

American Journal of Artificial Intelligence
2022; 6(1): 10-19

http://www.sciencepublishinggroup.com/j/ajai

doi: 10.11648/j.ajai.20220601.12

ISSN: 2639-9717 (Print); ISSN: 2639-9733 (Online)

Artificial Corona Algorithm to Solve Multi-objective
Programming Problems

Alia Youssef Gebreel

Operations Research, Cairo University, Cairo, Egypt

Email address:

To cite this article:
Alia Youssef Gebreel. Artificial Corona Algorithm to Solve Multi-objective Programming Problems. American Journal of Artificial

Intelligence. Vol. 6, No. 1, 2022, pp. 10-19. doi: 10.11648/j.ajai.20220601.12

Received: February 12, 2022; Accepted: March 18, 2022; Published: March 31, 2022

Abstract: Multi-objective optimization is a branch of mathematics used in a large range of applications. It deals with

optimization problems involving two or more conflicting objective functions to be optimized. Consequently, there is not a single

solution that simultaneously optimizes these objectives, but a set of compromise solutions. These compromise solutions are also

called non-dominated, Pareto-optimal, efficient, or non-inferior solutions. The best solution of this set is the one closest point to

the utopia point. There are several approaches to perform multi-objective optimization. Undoubtedly the future of

multi-objective optimization programming is in artificial intelligence applications. One of the artificial intelligence models is the

Corona algorithm. It aims to simulate the epidemic behavior of the Corona virus that affects people's health and its treatment. In

this paper, the artificial Corona algorithm is introduced and expanded for solving multi-objective programming problems, in

which other models are not effective. The algorithm operates by iteratively selecting the initial values for decision variables of a

multi-objective programming problem. The values of objective functions and constraint(s) are calculated. This proposed

approach depends on a linear formula to update the solution. An acceptable efficient solution that has a minimum distance value

from the utopia point is selected as the best point. To demonstrate the effectiveness of the proposed approach, some illustrative

examples are given. These examples include both linear and nonlinear problems. The results indicate that the proposed approach

has a high speed and capability to obtain the best solution when compared with other similar works of literature.

Keywords: Artificial Corona Algorithm, Multi-objective Problems, Best Solution

1. Introduction

Over 25 years ago, there was an increasing amount of

literature on multi-objective optimization problems using

artificial intelligent approaches. Nowadays, since the spread

of the Corona virus (COVID-19) in the world, many

researchers have been turned to their research for studying this

virus and simulating its behavior in various scientific aspects.

One example of them is the artificial Corona optimization

algorithm, which was put forward by Gebreel [1] uses a linear

formula to get the optimal solution based on three real numbers

(0.5,	√0.5, 1.0). It uses deterministic operators such as the most

classical optimization methods, unlike stochastic operators used

in evolutionary optimization algorithms. Moreover, this

procedure doesn't require any derivative information. Therefore,

it is flexible and simple to implement with high accuracy.

Figure 1. Corona virus (COVID-19) around the world.

A multi-objective problem has more than one objective function that conflict with each other to be minimized or

 American Journal of Artificial Intelligence 2022; 6(1): 10-19 11

maximized simultaneously. So, there doesn't typically exist an

optimal solution that minimizes or maximizes all objective

functions simultaneously, but instead, it is represented by the best

tradeoff between competing objectives in the objective space [2,

3]. It's known that multi-objective optimization involves two

search spaces: The decision variable space and the objective or

criterion space. In any optimization approach, the search is

performed in the decision variable space. Then, the proceedings

of an approach in the decision variable space can be traced in the

objective space. In constrained problems, the objective space and

decision space present feasible and infeasible regions [4-9].

There are large numbers of researchers dealing with

multi-objective optimization programming problems in both

optimization ways. One of the most widely used methods is

called the traditional methods. But, the other researches are called

the heuristic approaches. Most of these researches presented a set

of efficient solutions in solving such optimization problems.

Some of them are concerned with providing the preferred or best

efficient solution in the subset of applications, such as De &

Yadav [10], Gupta et al. [11], Upmanyu & Saxena [12], Wang

& Rangaiah [13], Gebreel [3, 14-16], and Kamal et al. [17]. It is

necessary to find a new way to produce an accurate best point for

both convex and non-convex or linear and nonlinear

multi-objective problems within reasonable time.

Corona approach (CA) will become the major alternative

for the other heuristic models in the area of multi-objective

optimization problems because of its faster convergence rate

and higher accuracy.

This paper attempts to obtain the best efficient solution of

multi-objective programming problems using the artificial

Corona algorithm. The following section begins work with

preliminaries about this study. After that, the proposed

algorithm is introduced to solve multi-objective problems in

section 3. Then, section 4 is devoted to illustrative some

examples to demonstrate the solution procedures. Finally,

section 5 gives conclusions and future work.

2. Preliminaries

A multi-objective programming (MOP) problem can be

stated as follows:

(MOP):

Minimize/ Maximize:

F(x) = (f1(x), f2(x),..., fk(x)), k ≥ 2,

Subject to:

S = {x ∈ R
n
/ gm(x) ≤ 0, r =1, 2, …, M,

hl(x) = 0, l =1, 2,..., L}. (1)

Where:

F(x) = (f1(x), f2(x),..., fk(x)) is a vector of k objective

functions, and k is used to identify the number of objective

functions,

x= (x1, x2, …, xn)
T
 is a set of decision variables,

n is a number of decision variables,

T is the transpose operator,

The set S is a non-empty and feasible region included in

R
n
 that is determined by the constraints on the

multi-objective problem. It is defined as S={x | x ∈ R
n
,

gm(x) ≤ 0, m= 1, 2, …, M, hl(x)= 0, l =1, 2, …, L},

The inequality gm(x) and equality hl(x) are real valued

functions defined on S,

M and L are the numbers of inequality and equality

constraints, respectively.

In the following sections, some terminologies are used in

this paper:

2.1. Efficient Solution

A decision vector x
*	∈ S is said to be an efficient solution

if there does not exist another decision vector x ∈ S such

that fi(x) ≤ fi(x
*
) for i = 1, 2, …, k and fj(x) < fj(x

*
) for at least

one index j [2].

2.2. Utopia (Ideal) Point

The point (f1(x�∗), f2(x
∗),..., fk(x�∗)) in the objective space is

called utopia (ideal) point [14].

2.3. The Best Efficient Point

The best efficient solution on the efficient set is a feasible

solution that has the shortest distance to the utopia solution.

2.4. Euclidean Distance Formula

The Euclidean distance formula is used to find the distance

between two points on a plane [17, 18]. This formula

calculates the distance between two points (x1, y1) and (x2, y2)

as follows:

D = �	
x� −	y��
 +
x
 −	y
�
. (2)

The distance between two points is the length of the path

connecting them. The shortest path distance is a straight line.

In k dimensional space, the Euclidean distance formula is:

D = �∑
x� −	y��
���� 	. (3)

3. The Proposed Algorithm

Corona virus (CV) was explored, and it is an infectious

disease that spreads throughout the world. This virus can

infect people, and these people may die, infect other people, or

recover after the infection. Therefore, the main goal is to get

rid of this virus and improve people's health, which

corresponds to the best solution for a given multi-objective

optimization problem. The key idea of the proposed algorithm

is to solve such problem iteratively for providing the best

efficient solution. The used measure is the minimum

Euclidean distance from the ideal point to find an efficient

solution at each iteration. The procedure continues until the

best efficient solution is satisfied with the current feasible

solution and does not want to change the multi-objective

values anymore. A multi-objective optimization problem may

contain some of constraints, which any feasible solution

12 Alia Youssef Gebreel: Artificial Corona Algorithm to Solve Multi-objective Programming Problems

(including all optimal solutions) must be satisfied.

In the following sections, a brief overview of the Corona

search algorithm and its modification procedures to solve

multi-objective programming problems are introduced.

3.1. Overview of the Corona Search Algorithm

The Corona search algorithm is an artificially intelligent

algorithm that is inspired by the Corona virus to solve

optimization problems efficiently. First, an initial value for

each decision variable is selected based on any one of the three

values (0.5, √0.5, 1). Second, the new Corona vector (x= x1,

x2, …, xn)
T
 is generated based on the linear formula:

xi+1= a1 xi + a2, (4)

Where: a1 and a2 are real numbers and they consider as

spreading rates of Corona virus (controlled parameters).

The setting values of decision variables and parameters are

inspired by three cases of the Corona virus: Infection of three

parts of the human body (nose, throat, and respiratory),

treatment, or/and death.

If the new solution is better than the worst one in the Corona

memory (CM), the new solution is included in the memory

instead of the worst one. The algorithm continues to run until

convergence to the required solution, or the maximum number

of iterations is reached [1].

In multi-objective optimization problems, the aim is to find

a set of non-dominated solutions and after that, the

decision-makers select one preferred solution for them based

on their qualitative experiences. But, CA deals with such

problems to find the best non-dominated solution step by step,

as shown in the following sections. There is no doubt that it is

designed to be simple and fast computing. Through this

process, time is saved for achieving the best solution.

3.2. The procedure of Corona Approach to Solve

Multi-objective Programming Problems

The main steps to implement the proposed approach can be

stated as follows:

Step 1: Initialize the problem by Corona approach.

Step 2: Prepare a memory vector.

Step 3: Update the Corona memory.

Step 4: Check the stopping criterion.

These steps are described in the next four subsections.

3.2.1. Initialize the Problem by Corona Approach

The Corona approach begins its search with an initial solution

within a specified lower and upper bound for each variable, as

follows: xi
L
 ≤ xi ≤ xi

U
, i = 1, 2, …, n. The lower bound usually

depends on one of the three real numbers (0.5,	√0.5, 1.0) for

each decision variable of a multi-objective problem. But the

upper bound for each variable is calculated by putting all

variables at zero values in the set of constraints except one

variable "xi". Then the upper bound has a maximum value of xi.

3.2.2. Prepare a Memory Vector

A group of decision variables for a multi-objective problem

is stored at first in a vector called the Corona memory. CM is

the core part of the Corona search approach. After that, the

problem constraints (g1(x), g2(x), …, gM(x), h1(x), h2(x), …,

hL(x)) and the objective (fitness) functions are stored next to

these decision variables. In this step, the Corona vector is

initially filled with any one of the three values (0.5,	√0.5, 1.0).

The corresponding values of objective functions and

constraints are calculated and stored in CM as follows:

CM=[x = x1, x2, …, xn, g1(x), g2(x), …, gM(x), h1(x), h2(x), …,

hL(x), f1(x), f2(x),..., fk(x)]
T
. (5)

3.2.3. Update the Corona Memory (CM)

The new Corona vector (x= x1, x2, …, xn)
T
 is generated

based on the Corona formula (xi+1= a1 xi + a2). If the new

solution is better than the previous one in the CM; judged in

terms of the distance of objective functions from the utopia

point and feasibility of constraints (if any); it is included in the

CM, and the existing worst solution is excluded from the CM.

3.2.4. Check the Stopping Criterion

The calculating Euclidean distance of an obtained solution

depends on determining the utopia point, which optimizes

individually each of the objective functions.

The process of creating a new solution from the CM and

updating memory may be called an iteration. After each

iteration of the proposed approach:

1. If the best efficient solution is met, stop.

2. Otherwise, repeat Steps 2 and Steps 3 until the stopping

criterion (or the maximum number of iterations that is

determined arbitrarily) is satisfied, and computation is

terminated.

All of these steps are illustrated using pseudo-code as in the

following Figure 2:

CV Approach

Begin

1- Initialize the CVA:

Define fitness objectives (F(x) = (f1(x), f2(x), ... , fk(x)), k ≥ 2),

x= (x1, x2, … , xn)
T, and the constraints (if any) = gm(x) and hl(x),

Define "a1", and "a2",

Define the maximum number of iterations (NI).

2- Generate a new solution:

Selecting an initial point from these three values: (�. �, √�. �, �),

with taking into consideration that:

Max values of xi= the upper bound (xi
U
) of xi, i= 1, …, n.

3- Calculate the fitness functions:

while (Max number of iterations < NI) do

 while (Vi < number of variables) do

 Use the selected point to calculate Euclidean distance

 of fitness functions from the utopia point

 if the new solution is better than the worst solution

 then replace the worst solution by the new one with

 update the Corona memory based on:

 xi+1= a1 xi + a2

 end if

 end while

end while

Best efficient solution = find the current efficient solution that has the

 minimum distance to the utopia point

End

Figure 2. Pseudo-code of CV approach.

 American Journal of Artificial Intelligence 2022; 6(1): 10-19 13

The flowchart of the algorithm execution in a

multi-objective optimization problem is given in Figure 3:

Figure 3. A flowchart of the procedure of Corona approach to solve

multi-objective programming problems.

The following statement can be proved:

In the objective space of a multi-objective programming

problem, a solution x
**

 for the proposed algorithm is said to

be the best efficient solution if and only if there doesn't exist

another efficient solution x such that:

Distance (x) > distance (x
**

). (6)

Proof:

The proof comes from the assumption that the solution x
**

to the Corona approach is not the best efficient and then shows

that this assumption violates the definition of the best

efficient solution. This means that x
**

 has a minimum

distance from the utopia point.

It is an important relationship between the optimum value

to the original MOP problem and its optimum value that is

achieved by the best point for this problem.

Corollary:

In the minimum (maximum) case, the optimum value of any

multi-objective programming problem (without weights) is

always less (more) than or equal to the corresponding

optimum value of the solved problem to get the best efficient

solution.

Proof:

In the minimum case, consider �∗ is the optimal solution to

the original MOP problem, and �∗∗	 is the best efficient

solution for this problem. Let �̅ be any other efficient solution

to the MOP problem, and it lies between two solutions: �∗

and �∗∗ such as:

Figure 4. Three efficient solutions for a multi-objective problem.

Based on lines and line segments definitions [19], it leads

to:

F(�∗) ≤ F(�̅). (7)

Since the three solutions are located at the same line

segment, then

�̅ = (1- W)	�∗ + W	�∗∗, (8)

Where W is a real number with 0 ≤ W ≤ 1, and

F(�∗) ≤ F(�̅) ≤ (1- W)	F
�∗� + W F(�∗∗), (9)

F(�∗) ≤ F(�∗) - W	F
�∗� + W F(�∗∗), (10)

F
�∗� ≤ F(�∗∗). (11)

Thus the result holds.

In the same way, it can prove in the maximum case that:

F
�∗� ≥ F(�∗∗). (12)

3.3. The Main Advantages of CV Approach

CV approach attempts to find the best efficient solution for

multi-objective programming problems and has the following

advantages:

1. CV approach searches the space of a problem efficiently.

14 Alia Youssef Gebreel: Artificial Corona Algorithm to Solve Multi-objective Programming Problems

It can converge to the final best efficient solution in

multi-objective linear and nonlinear programming

problems.

2. This algorithm obtains the best point for both conflicting

and non-conflicting multi-objective problems.

3. The effective parameters (a1 and a2) in its formula

directly affect the speed of Corona's search. Besides, it

doesn't have many mathematical requirements related to

optimization problems. Accordingly, there is a guarantee

that the CV approach converges to the best point due to

the nature of its linear formula.

4. The transformation of multi-objective to single-objective

optimization doesn't need in this approach for handling

multiple objectives (i.e., the optimization of a

multi-objective programming problem cannot use the

scalarization of objectives). All objectives are treated

separately. Therefore, it saves some computational time.

5. The Corona approach is an optimization tool to guide the

search towards a set of efficient solutions through

searching for the best efficient solution. It can execute by

Excel, MATLAB programming, or any other

computational software. It can end after a few or several

iterations with an accurate solution.

6. It uses deterministic transition rules as most of the

conventional methods rather than derivatives or

probabilistic transition rules.

Remarks:

1. The starting step of the Corona approach is to minimize

(maximize) the objectives by an initial solution, and try

to achieve decreasing in the distance from the utopia

point by the values of a1, and a2, with satisfying the

constraints (if any).

2. The Corona approach's performance depends on the

appropriate selection of values for the decision variables

and parameters (a1 and a2) of its linear formula.

3. It is worth mentioning that the best efficient solution is

obtained without using the weighting method.

4. When a multi-objective problem is minimized

(maximized) without weights, its value is lower (greater)

than or equal to the value of such objectives with the best

point.

5. The key difference between the CV optimization

algorithm and the CV approach to get the best efficient

solution is the way of evaluating a new solution. In the

optimization process, the optimal solution is selected

based on the value of an objective function. But on

solving a multi-objective problem, the resulted efficient

solution is evaluated based on its distance from the ideal

point. Of course, the condition of feasibility must be

available in both cases.

6. Corona approach generates a new solution depending on

CM and Corona formula. If the new solution strictly

dominates the worst solution, the new solution is

replaced by the worst solution in the CM.

7. Throughout the search process, the Corona algorithm

provides several efficient solutions to a given

multi-objective problem, which are very useful to

decision-makers in selecting the preferred solution.

Furthermore, in the presence of constraint(s), it may

achieve an infeasible solution in such a search of the

algorithm. Thus after one run, there are three cases:

(a) Infeasible solution, (b) Feasible solution but not the

best solution, (C) Feasible and the best solution (The best

efficient solution). Figure 5 shows schematically the

principles of solving multi-objective optimization based

on the Corona approach.

Figure 5. A schematic of a multi-objective optimization procedure based on

the artificial Corona algorithm.

4. Illustrative Examples

In this section, some examples of several multi-objective

optimization problems are presented to show the validity and

effectiveness of the artificial Corona approach. The given

examples are previously investigated in other works of

literature. These examples will be solved by Excel software.

Example 1:

Consider the multiple-objective linear programming

problem. It consists of minimizing two linear objectives with

two decision variables and two bounded constraints as

follows:

Min: (f1(x) = x1, f2(x) = (1+x2) / x1),

Subject to: 0.1 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 5.

This problem has been solved by Gupta & Kumar [20] and

Gebreel [16] using three different artificial intelligent

algorithms: Genetic algorithm (GA), bacterial foraging

optimization (BFO), and harmony search algorithm (HSA).

The steps to solve this example by applying the proposed

approach are:

1. Initialize the problem by Corona approach:

 American Journal of Artificial Intelligence 2022; 6(1): 10-19 15

It can be starting with an initial solution as (x1= √0.5, x2=

0.5)
T
, and substituting into the two objectives with satisfying

the inequalities of the problem. Thus, the corresponding

values of the objective functions are 0.7071 and 2.12134,

respectively. That leads to the Euclidean distance (D) =1.275.

2. Prepare a memory vector:

Firstly, x1 and x2 are set in the Corona memory. Secondly,

the corresponding objective functions and the Euclidean

distance are stored in CM, as shown in Table 1.

3. Update the Corona memory (CM):

The new Corona vector (x1, x2)
T
 is generated based on the

Corona formula: x1= (1.0 × 0.7071 + 0.0331672)= 0.7402672

and x2= (0 × 0.5 + 0.0)= 0.0, which satisfy the two bounded

constraints. The corresponding objective functions are ��∗=

	��
∗
x�= 0.7402672, and �

∗= �

∗
x�= 1.35086358 with the

distance of objective functions from the utopia point is 0.73.

4. Check the Stopping Criterion:

As mentioned in the third step, the solution doesn't need any

change. Therefore, it is considered to be the best solution to

this problem.

Figure 6. Experimental results for example (1).

Optimization effects depend on the initialization of the

Corona vector, and two parameters (a1 and a2), which control

the search process. The process is continued until the obtained

solution is feasible and has the minimum distance from the

utopia point.

The calculations are shown in Table 1. They give the exact

minimum distance of objectives from the utopia point of this

problem. In addition, it is obvious from Figure 6 that the result

obtained using the Corona search approach is better than those

reported previously in the paper by Gupta & Kumar [20]. But,

it gives the same results of GA, BFO, and HSA by Gebreel

[16] with convergence much faster than them through the

optimization process.

Table 1. The best point of example (1) by Corona approach.

Data Initial solution Update solution based on: xi+1= a1 xi + a2

x1 √0.5 1.0 × 0.7071 + 0.0331672 = 0.7402672

x2 0.5 0.0 × 0.5 + 0.0 = 0.0

f1 0.7071 0.7402672

f2 2.12134 1.35086358

f1+ f2 2.82844 2.09113078

D 1.275137 0.7301009

It is worth noting that the optimum value of the original

problem= 2.0 is lower than the optimum value of the solved

problem to get the best point (2.09113078).

Example 2:

The considered multi-objective linear programming

problem presented by Sitarz [21] has the following form:

Min: (f1(x) = -x1, f2(x) = -x2),

Subject to:

x1 + x2 ≤ 8,

2x1 + x2 ≤ 12,

x1 + 2x2 ≤ 14,

9x1 + 7x2 ≤ 63,

−4x1 + 10x2 ≤ 61,

2x1 − x2 ≤ 8,

14x1 + 3x2 ≤ 72,

x1, x2 ≥ 0.

Figure 7 shaded facets constitute the feasible region. The

obtained non-dominated solutions and the best-selected

solution are shown in Figure 8 for two objectives. The utopia

point is calculated as: (f�∗= -4.8, 	f

∗= -6.5).

The optimization problem stated before can be solved

rapidly in just three iterations after the initial step with the

Corona approach. Where the initial value of decision variables

is: x1= x2= 1, and the upper bounds are: x1 =14, and x2= 24,

respectively.

Figure 7. The feasible region in the decision space of example (2).

Figure 8. The best efficient solution in the objective space of example (2).

As shown in Table 2 and Figure 8, the values of objective

functions are equal to the negative values of the decision

16 Alia Youssef Gebreel: Artificial Corona Algorithm to Solve Multi-objective Programming Problems

variables. Due to the deterministic nature of the Corona

approach, the best compromise solution is obtained as 	f�∗=

-3.15, f

∗= -4.85. The first, second, third, fourth, fifth, sixth,

and seventh constraints are C1= 8.0, C2= 11.15, C3=12.85, C4=

62.3, C5= 35.9, C6= 1.45 and C7= 58.65, respectively. The

Euclidean distance of objectives from the utopia point is D =

2.33 within reasonable execution time. Its value of objectives

= the optimum value of the original problem = -8.0. The

optimal solution is x�
∗=3.5 and x

∗= 4.5. The corresponding

values of objective functions are -3.5 and -4.5, respectively.

Table 2. The best point of example (2) by Corona approach.

Data Initial solution
Update solution

The first iteration The second iteration The third iteration

x1 1.0 3 × 1.0 + 0.0 = 3.0 1.0 × 3.0 + 0.2 = 3.2 1.0 × 3.2 - 0.05= 3.15

x2 1.0 5 × 1.0 + 0.0 = 5.0 1.0 × 5.0 - 0.2 = 4.8 1.0 × 4.8 + 0.05= 4.85

C1 2.0 8.0 8.0 8.0

C2 3.0 11.0 11.2 11.15

C3 3.0 13.0 12.8 12.85

C4 16.0 62 62.4 62.3

C5 6.0 38.0 35.2 35.9

C6 1.0 1.0 1.6 1.45

C7 17 57.0 59.2 58.65

f1 -1.0 -3.0 -3.2 -3.15

f2 -1.0 -5.0 -4.8 -4.85

f1+ f2 -2.0 -8.0 -8.0 -8.0

D 6.685057965 2.343074903 2.33452350599 2.33345237792

Example 3:

This problem was presented by Rafei et al. [22] and

Gebreel [16]. It was solved by TOPSIS for the convex

non-linear multi-objective problems, genetic algorithm,

bacterial foraging algorithm, and harmony search algorithm.

The problem's formulation is as follows:

Max f1(x) = x�

 + x

 + x!

,

Max f2(x) = (x1 - 1)
2
 + x2

2
 + (x3 - 2)

2
,

Min f3(x) = 2x1 + x

 + x3,

Subject to:

g1(x) = -x1 + 3x2 - 4x3 + 6 ≥ 0,

g2(x) = -2x�

 - 3x2 - x3 + 10 ≥ 0,

x	∈ R
3
, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 2.

The first and second objectives are transformed to minimize

cases with multiplying by -1. Then, the problem is formulated

by three objective functions and the group of constraints as

follows:

Min f1(x) = -x�

 - x

 - x!

,

Min f2(x) = -(x1 - 1)
2
 - x

 - (x3 - 2)
2
,

Min f3(x) = 2x1 + x

 + x3,

Subject to:

g1(x) = -x1 + 3x2 - 4x3 + 6 ≥ 0,

g2(x) = -2x�

 - 3x2 - x3 + 10 ≥ 0,

x	∈ R
3
, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 2.

It is clear from Table 3 that the initial solution is x1= 0.5, x2=

1.0, and x3= √0.5 with distance = 16.3886. The first updated

solution is: x1= 0.25, x2= 2.0, and x3= 0.3536 with the distance

=12.2311. The values of a1 are 0.5, 2.0, and 0.5 for x1, x2, and x3,

respectively. But, the value of a2 is zero for three variables. The

best solution is: x�
∗= x!

∗= 0.0, x

∗= 2.721654, and its distance =

9.072. This result is more accurate than the others.

Table 3. The best point of example (3) by Corona approach.

Data Initial solution
Update solution

The first iteration The second iteration The third iteration

x1 0.5 0.5 × 0.5 + 0.0 = 0.25 1.0 × 0.25 - 0.20 = 0.05 0.0 × 0.05 + 0.0 = 0.0

x2 1.0 2.0 × 1.0 + 0.0 = 2.0 1.0 × 2.0 + 0.66933 = 2.66933 1.0 × 2.66933+ 0.052324 = 2.721654

x3 √0.5 0.5 × √0.5 + 0.0 = 0.3536 0.0 × 0. 3536 + 0.0 = 0.0 0.0

C1 5.7 10.33579 13.95799 14.164962

C2 5.8 3.52145 1.98701 1.835038

f1 -1.74 -4.1875 -7.12782 -7.4074005

f2 -2.94 -7.27329 -12.02782 -12.4074005

f3 2.7 4.85355 7.22532 7.4074005

f1+ f2 + f3 -1.98 -6.60723 -11.93032 -12.4074005

D 16.388583 12.23112 9.20571 9.072179

Example 4:

This example has been introduced by Anov [23]. It consists

of two nonlinear objectives, six decision variables with their

bounds and six constraints as follows:

 American Journal of Artificial Intelligence 2022; 6(1): 10-19 17

Min: f1(x)= - (25 (x1 - 2)
2
 + (x2 - 2)

2
 + (x3 - 1)

2
 + (x4 - 4)

2
 +

(x5 - 1)
2
),

Min: f2(x) = (x�

 + x

 + x!

+ x"

 + x#

 + x$

),

Subject to:

x1 + x2 - 2 ≥ 0,

-x1 - x2 + 6 ≥ 0,

x1 - x2 + 2 ≥ 0,

-x1 + 3x2 + 2 ≥ 0,

- (x3 - 3)
2
 - x4 + 4 ≥ 0,

(x5 - 3)
2
 + x6 - 4 ≥ 0,

x1, x2, x6 ∈ [0: 10], x4 ∈ [0: 6], x3, x5 ∈ [1: 5].

When the proposed approach is applied to this example, the

best solution is given as: x�
∗= 5.0, x

∗= 1.0, x!
∗= 1.0, x"

∗= 0.0,

x#
∗=1.0, x$

∗= 0.0, f�
∗ = -242.0, f

∗ = 28.0, C1= 4.0, C2= C4=

C5= C6= 0.0, C3= 6.0, and its distance from the utopia point =

40.0. It is clear that the current approach doesn't require a

significant computational effort to yield an accurate best

solution with rapid convergence to the utopia point in the

efficient set. But, Anov presented a group of efficient

solutions to allow the decision-maker to select any possible

best compromise solution.

Example 5:

This problem deals with the minimization of two nonlinear

conflicting objective functions with two decision variables,

two constraints, and two bounds for each variable.

Min: f1(x) = (x1 − 2)
2
 + (x2 − 1)

2
 + 2,

Min: f2(x) = 9x1 − (x2 − 1)
2
,

Subject to:

x�

 + x

 − 225 ≤ 0,

x1 − 3x2 + 10 ≤ 0,

−20 ≤ x1 ≤ 20, −20 ≤ x2 ≤ 20.

Figure 9. The efficient set in the decision space and some solutions in the objective space of example (5).

This example was solved by Chiandussi et al. [24] using

four methods: The multi-objective genetic algorithm (MOGA),

global criterion method, ε-constraint method, and the linear

combination of weights method. The Pareto front obtained

from the MOGA is linear with a very large number of

iterations. The global criterion and the ε-constraint methods

allow identifying many optimal solutions belonging to the

Pareto front with a limited number of iterations. The linear

combination method cannot choose the possible best

compromise solution correctly. But, the best solution obtained

by the Corona approach is: x�
∗ = -2.5, x

∗ = 10.5679, f�
∗ =

113.7947, f

∗ = -114.0447, C1= -107.0695, C2= -24.2037, and

the distance from utopia point (D)= 146.646. The utopia point

is: f1
*
 = 10.1, f2

*
 = -217.739. The Corona algorithm's run has

lower number of steps than these previous methods. Figure 9

shows the efficient set in the decision space and some

solutions in the objective space.

Example 6:

This example is solved by Gebreel et al. [25] using the

bacterial foraging and harmony search algorithms. Also, it is

taken from the work of Abbas & Huda [26]. The original

mathematical problem is formulated as follows:

Min: f1(x)= x1 x5,

Min: f2(x)= x�
%�x!

	x"
",

Subject to:

5x�
%�

x2 ≤ 1,

2.5x

%�	x!

	+ 1.5x!
%�	x"

%&.#	x#
%&.# ≤ 1,

xi ≥ 0, where i = 1, 2, 3, 4, 5.

By applying the Corona model to this problem, the best

solution is: x�
∗= 8.76017, x

∗= 1.752034, x!
∗= 0.4371853, x"

∗=

5.370617, x#
∗= 4.144123, f�

∗= 36.3032, f

∗= 18.1516, C1= C2=

1.0, and D = 40.588238. The corresponding optimum value is

54.4548, which is greater than the optimum value of the

original problem (52.12682) without any weights in objective

functions. But, the compromise optimal solution obtained by

bacterial foraging and harmony search algorithms is: x1=

1.271, x2= 0.2542, x3= 0.1665, x4= 5.3706, and x5= 28.5651.

The corresponding optimum value is equal to 54.45196, C1=

18 Alia Youssef Gebreel: Artificial Corona Algorithm to Solve Multi-objective Programming Problems

1.0000, and C2= 0.999999314. Its distance from the utopia

point is 40.5883. This means that the CV approach gives

more robust result than others.

5. Conclusion

In the paper, an artificial Corona algorithm is presented as a

new efficient tool for solving multi-objective programming

problems. It simulates the epidemic behavior of the Corona

virus that spreads throughout the world and infects healthy

people. The inspiration for this model derives from the idea of

virus transmission and treatment. This approach starts with

one of three real numbers (0.5,	√0.5, 1.0) for each decision

variable of a multi-objective problem. After that, it uses its

linear formula to track the changing distance with iteration to

determine an efficient solution with the shortest distance to the

ideal solution. It is called the best efficient solution.

In the step of updating the solution, the parameters "a1" and

"a2" in the Corona formula play an important role in setting the

values of the variables. In each iteration of the algorithm, it is

important to look at the values of objective functions and their

distance from the utopia point with the feasibility of

constraint(s). Moreover, the Corona approach can solve both

linear and nonlinear problems without scalarization of the

objectives at an acceptable computation time.

To illustrate the quality of a generated best solution by the

proposed approach, some experimental examples are given. In

some of these examples, the Corona approach gives explicitly

better results compared to the other works of literature and

also shows completely satisfactory results in other references.

These examples are solved using Excel software to simplify

the search process with accurate results.

Future Work

In future studies, this approach can be implemented in many

different applications for a wide variety of domains.

Acknowledgements

Thanks are to ALLAH for his guidance and supports in

showing us the path.

References

[1] Alia Youssef Gebreel (2021). Artificial Corona-inspired
optimization algorithm: Theoretical foundations, analysis, and
applications. (Research gate), American Journal of Artificial
Intelligence, DOI: 10.11648/j.ajai.20210502.12, 5 (2), PP. 56-
65.

[2] Kaisa M Miettinen (2004). Nonlinear multiobjective
optimization. Kluwer Academic Publishers, Fourth Printing.

[3] Alia Youssef Gebreel (2021). Solving the multi-objective
convex programming problems to get the best compromise
solution. (Research gate), Australian Journal of Basic and
Applied Sciences, DOI: 10.22587/ajbas.2021.15.5.3, 15 (5), PP.
17-29.

[4] Ashis Kumar Mishra, Yogomaya Mohapatra, & Anil Kumar
Mishra (2013). Multi-objective genetic algorithm: A
comprehensive survey. International Journal of Emerging
Technology and Advanced Engineering, Website:
www.ijetae.com, 3 (2), PP. 81-90.

[5] Ivan P. Stanimirovi´c, Milan Lj. Zlatanovi´c, & Marko D.
Petkovi (2011). On the linear weighted sum method for
multi-objective optimization, FACTA University (NIS) SER.
Math. Inform., 26, PP. 49-63.

[6] Jason Brownlee (2012). Clever algorithms nature-inspired
programming recipes, ISBN: 978-1-4467-8506-5.

[7] Giagkiozis, & P. J. Fleming (2015). Methods for
multi-objective optimization: An analysis, Information
Sciences, Science Direct, 293, PP. 1-16.

[8] Nyoman Gunantara (2018). A review of multi-objective
optimization: Methods and its applications, Cogent
Engineering, Taylor & Francis, DOI.org/10.1080/23311916.
2018.1502242, (5), PP. 1-16.

[9] Yin-Fu Huang, & Sih-Hao Chen (2020). Solving
multi-objective optimization problems using self-adaptive
harmony search algorithms. Soft Computing, Springer-Verlag
GmbH Germany, DOI.org/10.1007/s00500-019-04175-0, 24,
PP. 4081-4107.

[10] P. K. De, & Bharti Yadav (2011). An algorithm for obtaining
optimal compromise solution of a multi objective fuzzy linear
programming problem. International Journal of Computer
Applications, (0975 – 8887), 17 (1), PP. 20-24.

[11] Neha Gupta, Irfan Ali, & Abdul Bari (2013). A compromise
solution for multi-objective chance constraint capacitated
transportation problem. ProbStat Forum, ISSN 0974-3235, 6,
PP. 60-67.

[12] M. Upmanyu, & R. R. Saxena (2015). Obtaining a compromise
solution of a multi objective fixed charge problem in a fuzzy
environment. International Journal of Pure and Applied
Mathematics, DOI: http://dx.doi.org/10.12732/ijpam.v98i2.3,
98 (2), PP. 193-210.

[13] Zhiyuan Wang, & Gade Pandu Rangaiah (2017) Application and
analysis of methods for selecting an optimal solution from the
Pareto-optimal front obtained by multiobjective optimization.
I&EC research, Industrial & Engineering Chemistry Research,
DOI: 10.1021/acs.iecr.6b03453, 56, PP. 560−574.

[14] Alia Youssef Gebreel (2016). On a compromise solution for
solving multiobjective convex programming problems.
(Research gate), International Journal of Scientific &
Engineering Research, 7 (6), PP. 403-409.

[15] Alia Youssef Gebreel (2016). An adaptive interactive
multi-objective optimization approach based on decision
neural network. (Research gate), International Journal of
Scientific & Engineering Research, 7 (8), PP. 1178-1185.

[16] Alia Youssef Gebreel (2018). Developing an Intelligent
Interactive Approach for Multi-objective Optimization Problems.
(Research gate), International Journal of Scientific & Engineering
Research, http://www.ijser.or, 9 (12), PP. 1952- 1966.

[17] Murshid Kamal, Syed Aqib Jalil, Syed Mohd Muneeb, & Irfan
Ali (2018). A distance based method for solving multiobjective
optimization problems. Journal of applied modern statistical
methods, DOI: 10.22237/jmasm/1532525455, Vol. 7, No. 1, PP:
1-23.

 American Journal of Artificial Intelligence 2022; 6(1): 10-19 19

[18] Janett Walters-Williams, & Yan Li (2010). Comparative study
of distance functions for nearest neighbors. Advanced
Techniques in Computing Sciences and Software Engineering,
Springer Science + Business Media B. V.

[19] Stephen Boyd, & Lieven Vandenberghet (2009). Convex
optimization. Cambridge University Press, Second edition.

[20] Indresh Kumar Gupta, & Jeetendra Kumar (2015). VEGA and
MOGA an approach to multi-objective optimization. International
Journal of Advanced Research in Computer Science and Software
Engineering, ISSN: 2277 128X, 5 (4), PP. 865-870.

[21] Sebastian Sitarz (2012). Interactive compromise hypersphere
method and its applications. RAIRO Operations Research, DOI:
10.1051/ro/2012017, 46, PP. 235–252.

[22] Majid Rafei, Samin Ebrahim Sorkhabi, & Mohammad Reza
Mosavi (2014). Multi-objective optimization by means of
multi-dimensional MLP neural networks. Neural Network
World, DOI: 10.14311/NNW.2014.24.002, (1/14), PP. 31- 56.

[23] Valdimir Sevasty Anov (2013). Hybrid multi- gradient
explorer algorithm for global multi-objective optimization.
American Institute of Aeronautics and Astronautics, eartius,
Inc., 10 (94-99), PP. 1-15.

[24] G. Chiandussi, M. Codegone, S. Ferrero, & F. E. Varesio
(2012). Comparison of multi-objective optimization
methodologies for engineering applications. Computers and
Mathematics with Applications, 63, PP. 912-942.

[25] Mohamed S. A. Osman, Waiel Fathi Abd El-Wahed, Mahmoud
Mostafa El-Sherbiny, & Alia Youssef Gebreel (2018).
Developing intelligent interactive approach for multi-objective
optimization problems. Ph. D. in Operations Research
Department, ISSR, Cairo University, Egypt, (Research gate).

[26] Abbas Y. Al-Bayati, & Huda E. Khalid (2012). On
multi-objective geometric programming problems with a
negative degree of difficulty. Iraqi Journal of Statistical
Science, 21, PP. 1-14.

