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Abstract: The finite deformation of internally pressurized isotropic compressible synthetic rubber-like material governed by 

Levinson and Burgess strain energy function is analysed. A second-order nonlinear ordinary differential (Lane-Emden) 

equationwith shooting boundary value was derivedfor the determination of displacements distributions. Several analytical 

methods were employed to solve the resulting boundary value problem but no closed form solution was obtained at the 

moment. Fortunately, a lot of software have been developed to handle such highly nonlinear second order ordinary differential 

equations with specific values of parameters. Also, the stresses acting on the material were determined. We obtained numerical 

solution by applying shooting method and validated the result using collocation method on mathematica (ode45 solver). The 

simulation of the system is made forρ = 14N/m
2
, and the cylindrical symmetric deformation attained its maximum 

displacements and stresses atr(1) = 1.16638m and σrr = (-1.2973e-05)kg/m/s
2
. We were able to develop numerical schemes 

using shooting and Collocation methods which made it easier to determine position of maximum stresses and pressure in a 

cylindrical material of Levinson-Burgess strain energy function. These numerical schemes can solve any nonlinear second-

order ordinary differential equations with any given boundary conditions on Mathematica Software. The results of the two 

schemes were statistically compared using t-test and results obtained showed, the two methods have no significant difference 

which validates the solutions. 
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1. Introduction 

The complexity of mathematical models in the theory of 

elasticity, particularly in structural modeling, often results is 

highly challenging and sometimes impossible differential 

equations, making it difficult to drive analytical or closed 

form solutions to the problem. 

The article "Displacements and Finite-Strain Fields in 

Hollow Sphere Subjected to Large Elastic Deformations" by 

Chen and Durelli investigates the finite-strain fields and 

displacements of a hollow sphere under large elastic 

deformations [1]. 

The authors used the theory of finite elasticity and the 

principle of virtual work to derive the equations governing 

the displacement and strain fields of the hollow sphere. They 

consider the case of a thick-walled hollow sphere subjected 

to an internal pressure and investigate the effect of the 

Poisson's ratio on the deformation behavior. 

The results of the analysis show that the displacement and 

strain fields are non-uniform and vary significantly across the 

thickness of the sphere. The authors also demonstrate that the 

Poisson's ratio has a significant effect on the deformation 

behavior of the sphere, particularly on the radial and 

circumferential strains. 

The article provides a detailed analysis of the deformation 

behavior of a hollow sphere under large elastic deformations 

and highlights the importance of considering the effect of the 

Poisson's ratio on the deformation behavior. The results of 

this study can be useful in the design and analysis of 

structures subjected to large elastic deformations. 

This is also related to the work by Huang [2] where the y 

investigated the problem of finite displacement of a hollow 

sphere under internal and external pressures. 

They derived the governing equations for the finite 

displacement problem of a thick-walled hollow sphere using 

the theory of finite elasticity. The equations were solved using 

the boundary value. The paper Stange discussed the behaviour 
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of a hollow sphere made of a linear elastic perfectly plastic 

material under finite deformation [3]. The study uses the 

theory of large deformations and discusses the equations that 

govern the deformation of such a material. The author derives 

the stress-strain relationship and the deformation equations for 

this type of material and discusses the effects of different 

parameters on the behavior of the hollow sphere. 

The paper also includes numerical examples and a 

discussion of the results. The author concludes that the 

behavior of the hollow sphere is highly dependent on the 

parameters used and that there are many factors that can 

affect the deformation of such a material. The study provides 

valuable insights into the behavior of linear elastic perfectly 

plastic materials under finite deformation and has 

applications in various engineering fields. 

Overall, the article is a valuable contribution to the field of 

mechanics and provides important insights into the behavior of 

linear elastic perfectly plastic materials under large deformations. 

Hill discussed the problem of cylindrical and spherical inflation 

in the context of compressible finite elasticity, and presents a 

mathematical model for analyzing the problem [4]. The article 

also provides numerical solutions to the model, and discusses 

the physical implications of the results. 

In this paper, we have extended the work done by 

Egbuhuzor and Erumaka where they considered the finite 

deformation of internally pressurized spherical rubber-like 

materials [6] by considering the paper written by Levinson 

and Burgess. They discussed the behavior of rubber-like 

materials that are only slightly compressible. The authors 

compared different constitutive models that can be used to 

describe the material behavior, including the Mooney-Rivlin 

model, the Ogden model, and the neo-Hookean model. 

The Mooney-Rivlin model is a two-term polynomial 

model that can be used to describe the stress-strain 

relationship of rubber-like materials. The Ogden model is a 

more complex model that uses multiple terms to describe the 

material behavior. The neo-Hookean model is a simpler 

model that assumes the material is incompressible. 

The authors compared these models using experimental 

data from a uniaxial tension test on a rubber sample. They 

find that the Mooney-Rivlin and Ogden models provide 

better fits to the experimental data than the neo-Hookean 

model. However, they also note that the more complex 

Ogden model may not be necessary for describing the 

behavior of slightly compressible rubber-like materials [5]. 

Overall, the article provides valuable insights into the 

behavior of rubber-like materials and the different constitutive 

models that can be used to describe their behavior. Egbuhuzor 

and Erumaka modelled the Levinson and Burgess strain 

energy function where they derived a second order nonlinear 

ordinary differential equations through which they determined 

the stresses and displacement distributions of the material. 

Their work is an offshoot ofthe work by Levinson and Burgess 

who were able to obtain the different behaviours of the 

polynomial materials and compared it with different other 

strain energy functions. Rubber is not just about the original 

natural rubber but also referred to any material that has similar 

mechanical properties and they are in other words said to be 

rubber-like materials. 

Aani and Rahimi determined the stresses and 

displacements of axisymmetric radial deformation of the 

shell. They applied Neo-Hookean strain energy function to 

obtain the behaviour of the material. Results show that the 

outer and inner radius is an important parameter which can 

be mirrored to some applications in order to control the 

stresses [7]. In another paper, they also used Donnell 

nonlinear theory to derive the equilibrium equations of the 

shells, and the Rayleigh-Ritz method to obtain the critical 

buckling loads for both spherical and cylindrical shells. They 

considered different boundary conditions and material 

property distributions, and analyze the effects of these 

parameters on the shell’s stability. The paper provides a 

deatailed analysis of the stability of functionally graded 

thick-walled shells under internal pressure, which is an 

important topic in the design and analysis of pressure vessels 

and pipelines. The results can be used to optimize the design 

of these structures to ensure the safe operation under 

different loading conditions [8]. 

On Simple shear of a compressible quasilinear viscoelastic 

material as presented by De Pascalis. They explained the 

effects of compressibility on the subsequent deformation and 

stress fields that result to isochoric deformation, and 

calculations of the dissipated energy associated with both a 

ramp simple shear profile and oscillatory shear are given [9]. 

To illustrate their results, choosing the compressible Neo-

Hookean model proposed by Levinson and Burgess and from 

their results, the rates of deformation were discovered to be 

slow enough that inertia effects can be neglected. Guiseppe P. 

and Giuseppe S reviewed important areas of Gent 

constitutive model for rubberlike materials. 

Their research was based on damageable materials where 

they explained certain damage and deformation localization. 

They observed that Gent behaves as the neo-Hookean model 

at low strain. The clear and simple mathematical structure of 

the Gent model allows one to use generalized constitutive 

theories beyond classical Taylor expansions [10]. 

Blatz and Ko proposed a strain energy function which they 

called "Standard" strain energy function but Levinson and 

Burgess in their work discovered that there were certain 

limitations. First, in the limit of incompressibility, the 

standard strain energy function cannot represent Mooney-

Rivlin or Neo-Hookean material and secondly, It is not a 

capable strain energy function for an isotropic material [11]. 

Chung et al in their work on the finite deformation of 

internally pressurized hollow cylinders and spheres for a 

class of compressible elastic materials considered hollow 

circular cylinders and spheres deorming under applied 

internal pressure condition for the initiation of localized shear 

bifurcation. It is shown that when the ratio of the outer 

undeformed radius to the inner undeformed radius is larger 

than the critical value, the shear bifurcation occurs before the 

maximum pressure is reached, while when the ratio is smaller 

than the critical value, the converse is true. This analysis was 

carried out for a particular compressible elastic foam rubber 
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material (Blatz-Ko) [12]. This strain energy function was 

derived from the work of Chung et al. They derived a 

boundary value model equatrion using condition for foam 

rubber. The resulting second order ordinary differential 

equations are solved in closed form for the determination of 

the displacement distributions. 

Horgan worked on remarks on ellipticity for the 

generalized Blatz-Ko constitutive model for a compressible 

nonlinearly elastic solid. They presented an expression for 

strain energy density per unit undeformed volume for 

homogeneous isotropic elastic compressible material [13]. 

Levinson and Burgess were primarily concerned with the 

strain energy function of a highly compressible polyurethane 

foam rubber for which they found experimentally that 

0=f  and 0.25=v  but for a solid rubber of the same 

chemical composition, it was found that 1=f and 

0.46=v . Since for the incompressible case the I and J 

invariants become identical, compressible generalizations of 

the neo-Hookean and Mooney-Rivlin material clearly may be 

made in terms of either set of invariants. 

The strain energy density for a compressible hyperelastic 

material which reduces to the Mooney-Rivlin material as v 

tends to 0.5 was also obtained by Horgan. 

Kulcu examined a new strain energy function to describe the 

hyperelastic behaviour of rubber-like materials under various 

deformation. The proposed strain energy function represents 

an invariant based model which has two material constants. 

This model was tested with the experimental data of 

vulcanized rubbers, collagen and fibrin just like Levinson and 

Burgess did [14]. The parameters were kept constant when 

placed under certain types of loads. There was an agreement 

between the model and the experimental data for all materials. 

Akhundov and Lunev improved on their earlier work by 

solving the problem of tyre. The model made use of applied 

theory of vibrous material with small and large strains. They 

determined the strain, stresses and displacement distribution 

undergone by the tyre under pressure [15]. 

Some other authors introduced many other approach to 

solving the problems of hyperelastic models. 

Fereidoonnezhad instead of applying failure, rather used their 

proposed strain energy function to characterize the behaviour 

of a tranversely isotropic incompressible fibre reinforced 

rubber. The result of their prediction agreed with the 

experimental data for both tensile and shear deformations 

[16]. Moreira and Numes compared two types of deformation 

using experimental and theoritical methods. Result showed 

that simple shear cannot be considered as pure shear 

combined with a rotation when undergoing large 

deformation. It is a fact that rubber-like materials undergo 

large deformation and nonlinearly upon loading and they 

return to the initial configuration after the removal of load 

[17]. Pence and Gou considered three different compressible 

versions of the conventional incompressible neo-Hookean 

material model. The three versions critically considered the 

differences with respect to each other by use of neo-Hookean 

strain energy function. They exhibited these differences 

which their work effectively addressed. 

The difference between these literatures and our work is 

the fact that none to our knowledge has investigated the 

usefulness of the strain energy function of Levinson and 

Burgess in determining the displacements and stresses of 

deformations involving both the spherical and cylindrical 

coordinate systems. Levinson and Burgess compared other 

strain energy functions using the poisson ratio and material 

constant to determine the behaviour of the materials [18]. 

This work is another dimension to the work of Levinson 

and Burgess. We considered the problem as a hollow sphere 

and hollow cylinder similar to the work of Blatz and Ko. The 

difference beetween our work and Blatz and Ko is that they 

considered the strain energy function of foam rubber 

( 0=f  and 0.25=v ). Similarly, Levinson and Burgess in 

their work also focused only on highly compressible foam 

rubber. In this work, we considered the strain energy function 

when 1=f  and 0.46=v  which is said to be a solid 

(synthetic) rubber as shown in the paper by Egbuhuzor and 

Erumaka. We also derived the second order nonlinear 

ordinary differential equations with appropriate boundary 

value conditions which were simulated using mathematica 

software for the determination of stresses and displacements. 

2. Methodology 

2.1. Field Equation for Symmetric Deformation of a 

Cylindrical Material of Levinson-Burgess 

We consider the case of deformation that takes the point 

),Θ,( ZR  of the cylinder in the undeformed configuration to 

),,( zr θ  in the deformed configuration such thatthis 

represents a three dimensional cross-section of a solid 

cylinder with an internal and external radii a and b in its 

undeformed form as proposed in Chung et al. 

bRaRrr ≤≤)(=  

πθ 2Θ0Θ= ≤≤  

lZZz ≤≤0= γ  

0>
dR

dr
 

where γ  is a material constant 

 

Figure 1. Hollow Cylindrical shape. 
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For this case, the deformation gradient tensor F  and 

Cauchy Green Right tensor (C) are given by; 
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Using Cauchy tensor as defined below; 
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According to [12], the equilibrium equation after applying the cauchy stresses above is given as; 
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Applying (7) and (8) in (10), we obtain the nonlinear ordinary differential equation as; 
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2.2. Shooting Boundary Conditions 
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3. Results and Discussion Solutions for 

Cylindrical Symmetric Deformation 

At this point, we determined the displacements and 

stresses of the compressible cylindrical rubber-like 

material undergoing internal pressure. First, we consider 

the derived equation of cylindrical symmetric 

deformations which we solved numerically usingshooting 

and collocation methods on Mathematica (ode45 solver). 

The boundary value problem is a Lame-Emden second-

order nonlinear ordinary differential equations and at the 

moment, no closed form solution has been found for this 

model equation with shooting boundary conditions. The 

load applied is the same at every height and the load 

considered here is the pressure which is applied at a 

constant rate at the inner surface as seen in the spherical 

deformation reported by Egbuhuzor and Erumaka. This 

load generates stresses within the cylinder and the outer 

surface is stress free. 

3.1. Collocation Method for Nonlinear Second-Order 

Boundary Value Problems 

The paper by [6] first stated the Exponentially fitted 

backward differentiation scheme for general second order 

differential equations derived using collocation method, with 

frequency 1=w , 1.0315=γ , 
N

ab
h
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= ; where (a,b) is 
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3.2. Results and Discussions 

Table 1. Table for cylindrical shooting method Versus Collocation method from (11) at N= 40. 

R R (R) (shooting method) R (R) Derived method rrσ (shooting/derived method) 

0.20 0.39735 0.39731 8.7399/8.7384 

0.22 0.42188 0.42184 7.8131/7.8118 

0.24 0.44572 0.44567 7.0302/7.0288 

0.26 0.46896 0.46891 6.3595/6.3583 

0.28 0.49167 0.49162 6.9852/9839 

0.30 0.51392 0.51387 5.2697/5.2686 

0.32 0.53575 0.53570 4.8205/4.8196 

0.34 0.5572 0.55715 4.4209/4.4200 

0.36 0.57832 0.57826 4.0632/4.0622 

0.38 0.59912 0.59907 3.7406/3.7398 

0.40 0.61964 0.61958 3.4486/3.4477 

0.42 0.63990 0.63984 3.1827/3.1819 

0.44 0.65992 0.65986 2.9398/2.9391 

0.46 0.67972 0.67965 2.7170/2.7161 

0.48 0.69932 0.69925 2.5117/2.5109 

0.50 0.71872 0.71865 2.3220/2.3212 

0.52 0.73794 0.73787 2.1463/2.1455 

0.54 0.75700 0.75693 1.9829/1.9822 

0.56 0.77591 0.77583 1.8309/1.8302 

0.58 0.79467 0.79459 1.6889/1.6882 

0.60 0.81330 0.81321 1.5562/1.5553 

0.62 0.83179 0.83171 1.4314/1.4307 

0.64 0.85017 0.85009 1.3144/1.3137 

0.66 0.86843 0.86835 1.1620/1.1613 
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R R (R) (shooting method) R (R) Derived method rrσ (shooting/derived method) 

0.68 0.88659 0.88650 1.1004/1.0097 

0.70 0.90465 0.90456 1.0023/1.0016 

0.72 0.92261 0.92252 0.9096/0.9089 

0.74 0.94048 0.94039 0.8218/0.8212 

0.76 0.95827 0.95817 0.7387/0.7380 

0.78 0.97597 0.97587 0.6596/0.6590 

0.80 0.99360 0.99350 0.5846/0.5840 

0.82 1.01115 1.01105 0.4871/0.4866 

0.84 1.02864 1.02853 0.4452/0.4445 

0.86 1.04605 1.04595 0.3803/0.3797 

0.88 1.06341 1.06330 0.3184/0.3178 

0.90 1.08070 1.08060 0.2593/0.2588 

0.92 1.09794 1.09783 0.2029/0.2023 

0.94 1.11513 1.11502 0.1488/0.1482 

0.96 1.13226 1.13215 0.0971/0.0965 

0.98 1.14934 1.14923 0.0475/0.0470 

1.00 1.16638 1.166263 -1.2973e-05/-5.8495e-04 

 

 

Figure 2. Cylindrically symmetric deformation for N = 40. 

For 40=N , the graph above describes the cylindrical 

deformation of the nonlinear ODE of equation (11) using 

shooting method on Mathematica at mr 0.39735=(0.2)  

and mr 1.16638=(1)  when maximum 
2/14= mNρ . There 

is steady increase in displacements when the pressure 

increases. The material will blow up when it exceeds the 

maximum pressure. This is true for figure 3 which shows the 

graph of the two methods for validation of our results Figure 

2 is simply the number of iterations which is N = 40. 

 

Figure 3. Cylindrical (shooting method) and Collocation method for N = 40. 

Figure 4 is the plot of the gradient against the radius R. 

The )(Rr'  helped us to obtain the stresses acting on the 

material. At mR 0.2= , the gradient mRr' 1.24=)(  for the 

cylindrical deformation which serves as their point of 

interception. This shows changes on the materials as regards 

the stresses. Figure 4 shows that )(Rr'  is decreasing and 

both are said to be concave down. They are also less steep. 

Figure 4 has a horizontal asymptote at (0.2,1)=R . Note 

that the radius of a circle, a sphere or cylinder and any other 

shape with circular surface on it is a measurement. For us to 

have obtained a negative radius, it shows that there is more 

than one center and at this point, the circumference becomes 

the center. 

 

Figure 4. Graph for r’(R) Versus R. 

4. Analysis of Results 

The displacements for the cylindrical deformation at )(ar  

and )(br  are mr 0.39735=(0.2)  and mr 1.16638=(1)  

and corressponding stresses of 2//8.7399=(0.2))( smkgrσ  
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and 2//051.2973=(1))( smkgerσ  for the shooting 

method and for the collocation method we obtained 

mr 0.39731=(0.2)  and mr 1.16626=(1)  with stresses 

2//8.7384=(0.2))( smkgrσ  and 

2//045.849=(1))( smkgerσ respectively. It is found that 

as the pressure increases, the stress acting on the material 

also increases. There are significant variations in the stresses 

and even at different points of radius. 

If the pressure increases beyond that, the material inflates, 

reaches a amximum with value mr 1.16626=(1) . The table 

compares the solution as obtained using shooting method 

internally in mathematica (ode45 solver) and the derived 

collocation method applied to obtain the results for 

displacements. 

It is well known that the displacement equations of 

equilibrium in finite elastostatics may lose ellipticity at 

sufficiently large deformations. The existence of smooth 

solution is obtained after loss ellipticity. Moreover, the 

possibilty exists that non-smooth deformation fields with 

discontinuous deformation gradients and stresses might 

occur. This can be compared with the arguement shown in 

Chung et al where they deduced that as the pressure, ρ , is 

increased, the deformed radius increases until ρ  reaches a 

maximum value where r(1) = 0.03705. Our results are in 

agreement with this work by Chung et al who also showed 

that axisymmetric solutions with discontinuities do not exist 

in their work. If Weak solution exists, then it must be non-

axisymmetric. 

5. Conclusion and Recommendation 

5.1. Conclsuion 

We used the results obtained to calculate stresses and 

displacements in radial deformation. This was achieved 

numerically at maximum pressures using the Mathematica 

algorithm (ode45 solver), which internally employed the 

shooting method. We validated the shooting method with the 

collocation method. The argument posed by [12] is that as the 

pressure ( ρ ) increases, the deformed radius increases until 

ρ  reaches its maximum value where 1=)(ar . 

In our work, axisymetric solutions with discontinuities do 

not exist. If weak solution exist, they must be axisymmetric. 

As the pressure increases, the material inflates. Our results 

show that the cylindrical symmetric deformation attains its 

maximum pressure at 
2/14= mNρ  and when for example, 

the material is inflated too much, the rubber rounds out at the 

top of the material and it will quickly wear out. There will be 

traction reduction which is responsible for the material to 

burst. This research work can be applied to the problem of 

radial tyre under internal pressure. 

5.2. Contribution 

1) In our work, we were able to determine the general 

equation for the pressure ( ρ ) in a general material 

composed of Levinson-Burgess strain energy function, 

which hitherto had been avoided by other authors. 

2) We were able to develop numerical schemes using 

shooting and Collocation methods which makes it easy 

to determine position of maximum stresses and pressure 

in a cylindrical material of Levinson-Burgess strain 

energy function. These numerical schemes can solve 

any nonlinear second-order ordinary differential 

equations with any given boundary conditions on 

Mathematica Software. 

5.3. Recommendation 

1) We recommend that the strain energy function of 

Levinson and Burgess be compared with the strain 

energy functions of other rubber-like materials such as 

Neo-Hookean, Mooney-Rivlin and other using the same 

boundary conditions for the determination of the 

behaviour of the materials. 

2) Finite element method can be applied on Matlab for an 

improved result especially when considering the 

displacement distribution and stresses acting on a tyre 

when in contact with the soil under internal pressure. 

3) Since we have not been able to get the analytical 

solution, closed form solution of the nonlinear second-

order ordinary differential equations obtained by 

analytical methods will make a huge contribution to 

knowledge. 
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