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Abstract: The design of complex engineering problems requires computation of several optimal parameters that is 

generally very time consuming and computationally expensive process. When using computationally expensive simulation 

programs/algorithms in engineering design for optimization, sometimes it becomes impractical to rely exclusively on 

simulation codes only. This study involved the designing of a suitable metamodel by using Kriging response surfaces which 

will be used for global optimization purposes. The study also covers the implementation of Kriging mathematical model in 

the form of a computer algorithm which is written in MATLAB. 
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1. Introduction 

Jones et al (1998) establishes an important foundation 

regarding global optimization of simulators and their use in 

engineering optimization problems where the number of 

function evaluations is limited by time or cost. In regard to 

this perspective, it is suggested to fit particular response 

surfaces to data collected by evaluating the function at a few 

points. [1] 

Within the engineering community, response surfaces are 

gaining ever more popularity as a way of developing fast 

surrogates for time-consuming computer simulations. By 

running the simulations at a set of points (experimental 

design) and fitting response surfaces to the resulting 

input-output data, fast surrogates are obtained that can be 

used for optimization. These are computational cheap and 

time is saved by exploiting the fact that all runs used to fit 

the surfaces can be done in parallel, that runs can be started 

before one has even formulated the problem, and that runs 

can be reused when solving modified versions of the original 

problem 

There is a lot of difference in some given data sample and 

the information that samples has in it. It is extremely useful 

if statistical analysis can be employed to the given data to 

extract useful information on it. Kriging, belongs to the 

group of geostatistical techniques that interpolate the value 

of a random variable at an unknown place in the design 

domain, based on the information it gathers from the given 

set of observed values. It is used as a method of predicting 

values of a function which has continuous distribution. The 

real strength of this method is based on the fact that it 

evaluates statistical variation in values in two respects i.e.  

distance and direction while predicting values to minimize 

error. 

Based on the works of Daniel Gerhardus Krige, Georges 

Matheron, a French mathematician developed this Kriging 

method. 

2. Mathematical Model 

There are several methods of generating 

response-surfaces / surface-fits. Response surfaces are not 

only a mere representation of the input data but these also 

represent trends/patterns in the given data. Some of the 

methods that are generally used for surface fitting are as 

follows; [2] 

1. Minimum Curvature  

2. Kriging 

3. Inverse Distance  

4. Linear  

5. Profiles 

6. Quintic 

7. Polynomial  

8. Bidirectional 

9. Triangulation 

Out of these methods, Kriging is gaining ever more 
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popularity for metamodeling and design of experiments due 

to it’s inherit characteristics which will be discussed below. 

2.1. Kriging Method 

Kriging is a statistical based interpolation method which 

takes into account i) distance and ii) degree of variation 

between known data points when predicting values in 

unknown design space. The Kriging predicted-value is 

weighted linear combination of the known observed values 

around the point to be estimated. While predicting values it 

tries to minimize the error-variance and furthermore it 

provides a statistical estimation of the error at each 

interpolated point, providing a measure of confidence in the 

predicted value. [3] 

A random variable can be expressed as given in the 

following expression, [4]  

           (1) 

where ( )Y x  is a random variable on the ( x ) - parameter. 

( )Y x  is the interpolated point as given by Kriging 

corresponding to the function ( )f x  (which in some cases 

is considered as constant and taken equal to mean value) and 

( )Z x  as error deviation of the predicted value from the 

true function. Mostly interpolation functions regard ( )Z x  

as independent. But in Kriging metamodel, ( )Z x is 

modeled as realization of stochastic process with mean-zero, 

variance and non-zero covariance, considered as dependent 

and are modeled as a ‘zero-mean’ Gaussian process. Thus 

Eq.1 can be written as 

   (2) 

where ( )jf x  is referred to as basic functions, jB  are 

corresponding coefficients. Now the co-variance of ( )Z x

is modeled as 

    (3) 

where 
2σ  is the process variance, R is correlation matrix 

and ( ),i jR x x  is correlation function between any two of 

n-sampled points 
ix  and 

jx . R  is (n x n) symmetric 

matrix with ones along the diagonal. There are a number of 

ways to model this correlation function. But generally the 

most widely used correlation function is Guassian 

correlation function, which is given as 

     (4) 

where ‘n’ represents the design variables, θ  > 0 and  p > 0 

but for Guassian correlation function p =2, Value of ‘p’ 

varies between 1 – 2, 2 being selected for continuous 

functions. 

Now the predicted estimate of  
^

( )y x  of the response 

surface ( )y x  at untried values of x  is given by the 

following expression 

         (5) 

where y is the column vector of size ( 1)n ×  of the given 

input data (observed values), f is the column vector of 

ones of the size of ( 1)n ×  when ( )f x  is considered as 

constant and equal to mean value of output as mentioned 

earlier. 
^

B in the above expression is calculated by using the 

following expression; [4] 

           (6) 

In the equation (5), ( )T
xr  is the correlation vector of 

length (n) between an untried value of x  in the design 

space and the given input values of x  (i.e. 
1 2, ..... nx x x ) 

so ( )T
xr  can be written as follows, 

               (7) 

The variance 
2σ  between 

^

B and y is calculated by the  

   (8) 

As it has been discussed that Kriging based metamodels 

also give a measure of error in the metamodel predicted 

value, that is using statistical interpretation as given by the 

expression in Eq.9, an approximated error between original 

data values and the predicted value can be calculated which 

in turn can show, the level of confidence in the prediction. 

The expression for mean squared error (MSE)  

(9) 
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The expression of MSE, is statistically zero at the 
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represents lower confidence level in metamodel-based 

predicted value. It should be kept in mind that Eq. 9 will only 

give statistical approximation of error. 

2.2. Computational Aspects 

The computation of variance 
2σ  as given by Eq. 8 

cannot be carried out directly due to computational problems. 

So 
^

B  should be calculated by orthogonal transformation as 

least square solution. [4] 

                   (10) 

Least Square solution can be found in the following 

manner. 

1. Compute “Economy Size” QR factorization of 
~

f ,   

                  (11) 

where Q  has orthonormal columns and 
TG  is upper 

triangle. 

2. Check that G  and 

~

f
has a full rank. If not, this is an 

indication that the chosen regression functions were 

not sufficiently linearly independent, and computation 

should stop with giving an error on ‘Ill Matrix’. or else 

compute the least squares solution by back substitution 

in the system 

                (12) 

The auxiliary matrices can also be used to compute the 

process variance 
2σ  which was given in Eq.8.  

              (13) 

and the MSE is computed using the following expression. 

       (14) 

with  

                (15) 

3. Design of Experiment (DOE) 

Conducting experiments on the obtained metamodel 

implies in analyzing where and how to select the inputs (x* ) 

at which to evaluate the original/system function, in order to 

minimize/reduce statistical uncertainty of predicted values. 

There are several approaches which deal with the criteria 

of selecting new search points in the design space. Some of 

these methods have been taken and analyzed from available 

literature, “A Taxonomy of Global Optimization Methods 

Based on Response Surfaces” by Donald R. Jones (Journal 

of Global Optimization 21: 345–383, 2001, Kluwer 

Academic Publishers.)  

As mentioned previously that Kriging has a statistical 

interpretation besides just predicting the assumed function 

values which is, it provides an estimate of the 

uncertainty/error (i.e. MSE) in the interpolator (i.e. 

metamodel based prediction). This error is employed in 

some criteria (or can be called Auxiliary Functions) 

developed for searching new points where actual function 

will be evaluated. 

There are two different approaches in selecting new 

search points. They are 1-stage and 2-stage methods. 1-stage 

methods do not perform fitting of response surface to the 

given observed data. Instead, they find new search points by 

evaluating ‘hypotheses’ about the location of the optimum. 

The ‘worth’ of the hypothesis that the optimum occurs at a 

point x* with function value (f*) may be determined by 

examining the properties of the best-fitting response surface 

that passes through the observed data and the point (x*, f*). 

In the 1st-stage of 2-stage method, a metamodel is 

generated based on the given sample of data (also known as 

observed data) and all parameters are estimated. Now in the 

2
nd

 -stage of this 2-stage method, assuming the estimated 

parameters to be ‘true representers’ of actual response 

surface, new search points are found which satisfy the 

auxiliary function. One thing to be noted is that metamodel 

parameters are sensitive to the given initial sample data that 

may or may not give the true shape of the actual/system 

function, if the sample is sparse, it would result in greater 

number of iterations to be performed to get the precise shape 

of actual/system function. During this, 2-stage method has 

been followed. 

4. Objective Function Evaluation 

Criteria 

Following two criteria were analyzed. 

4.1. Maximizing the Probability of Improvement 

This method is among the most commonly employed 

methods for finding a point in the design space where the 

probability of improving (PI) a function beyond some 

‘Target’ T is greater. The uncertainty in the value as given by 

actual function and predicted value (given by the metamodel) 

is expressed as to ‘be like’ the realization of a random 

variable ‘Y(x)’  with mean ‘y (x)’ and standard error ‘s(x)’.  

Now let the current best function value be ‘fmin’, then 

target T value for the improvement has be some number T < 

fmin. Thus the probability of improving (PI) by such amount 

is simply the probability that Y(x) < T . Assuming uniform 

distribution, the probability expression is given as, 
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where (.)Φ  is the standard cumulative distribution function

and ‘T’ has been taken as given per reference [1].

which carries out ‘Search for’ 25 % improvement in 

minf  value.  

One of the main features of using probability of 

improvement is that under certain assumptions the iter

will be very dense. An improved version of this form is 

Expected Improvement. 

4.2. Maximizing Expected Improvement

The Expected Improvement (EI) method is based on the 

criteria of evaluating how much improvement is expected if 

sampling is done at a particular point. [1]

Let Y(x) be a ‘normally distributed’ random variable 

representing uncertainty about the function’s value at a point 

x, with mean y(x) and variance given

predictor. 

The expected improvement function is described as given

in eq. 18. This function is useful as it provides a balance 

between exploration of regions with high uncertainty and 

exploitation of the most promising regions of design 

variable space. 

where  

                  

f min  is the lowest objective function value of the sampled 

points.  

and  is the standard cumulative 

distribution function and density function (having mean = 0 

and standard deviation =1) and (
^

y x

from, s(x) is the root mean squared error in t

x.  

The first part on the right hand side of Eq.1

on searching around the current minimum value, while on 

the other hand the second part emphasizes on searching in 

regions of high uncertainty, thus provides an automatic 

balance between exploitation and exploration which is a 

very attractive criteria for searching..  

As according to literature [1], using

Expected Improvement has certain advantages. 

1) It avoids the need specify a desired improvement 

(i.e., the target T of the previous section).

2) For different cases, the iterations in this method can 

( )
( )

^

T y x
P I

s x

 − = Φ
 
 

min 0.25 m inT f f= −
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              (16) 

is the standard cumulative distribution function 

reference [1]. 

         (17) 

which carries out ‘Search for’ 25 % improvement in 

One of the main features of using probability of 

improvement is that under certain assumptions the iterations 

will be very dense. An improved version of this form is 

Maximizing Expected Improvement 

The Expected Improvement (EI) method is based on the 

criteria of evaluating how much improvement is expected if 

[1] 

Let Y(x) be a ‘normally distributed’ random variable 

representing uncertainty about the function’s value at a point 

variance given by the Kriging 

The expected improvement function is described as given 

function is useful as it provides a balance 

between exploration of regions with high uncertainty and 

exploitation of the most promising regions of design 

   (18) 

                  (19) 

ion value of the sampled 

is the standard cumulative 

function (having mean = 0 

)y x is predicted value 

from, s(x) is the root mean squared error in the prediction of 

The first part on the right hand side of Eq.18 emphasizes 

on searching around the current minimum value, while on 

the other hand the second part emphasizes on searching in 

regions of high uncertainty, thus provides an automatic 

between exploitation and exploration which is a 

 

literature [1], using the criteria of 

Expected Improvement has certain advantages.  

It avoids the need specify a desired improvement 

of the previous section). 

For different cases, the iterations in this method can 

be dense.  

3) It provides stopping criteria for the program, ‘

when the expected improvement from further

less than some small positive 

By achieving the stopping criteria, it is meant that the 

metamodel has been sampled at sufficient points i.e. system 

function has been evaluated at enough number of points, and 

now it can be used with confidence to predict the global 

minimum of the metamodel model.

5. Algorithm Development

The main architecture for the code development and 

implementation is explained in Figure

implementation of search strategy and optimizing the 

auxiliary function, a global optimizer has been used whereas 

for the optimization of  correlation parameter (θ

Matlab function ‘fminsearchbnd’

proven to computationally cheap function.

Figure 1. Architecture for Code Development

Optimizing the auxiliary function to predict the next 

iteration point is computational expensive and at the end of 

optimization of auxiliary function, the actual function is 

evaluated at the point which optimized auxiliary function. At 

the end of each iteration, the optimized points and the value 

of the system function is added to the data samples and 

Kriging meta-model is updated (this includes optimization / 

fine tuning of theta). This continuous 

Kriging metamodel at every iteration

metamodel for better convergence. 

When the condition for stopping criteria has been satisfied, 

it implies that metamodel has been sampled at sufficient 

points and now it can used with confidence to predict the 

global minimum of the metamodel model.

In this code, the stopping criteria has been implemented in 

2-ways, either the code can be stopped after all the iterations 

have been performed or while the value of objective 

function falls below a certain threshold value. Another check 

on objective function has also being implemented that is to 

see if the value of objective function is not changing for 

certain number of iterations e.g. keep a check and monitor 

last 10-values of objective function and if they are not 

changing then the code will be stopped

)T y x

s x

 
 
 
 

min 0.25 m inT f f
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It provides stopping criteria for the program, ‘stop 

when the expected improvement from further search is 

less than some small positive number’ [1]. 

By achieving the stopping criteria, it is meant that the 

metamodel has been sampled at sufficient points i.e. system 

function has been evaluated at enough number of points, and 

onfidence to predict the global 

minimum of the metamodel model. 

Algorithm Development 

The main architecture for the code development and 

implementation is explained in Figure-1. In the 

implementation of search strategy and optimizing the 

ion, a global optimizer has been used whereas 

for the optimization of  correlation parameter (θ-theta) 

‘fminsearchbnd’ has been used which as 

proven to computationally cheap function. 

 

Architecture for Code Development 

the auxiliary function to predict the next 

iteration point is computational expensive and at the end of 

optimization of auxiliary function, the actual function is 

evaluated at the point which optimized auxiliary function. At 

optimized points and the value 

of the system function is added to the data samples and 

model is updated (this includes optimization / 

fine tuning of theta). This continuous up-dating of the 

riging metamodel at every iteration; improves the Kriging 

metamodel for better convergence.  

When the condition for stopping criteria has been satisfied, 

it implies that metamodel has been sampled at sufficient 

points and now it can used with confidence to predict the 

global minimum of the metamodel model. 

In this code, the stopping criteria has been implemented in 

ways, either the code can be stopped after all the iterations 

have been performed or while the value of objective 

function falls below a certain threshold value. Another check 

tion has also being implemented that is to 

see if the value of objective function is not changing for 

certain number of iterations e.g. keep a check and monitor 

values of objective function and if they are not 

changing then the code will be stopped suggesting that the 
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metamodel has been converged. 

It was implemented and analyzed for several test cases 

and the results were carefully studied and cross

with reference values of taken test case, it was seen that the 

stopping criteria was working well and giving satisfactory 

results.  

6. Validation of Algorithm & Case 

Studies 

After the development of any computer algorithm and 

written code, the main issue is to validate the results 

generated by the algorithm. Unless and until proven by 

several hundred of iterations, careful analysis and 

comparison with already published results, the results of the 

developed algorithm cannot be trusted with a greater degree 

of confidence. 

For case studies and analysis, various test functions have 

been taken from the Dixon-Szeg, An introduction Towards 

Global Optimisation, North-Holland, Amsterdam 1978, 

which are considered to be bench mark for global 

optimization. 

As a matter of preference which auxiliary function (PI or 

EI) should be used, both have been implemented 

analyzed. The concluding remarks about the use of 

recommended criteria are given later.  

7. Low thrust Trajectory and Propellant 

Optimization 

Use of electric engines as primary sources of propulsion 

has given a new concept to future interplanetary miss

but at the same time has increased the complexity of 

trajectory design. Low-thrust trajectories are generated by 

shaping the trajectory through a set of parameterized 

pseudo-equinoctial elements. The characterization of 

solution space for a particular set of planetary missions and 

launch date selection are then carried out through a global 

optimization method, which in this case is being carried out 

by the developed algorithm. 

To perform the Low-Thrust Approach analysis, an 

algorithm developed by the Space Research Group, 

Department of Aerospace at University of Glasgow has been 

used which is based on the method presented by Professor 

Massimiliano Vasile and Professor P. De Pascale in “An 

Approach to the Preliminary Design of Low Thrust Multiple 

Gravity-Assist Trajectories”. One single iteration of 

developed algorithm takes about 10 minutes to run, which is 

computationally very expensive if considered for 

optimization purpose. 

The parameters that are a part of design formulation for 

low thrust analysis involve the following,

a. Efficiency of the engine 

b. Efficiency of the power system 

c. Specific power at 1AU [W/m^2] 

d. Launch date [MJD2000] 
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Department of Aerospace at University of Glasgow has been 

used which is based on the method presented by Professor 

Vasile and Professor P. De Pascale in “An 

Approach to the Preliminary Design of Low Thrust Multiple 

One single iteration of 

developed algorithm takes about 10 minutes to run, which is 

if considered for 

The parameters that are a part of design formulation for 

involve the following, 

 

e. Time of flight [day] 

f. Area of the solar arrays [m^2]

g. Specific power, or power to thrust ration [W/N]

h. Wet mass at launch [kg] 

which will result in findings for appropriate/optimized 

values of 

a. Mp :  Propellant mass (kg)

b. NR : Number of revolutions giving the best result 

(integer) 

The lower and upper bounds of the parameters to be 

optimized within the given limits are stated below

The wet mass at launch has been fixed at 1000 kg for this 

case analysis. The objective function to be optimized here is 

the propellant mass (kg). 

The case of Low thrust given in 

to be optimized, which represents a very 

So the criteria of stopping had been changed to 

iteration-based stop i.e. if the total number of iterations has 

been reached stop the code.  

Table 1. Low Thrust Parameters

Engine Efficiency 0.7– 0.95 

Power Subsystem 

Efficiency 
0.6-0.9 

Specific Power at 

1AU (W/m2) 
240-380 

Specific Power 

(W/N) 
17-37 

Total no of iterations has been taken equal to 800. Initial 

sample size was taken as 10. The case of low thrust was 

optimized using both PI and EI. It is to be kept in mind that 

PI-based runs were stopped at 767, where EI completed 

whole 800 iterations. 

The results obtained after the end of 800 iterations are 

given below. Yellow highlighted box represents the case for 

PI and the magenta one represents the case for EI.

Figure-2 set for both PI and EI represent that search has 

been performed almost uniformly and both the criteria, try to 

touch the upper limit of 0.9 for engine effic

case of PI, in the beginning, it doesn’t reach 0.9 and is 

searching more widely and by the end, since the PI is 

decreasing, it finds 0.9 more often whereas for EI it locates 

0.9 throughout the beginning but keeps on exploring the 

search space. 
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Area of the solar arrays [m^2] 

Specific power, or power to thrust ration [W/N] 

 

will result in findings for appropriate/optimized 

:  Propellant mass (kg) 

Number of revolutions giving the best result  

The lower and upper bounds of the parameters to be 

optimized within the given limits are stated below in Table-1. 

The wet mass at launch has been fixed at 1000 kg for this 

case analysis. The objective function to be optimized here is 

The case of Low thrust given in Table 1; has 7 parameters 

to be optimized, which represents a very large search space. 

So the criteria of stopping had been changed to 

based stop i.e. if the total number of iterations has 

 

Low Thrust Parameters 

Launch Date 

MJD2000 
2650-5475 

Time of Flight 100-800 

Area of Solar 

Planes (m2) 
5-20 

Wet Mass at 

Launch (kg) 
1000 

otal no of iterations has been taken equal to 800. Initial 

taken as 10. The case of low thrust was 

optimized using both PI and EI. It is to be kept in mind that 

based runs were stopped at 767, where EI completed 

The results obtained after the end of 800 iterations are 

highlighted box represents the case for 

PI and the magenta one represents the case for EI. 

set for both PI and EI represent that search has 

been performed almost uniformly and both the criteria, try to 

touch the upper limit of 0.9 for engine efficiency. For the 

case of PI, in the beginning, it doesn’t reach 0.9 and is 

searching more widely and by the end, since the PI is 

decreasing, it finds 0.9 more often whereas for EI it locates 

0.9 throughout the beginning but keeps on exploring the 
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Figure 2. Engine Efficiency

Figure-3 shows the search pattern for power efficiency, it 

can be seen for the case of PI, again the search has been 

performed quite widely. However the most interesting 

pattern is seen with EI, where in the beginning, th

are more or less in concentrated form and after a number of 

iterations, it begins to search more globally. The reason can 

be attributed to the fact that if initial sample is sparse and 

deceptive, then it will give small estimates of standard error

Thus, it performs an exhaustive search around the initial best 

point before beginning to search more globally.

Figure 3. Power Efficiency

The search pattern is almost same as for the case of 

efficiency, both the criteria stress on using the up

380 (W/m^2) as shown for Figure-4. 

search has been performed more globally in comparison 

with PI. 
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Power Efficiency 

almost same as for the case of engine 

stress on using the upper limit 

 For the case of EI, 

search has been performed more globally in comparison 

Figure 4. Specific Power

Figure-5: In case of optimizing launch day, it has been 

observed that here two criteria

PI the search is more concentrated around a range bracket of 

4000 & 4200 MJD2000 where as for EI case, it searches 

both the lower and upper end of given bounds but is more 

concentrated towards the upper end of bound.

Figure 5. Launch Day

Figure-6 shows that PI is again concentrated to

upper boundary limit whereas EI performs a more global 

search. Here again one fact can be noted that the initial 

search in the case of EI is more concentrated and then it gets 
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Specific Power 

In case of optimizing launch day, it has been 

criteria choose different values, for 

PI the search is more concentrated around a range bracket of 

4000 & 4200 MJD2000 where as for EI case, it searches 

both the lower and upper end of given bounds but is more 

concentrated towards the upper end of bound.  

 

 

Launch Day 

shows that PI is again concentrated towards the 

as EI performs a more global 

search. Here again one fact can be noted that the initial 

search in the case of EI is more concentrated and then it gets 
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dispersed to search more globally, as it was found in the case 

of power efficiency above. The reason can be attributed to 

initial sample. 

Figure 6. Time of Flight

Both the criteria show trend towards using the upper limit 

of area for solar arrays i.e. 20 m^2. S

followed that is choosing the upper limit of specific power of 

37 W/N. 

Figure-7 if seen carefully shows that EI criteria finds 

minimum early in the beginning of iterations as compared to 

PI. 

Figure 7. Mass of Propellant
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sed to search more globally, as it was found in the case 

of power efficiency above. The reason can be attributed to 

 

 

Time of Flight 

show trend towards using the upper limit 

Same trend is being 

choosing the upper limit of specific power of  

if seen carefully shows that EI criteria finds 

ng of iterations as compared to 

 

 

Mass of Propellant 

As for the case of number of revolutions 

show a concentrated trend towards selecting 1.

It has been most interesting to see the variation of 

objective function i.e. variation 

analyzing Figure-8; for PI it is evi

probability of finding lower values is high, which forms a 

zig-zag pattern having certain peaks, but overall the trend is 

decreasing as the number of iterations increase. If the 

number of iterations would have been higher than the 

current selected of 800, it trend would have touched 

zero-line, implying no further improve

Figure 8. Objective 

For the case of EI, it has been observed that initially the 

expected improvement is very low. The main influencing 

factor is the initial sample which can be sparse and deceptive, 

giving small estimates of error. Conse

algorithm to search near to the already best available and 

carrying out exhaustive search before beginning to search 

more globally. However, it can be seen that the overall trend 

is decreasing as the number of iteration increase.

The final optimized values of input variables is given by 

Table 2, where both the criteria

near upper bound of engine efficiency, power subsystem 

efficiency, specific power, area of solar arrays.

Table 2. Optimized Parameters

Parameters 

Engine Efficiency 

Power Subsystem Efficiency 

Specific Power at 1AU , W/m2 

Specific Power (W/N) 

Launch Date MJD2000 

Time of Flight 

Area of Solar Planes (m2) 

Propellant Mass, kg 

No of Revolutions 

 14 

As for the case of number of revolutions both PI and EI 

a concentrated trend towards selecting 1. 

It has been most interesting to see the variation of 

objective function i.e. variation of PI and EI.  Carefully 

it is evident that in the beginning 

probability of finding lower values is high, which forms a 

pattern having certain peaks, but overall the trend is 

decreasing as the number of iterations increase. If the 

number of iterations would have been higher than the 

current selected of 800, it trend would have touched 

implying no further improvement. 

 

 

Objective Function 

For the case of EI, it has been observed that initially the 

expected improvement is very low. The main influencing 

factor is the initial sample which can be sparse and deceptive, 

giving small estimates of error. Consequently, making the 

algorithm to search near to the already best available and 

carrying out exhaustive search before beginning to search 

However, it can be seen that the overall trend 

is decreasing as the number of iteration increase. 

nal optimized values of input variables is given by 

criteria emphasize on using values 

near upper bound of engine efficiency, power subsystem 

efficiency, specific power, area of solar arrays. 

Optimized Parameters 

PI EI 

0.95 0.949 

0.821 0.706 

369.4 380 

37 36.68 

4147.64 4893.25 

753.96 766.05 

20 20 

11.08 1 

10.99 1 
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It has been seen that since this low thrust case has a large 

search space, so for future analysis the total number of 

iteration should be increased from 800 to higher value. 

8. Conclusion & Recommendations 

After the development and implementation of the 

computer algorithm, different test cases were analyzed and 

following observations and conclusions were made. 

1) If the initial data sample is sparse then lots of iterations 

are utilized in fine tuning the Kriging model. 

2) While selecting the auxiliary function of Probability of 

Improvement PI, it was seen that PI is affected by the 

value of the target ‘T’. If the PI is very small, the 

search will be initially performed locally before 

searching globally which means more iteration will be 

required for convergence which is expensive talking in 

terms of time and computational effort. On the vice 

versa,  if  ‘T’ is very high, the search will be carried 

out in more global way and more of iterations will be 

carried out in fine tuning the model and consequently 

finding the optimum point. This search criteria works 

well with simple cases but for complex cases it fails to 

find the true global minimum. 

3) Regarding the method of EI, it has been shown in 

Locateli’s proof; the expected improvement method 

does find the global minimum [1].  But as stated in 

the literature and also observed while analyzing the 

performance, for different test cases it takes large 

number of iterations to converge. It has been seen that 

the initial sample is very deceptive, giving very small 

estimates of the standard error. Resultantly, only points 

that are close to the current best point have high 

expected improvement. So it carries out ‘exhaustive 

search’ near the initial best point before it begins to 

search globally. 

4) It has been seen that the value of correlation (theta) has 

an effect on the predicted values and thus objective 

function value as well. The limits of theta need to be 

defined. Based on the stop criteria the model used to 

converge prematurely, however changing theta refined 

the model well, yielding true global minimum. It has 

been observed that initial value and variation of EI can 

be attributed due to initial sample and model fit and 

most importantly to the nature of function/problem. 

5) If the search space is too large, then it is suggested that 

criteria of iteration-based stop should be used. 

6) The auxiliary function, expected improvement showed 

robustness in accurately locating the global minimum; 

it is recommended that this criteria should be followed 

while carrying out future analysis. 
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