The number of genes is fixed to 25, the c in the 

fitness is changed to 20. 

Table 3. The Results with # of genes=25, c=20. 

Env. B-PathLeng B-AngleSum A-PathLeng A-AngleSum 

IE 32.7884 127.8072 29.9143 70.6130 

NWE 121.2033 753.6703 91.0861 702.9812 

CME 94.5215 469.5714 77.8433 221.4575 

As it’s clear from Table 2 and Table 3 that higher c better, 

but not shown significantly, for that whatever c will be the 

effect insignificant. 

Table 4. The Results with # of genes=30, c=1.5. 

Env. B-PathLeng B-AngleSum A-PathLeng A-AngleSum 

IE 32.7599 153.2898 29.9727 70.8815 

NWE 128.2248 691.4552 88.5098 651.9988 

CME 89.0326 204.4110 85.1827 164.9513 

No trying to change the number of genes, 25, 30, 50 and 100 

shown in Tables 4, 5 and 6. The more the number of genes the 

more path become smoother and path length is better with 

more genes than 25, after the number of genes become 30 no 

significant changes in the path length. 

Table 5. The Results with # of genes=50, c=1.5. 

Env. B-PathLeng B-AngleSum A-PathLeng A-AngleSum 

IE 33.1975 148.2627 29.9169 70.5937 

NWE 132.1320 734.3380 84.7895 651.0391 

CME 129.0956 745.7954 77.7448 210.0316 

In Table 6, the number of genes increased, the path is 

smoother with slight difference from the table 5 where number 

of genes to be 50. After certain number of genes no more 

smoothing can happen. This is highly dependable on the type 

of environment. 

Table 6. The Results with # of genes=100, c=1.5. 

Env. B-PathLeng B-AngleSum A-PathLeng A-AngleSum 

IE 32.0902 119.8864 29.8784 70.0165 
NWE 106.8251 652.5868 84.4018 614.9595 
CME 91.1346 340.1424 85.1109 161.8311 

In Figure 12, it is shown that the more genes, the smoother 

the path, but the more genes, the longer the execution time. That 

the more complex the environment, the greater the number of 

genes must be to be able to escape the path if needed. It is clear 

from the previous comments and from the numerical results in 

the tables that the enhanced GA with the suggested added 

operates decreases the angles summation (the path is more 

smooth) along with making the path much shorter. The process 

of speeding up the convergence is done by multiple procedures. 

First, the population initiations which were executed in the 

related work space only. The path correction operator 

eliminates the need for unneeded angles, which can be avoided 

by doing simple steps. The operator that might consume time 

will be the gene-reallocated operator. Gene reallocation means 

bringing the genes to the areas that need work (vertex, angles). 

The number of genes must not be fixed, but must be related to 

the environmental complexity. The C constant must also not be 

a static value; it should be a number related somehow to the 

longest path from the start to finish. 

 

Figure 12. The NWE with 100 genes. 

5. Conclusion 

Using Genetic Algorithm to find optimum path investigated 

several times in the past [16-18], but in this paper, the 

enhancement came after executing the traditional genetic 

algorithm as a new added phase. In this paper, an enhanced 

genetic algorithm is executed by adding three new operators 

after obtaining the solutions from the classic traditional 

algorithm. The main goal is to minimize the power energy by 

minimizing the rotation angles. This goal will ultimately 

achieve another goal, which is to shorten the length of the path. 

The first path correction operator solves the problem of 

unnecessary rotations when there are no obstacles, but the 

second problem of hard angles around obstacles requires further 

analysis and optimization, which is carried out using two 

operators: vertex identification and gene reallocation. Once the 

vertex of the angles is defined, the gene is re-distributed to help 

the path correction operator work much more easily and 

provide a smoother and shorter path. The experimental results 
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show tremendous performance, showing that the three 

operators add high values to the traditional GA. We also found 

out that the number of genes must depend on the complexity of 

the environment and is related to the number of vertex. 

6. Recommendation 

The main recommendation that would be to investigate 

more complex environments and setting up customized 

number of genes based on the environments (per 

application). 
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