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Abstract: Even though the longest day occurs on the June solstice everywhere in the Northern Hemisphere, this is NOT the 

day of earliest sunrise and latest sunset. Similarly, the shortest day at the December solstice in not the day of latest sunrise and 

earliest sunset. An analysis combines the vertical change of the position of the Sun due to the tilt of Earth’s axis with the 

horizontal change which depends on the two factors of an elliptical orbit and the axial tilt. The result is an analemma which 

shows the position of the noon Sun in the sky. This position is changed into a time at the meridian before or after noon, and this 

is referred to as the equation of time. Next, a way of determining the time between a rising Sun and its passage across the 

meridian (equivalent to the meridian to the setting Sun) is shown for a particular latitude. This is then applied to calculate how 

many days before or after the solstices does the earliest and latest sunrise as well as the latest and earliest sunset occur. These 

figures are derived for 60 cities in the USA. The selection was initially based on the most populous urban areas but was 

extended to ensure that each of the 50 states has a representative city. 
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1. Introduction 

The June solstice is the longest day of the year in the USA 

and the December solstice is the shortest. However, 

calculations in this paper show that: 

The earliest sunrise happens before the June solstice and 

the latest sunset after; 

The latest sunrise happens after the December solstice and 

the earliest sunset before; 

The effect at the December solstice is more pronounced 

than for the June one and 

The number of days departure for earliest/latest 

sunrise/sunset from the longest and shortest days is 

latitudinally dependent and increases towards the equator. 

2. Dates Used in this Paper 

The solstices, equinoxes, perihelion (closest distance to 

Sun) and aphelion (furthest point from Sun) occur at 

instances and these are given in Universal Time, the time at 

Greenwich, England. The USA has a wide spread of time 

zones from 5-10 hours behind Greenwich. A solstice, for 

example, happens at an instant and may occur on different 

days in different time zones. Calculations in this paper are 

based on Central Standard Time of -6 hours difference, with 

Chicago being the representative locality. 2022 is the year 

selected. One advantage to this is that it avoids a leap year. 

So, relevant orbital and seasonal dates chronologically for the 

USA in 2022 Astropixels [1] are shown in Table 1. 

Table 1. Dates in 2022 for USA Central Standard Time for solar occurrences. 

Solar Occurrence Date in 2022 

perihelion January 04 

equinox March 20 

solstice June 21 

aphelion July 04 

equinox September 22 

solstice December 21 

3. Outline of Paper 

1. The elevation of the Sun at noon over a year is related to 

the tilt of the spin axis of Earth which is inclined at 23°.44 

Seidelman_2006 [2] to the vertical of its orbital plane 

(obliquity). This is determined graphically. 

2. The east-west variation of the Sun from the meridian at 

noon depends on two factors. These are an elliptical rather 

than a circular orbit for Earth and the obliquity. These factors 
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are independent of each other. This derivation is analyzed in 

steps (as in Yeow_2002 [3]) with first taking only the 

elliptical orbit and setting the obliquity as 0°. 

3. Second, the influence of the obliquity under a circular 

orbit is found. 

4. Third, the two factors from 3.2 and 3.3 are combined. 

5. The result from 3.4 is joined with that from 3.1 to 

display the angle of the Sun and its east-west variation from 

the meridian over a year. 

6. 3.5 is converted from an angle to time in minutes to 

produce the Equation of Time. 

7. Rising and setting times may be calculated for one’s 

latitude. 

3.1. Variation of the Position of the Sun over the Year: 

Elevation 

The basic unit for the calendar is the time between 

successive March equinoxes and its duration is 365.242 19 

days [2]. From the point of view of Earth, the average 

angular movement of the Sun is 

360°/365.242 19 days=0°.986 per day.               (1) 

Declination is the angle from the celestial equator moving 

away from it at right angles with + to the north and – to the 

south. Over the year 

declination of Sun=23.44 sin (0.986 (286+D))     (2) 

where 286 is the number of days from the March equinox of 

the previous year (here March 20 2021 [1]) to 31 December, 

and D is the number of days from 01 January in the current 

year (2022). 

In Excel, highlight column A, Format Cells to Custom and 

d-mmm. In cell A1 place 1/01/2022 and in A2 5/01/2022. 

These will change to 1-Jan and 5-Jan respectively. In A3 

place=A2+5 and copy to 31-Dec. In B1 and B2 respectively 

place 1 and 5. In B3 put=B2+5 and copy to 365. In 

C1,=23.44*SIN(RADIANS(0.986*(286+B1))). Copy will be 

taken for granted from now. Graph C against B to give 

Figure 1. 

 

Figure 1. Declination of the Sun over a Year. 

Figure 2 shows the declination taken from Earth’s equator 

and an observer in the northern hemisphere. 

 

Figure 2. Elevation of Sun. 

The upper blue line is parallel to the lower one. On this 

scale, the Sun is far enough away that the upper parallel line 

also points to the Sun. By convention, declinations south of 

the equator are negative. Hence, from geometry for the Sun 

in either hemisphere 

elevation=90° - (latitude – declination).             (3) 

For a fixed latitude, the elevation of the Sun at noon varies 

due to the declination. 

In D1,=90-(latitude-C1) where one’s latitude in decimal 

degrees is used. Graph D against B for Figure 3. The 

example here uses Chicago 41.84 (41°.84 N). 

 

Figure 3. Elevation of Sun at Noon for Chicago over a Year. 

3.2. Deviation from Meridian for Elliptical Orbit Only 

The derivation following [3] fixes the tilt angle at 0°. If N 

is the number of days after perihelion, m=0.986N (1) gives 

the angular change from perihelion of a uniformly moving 

Sun on a circle centered on Earth. The position of the real 

Sun uses Earth at one focus of an ellipse. The following 

equation gives the angular change v of the actual Sun in an 

elliptical orbit Duffet-Smith _1992 [5] where the eccentricity 

e of Earth’s orbit is 0.016 71 [2]. 
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v=m + (360/π) e sin m=0.986N + 1.915 sin (0.986N)   (4) 

In E1,=B1-4 (Jan 04 is perihelion). In 

F1,=0.986*E1+1.915*SIN(RADIANS(0.986*E1)). In 

G3,=(F3-F2)/5. This is the average each 5 days. Plot G 

versus B from cell 3 for Figure 4. Add dotted horizontal line 

at 0.986. 

 

Figure 4. Angular Speed of Sun in an elliptical orbit compared with a 

uniformly moving Sun. 

The elliptical orbit is based on the first law of planetary 

motion of Kepler. His second law is demonstrated in Figure 4 

by the maximum speed at perihelion and the minimum at 

aphelion. 

Equation (4) may be rearranged so that 

Z1=m – v=-1.915 sin (0.986N)                   (5) 

is the angular difference between a circular and elliptical 

orbit for the Sun. A positive value gives a faster moving Sun 

so that at noon it is west of the meridian. Conversely, a 

negative value gives a slower moving Sun, which at noon is 

east of the meridian. Thus, Z1 represents the position of the 

Sun relative to the meridian based on the elliptical orbit. 

In H1,=-1.915*SIN(RADIANS(0.986*E1)). Graph H 

against B for Figure 5. 

 

Figure 5. Angle from meridian for factor of elliptical orbit only. 

3.3. Deviation from Meridian for Obliquity Only 

A circular orbit is selected. The celestial equator and 

ecliptic are inclined at 23°.44 to each other in Figure 6. 

 

Figure 6. Celestial Sphere with Celestial Equator and Ecliptic. 

Movement on the celestial equator is the basis for clock 

time, but the real Sun moves at an angle to this. From Figure 

6, cos 23°.44=0.917 so that for a 1° movement of the Sun 

along the ecliptic, its component on the celestial equator is 

0°.917. The “real Sun” and the “clock Sun” meet at the 

equinoxes. The real Sun and the clock Sun are moving 

parallel at the solstices, so they are again in step. The 

maximum difference will be halfway between them, that is, 

at 45° along the orbit. The difference in angular movement at 

45° gives the amplitude of a graph due to this factor only. 

Spherical geometry Kaler [6] is necessary to show the 

angular movement on the ecliptic=arctan (0.917 tan 

45°)=42°.52 Mills _978 [7]                                (6) 

45° - 42°.52=2°.48.                               (7) 

While the period for the elliptical factor is one year, it is 6 

months (182.5 days) for the obliquity factor. In 2022 there 

are 75 days between perihelion and the March equinox. One 

quarter of a year is 91.25 days. If N is taken as previously, the 

effect here is [3] 

Z2=2.48 sin��N - 75����.�
	�.�� 
.                     (8) 

In I1,=2.48*SIN(RADIANS((E1-75)*182.5/91.25)). Plot I 

against B in Figure 7. 

 

Figure 7. Angle from meridian for obliquity only. 
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3.4. Deviation from Meridian for Elliptical Orbit and 

Obliquity Combined 

The two effects of elliptical orbit and tilt angle are now 

combined from (5) and (8). 

Z=Z1 + Z2                                  (9) 

Z=-1.915 sin 0.986N + 2.48 sin ��N - 75����.�
	�.�� 
.      (10) 

In J1,=H1+I1. Graph J (combined angle from meridian) 

against B in Figure 8. 

 

Figure 8. Angle from meridian for elliptical orbit and obliquity. 

3.5. Elevation and Deviation from the Meridian Combined 

The union of the elevation for a specific locality (Figure 3) 

and deviation from the meridian (Figure 8) for the Sun results 

in the construction of an analemma, which is in the shape of 

a figure eight. The word is derived from a pedestal for a 

sundial. This is what would be observed for the noon Sun 

over a year at a specific place. However, a general analemma 

is constructed by having the vertical axis the declination 

(Figure 1) and the horizontal axis as the angle of the noon 

Sun from the meridian (Figure 8) with positive values west 

and negative ones east. 

Plot C against J for Figure 9. 

 

Figure 9. Analemma. 

The actual position in the sky is obtained by raising or 

lowering the entire curve to match the elevation at one’s 

latitude. 

As the Sun is not on the meridian at noon at the solstices, 

the analemma is skewed and does not line up with the 

vertical axis. 

3.6. Equation of Time 

The sidereal rotation of the Earth is 23 hours 56 minutes 

04 seconds=0.997 269 days. 

0.997 269 days x 24 x 60 / 360°=3.989 minutes per degree. (11) 

Thus, from the position of the Sun given as an angle, one 

may determine the time earlier or later than noon that it 

crosses the meridian (Figure 8 into Figure 10). For the Sun 

west of the meridian at noon, it is faster than a clock and will 

be shown here as a positive time. 

In K1,=3.989*J1. Graph K against B for Figure 10. 

 

Figure 10. Equation of Time. 

The relative sizes of the crests show the effect in 

December is more pronounced than in June. 

3.7. Rising and Setting Times for One’s Latitude 

The time from sunrise to its crossing of the meridian (and 

from the meridian to sunset) depends on both the declination 

of the Sun and the latitude of the observer. Even though the 

longest and shortest days are generally the same date for all 

places in the USA, earliest and latest sunrise and sunset are 

latitudinally dependent. Houston Texas, being close to the 

equator, is used as an example as this gives a large difference 

in days. However, adopt your own latitude. Then, the number 

of days before or after the solstices for earliest/latest sunrise 

and sunset is calculated for your locality. 

The algorithm for the time interval between the rising of a 

star (here the Sun) and its transit over the observer’s meridian 

(or equivalently from the meridian to setting) for particular 

declinations is derived firstly by determining an angle from 

spherical geometry [6] and is Ridpath [8] 

cos (semi-diurnal arc)=- tan (declination) x tan (latitude) (12) 

where the semi-diurnal arc is the angle that a star makes from 

either horizon to the meridian. Then, a general formula for 

converting this angle to length of time is 

time in minutes=semi-diurnal arc x 3.989 (equation 11). (13) 
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In L1,=DEGREES(ACOS(-TAN(RADIANS(C1)) 

*TAN(RADIANS(latitude))))*3.989  

where Houston, Texas of latitude 29.79 (29°.79 N) is used. 

Graph L against B for Figure 11. 

 

Figure 11. Time between horizon and meridian transit for Houston Texas 

over year. 

The following procedure Wagon _1990 [9] is based on the 

semi-diurnal time for Houston, Texas, but use your own 

latitude. 

Addition of the minutes before or after noon in Figure 10 

to the minutes of half daylight in Figure 11 gives the actual 

minutes before noon of sunrise. 

In M1,=K1+L1 for time of sunrise in minutes before noon. 

Graph M against B for Figure 12. 

Subtraction of the minutes before or after noon in Figure 

10 from the minutes of half daylight in Figure 11 gives the 

actual minutes after noon of sunset. 

In N1,=L1-K1 for time of sunset in minutes after noon. 

Graph N against B for Figure 13 where the vertical axis is 

reversed to have a sense that the spacing between the plots in 

Figures 12 and 13 is the length of daylight. 

Inspection of Figures 12 and 13 shows that the earliest 

sunrise precedes the June solstice and the latest sunset trails it, 

and the latest sunrise trails the December solstice, and the 

earliest sunset precedes it. 

 

Figure 12. Time of sunrise in minutes before noon for Houston, Texas 

latitude 29°.79 N for 2022. 

 

Figure 13. Time of sunset in minutes after noon with vertical axis reversed 

for Houston, Texas latitude 29°.79 N for 2022. 

Addition of the minutes before noon of sunrise (Figure 12) 

and minutes after noon of sunset (Figure 13) gives the length 

of daylight for each day. 

In O1,=M1+N1. 

The data in Excel have been calculated for each 5 days. To 

ascertain the number of days difference from the solstices for 

the shortest/longest sunrise/sunset, the information can be set 

daily, but it is only necessary for June to early July 2022 and 

late November 2022 to early January 2023. As the effect is 

less pronounced further from the equator, these spans of the 

calendar could be even smaller. There is a slower rate of 

change at these maxima and minima, and it may be necessary 

to go to 3 decimal places to isolate one particular day. Also, 

these equations have some rounding effect for simplicity, and 

may differ ever so slightly from results put out from say, the 

United States Naval Office. Also, the clock time is for the 

longitude of a certain time zone. A difference in one’s locality 

from this longitude introduces a minor adjustment. 

From O in these daily calculations, one should see that the 

figures do correspond to the longest and shortest days, given the 

caveats above. From O also, one should determine the number 

of days of earliest sunrise before the June solstice, latest sunset 

after the June solstice, latest sunrise after the December solstice 

and earliest sunset before the December solstice. 

The offset effect should be more pronounced for 

December than for June. 

4. Extra for the Mathematically Inclined 

The graphs in Figures 12 and 13 (for the daily calculations) 

could be lined one above the other. Let one be a function of p 

against time t and the other q versus t. Let the vertical 

difference q – p=r. At the maximum and minimum values of r, 

its differential dr/dt=0. Hence, dq/dt – dp/dt=0, and this will 

occur when these differentials are equal. This corresponds to 

the days when the slopes of these two curves are equal. Draw 

these slopes on the daily section of the graphs to verify this 

for the June solstice and then for the December solstice. They 

are shown for Houston, Texas at the June solstice for sunrise 

in figure 14 and sunset in figure 15. The days are aligned if 
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figure 14 is placed above figure 15. 

Table 2. Number of days for earliest sunrise before the June solstice for latest sunset after the June solstice latest sunrise after the December solstice earliest 

sunset before the December solstice for 60 USA cities arranged in decreasing order of latitude in degrees in decimal form. 

 city state/district latitude A B C D 

1 Anchorage Alaska 61.17 4 1 3 7 

2 Seattle Washington 47.62 7 3 9 12 

3 Fargo North Dakota 46.87 7 4 9 14 

4 Billings Montana 45.79 7 4 9 14 

5 Portland Oregon 45.54 7 4 10 14 

6 Minneapolis Minnesota 44.96 8 4 10 15 

7 Burlington Vermont 44.48 8 4 10 15 

8 Portland Maine 43.66 8 4 10 15 

9 Boise Idaho 43.60 8 4 10 15 

10 Sioux Falls South Dakota 43.54 8 4 10 15 

11 Milwaukee Wisconsin 43.06 8 4 11 16 

12 Manchester New Hampshire 42.98 8 4 11 16 

13 Detroit Michigan 42.38 8 5 11 16 

14 Boston Massachusetts 42.33 8 5 11 16 

15 Chicago Illinois 41.84 8 5 11 16 

16 Providence Rhode Island 41.82 8 5 11 16 

17 Des Moines Iowa 41.57 8 5 11 16 

18 Omaha Nebraska 41.26 9 5 12 16 

19 Bridgeport Connecticut 41.19 9 5 12 17 

20 Cheyenne Wyoming 41.14 9 5 12 17 

21 Salt Lake City Utah 40.78 9 5 12 17 

22 Newark New Jersey 40.72 9 5 12 17 

23 New York City New York 40.66 9 5 12 17 

24 Philadelphia Pennsylvania 40.01 9 5 12 17 

25 Columbus Ohio 39.99 9 5 12 17 

26 Indianapolis Indiana 39.78 9 5 12 17 

27 Denver Colorado 39.76 9 5 12 17 

28 Wilmington Delaware 39.74 9 5 12 17 

29 Baltimore Maryland 39.30 9 5 12 18 

30 Kansas City Missouri 39.13 9 5 13 18 

31 Washington District of Columbia 38.90 9 5 13 18 

32 Charleston West Virginia 38.35 9 6 13 18 

33 Louisville Kentucky 38.17 9 6 13 18 

34 El Paso Texas 37.85 10 6 13 18 

35 San Francisco California 37.73 10 6 13 18 

36 Wichita Kansas 37.69 10 6 13 18 

37 San Jose California 37.30 10 6 13 19 

38 Virginia Beach Virginia 36.78 10 6 14 19 

39 Las Vegas Nevada 36.23 10 6 14 19 

40 Nashville Tennessee 36.17 10 6 14 19 

41 Oklahoma City Oklahoma 35.47 10 6 14 19 

42 Charlotte North Carolina 35.21 10 6 15 20 

43 Albuquerque New Mexico 35.11 10 6 15 20 

44 Memphis Tennessee 35.10 10 7 15 20 

45 Little Rock Arkansas 34.73 11 7 15 20 

46 Los Angeles California 34.02 11 7 15 21 

47 Columbia South Carolina 34.00 11 7 15 21 

48 Atlanta Georgia 33.76 11 7 15 21 

49 Phoenix Arizona 33.57 11 7 15 21 

50 Birmingham Alabama 33.53 11 7 15 21 

51 San Diego California 32.82 11 7 16 21 

52 Dallas Texas 32.79 11 7 16 21 

53 Fort Worth Texas 32.78 11 7 16 21 

54 Jacksonville Mississippi 32.32 11 7 16 21 

55 Jacksonville Florida 30.34 12 8 17 22 

56 Austin Texas 30.30 12 8 17 23 

57 New Orleans Louisiana 30.05 12 8 17 23 

58 Houston Texas 29.79 12 8 18 23 

59 San Antonio Texas 29.47 13 8 18 23 

60 Honolulu Hawaii 21.32 17 12 23 30 
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Figures 14. Times of sunrise for Houston, Texas latitude 29°.79 N for 2022 

around the June solstice to show the longest day and the equal slopes when 

placed above figure 15. 

 

Figures 15. Times of sunset for Houston, Texas latitude 29°.79 N for 2022 

around the June solstice to show the longest day and the equal slopes. 

5. Data for 60 Cities for Calculation of 

Solar Motion for Localities in the USA 

60 cities of the USA were selected for analysis. The 25 

most populous urban areas from the estimated population at 

the end of 2016 were in the first group included. Then, for 

any state not represented in this collection, its most populous 

city was chosen. These data were actually calculated for 1999, 

and while there is a slight variation from year to year, the 

pattern should be similar to the table. 

6. Conclusion 

The longest and shortest days are the same throughout the 

USA but these do NOT correspond to earliest/latest 

sunrise/sunset. This resulted in the following observations 

from calculations. 

The earliest sunrise occurs before the June solstice and the 

latest sunset after. 

The latest sunrise occurs after the December solstice and 

the earliest sunset before. 

The effect at the December solstice is more pronounced 

than for the June one. 

The effect increases with decreasing latitude. 
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