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Abstract: Multi-objective optimization is a branch of mathematics used in a large range of applications. It deals with 

optimization problems involving two or more conflicting objective functions to be optimized. Consequently, there is not a single 

solution that simultaneously optimizes these objectives, but a set of compromise solutions. These compromise solutions are also 

called non-dominated, Pareto-optimal, efficient, or non-inferior solutions. The best solution of this set is the one closest point to 

the utopia point. There are several approaches to perform multi-objective optimization. Undoubtedly the future of 

multi-objective optimization programming is in artificial intelligence applications. One of the artificial intelligence models is the 

Corona algorithm. It aims to simulate the epidemic behavior of the Corona virus that affects people's health and its treatment. In 

this paper, the artificial Corona algorithm is introduced and expanded for solving multi-objective programming problems, in 

which other models are not effective. The algorithm operates by iteratively selecting the initial values for decision variables of a 

multi-objective programming problem. The values of objective functions and constraint(s) are calculated. This proposed 

approach depends on a linear formula to update the solution. An acceptable efficient solution that has a minimum distance value 

from the utopia point is selected as the best point. To demonstrate the effectiveness of the proposed approach, some illustrative 

examples are given. These examples include both linear and nonlinear problems. The results indicate that the proposed approach 

has a high speed and capability to obtain the best solution when compared with other similar works of literature. 

Keywords: Artificial Corona Algorithm, Multi-objective Problems, Best Solution 

 

1. Introduction 

Over 25 years ago, there was an increasing amount of 

literature on multi-objective optimization problems using 

artificial intelligent approaches. Nowadays, since the spread 

of the Corona virus (COVID-19) in the world, many 

researchers have been turned to their research for studying this 

virus and simulating its behavior in various scientific aspects. 

One example of them is the artificial Corona optimization 

algorithm, which was put forward by Gebreel [1] uses a linear 

formula to get the optimal solution based on three real numbers 

(0.5,	√0.5, 1.0). It uses deterministic operators such as the most 

classical optimization methods, unlike stochastic operators used 

in evolutionary optimization algorithms. Moreover, this 

procedure doesn't require any derivative information. Therefore, 

it is flexible and simple to implement with high accuracy. 

  
Figure 1. Corona virus (COVID-19) around the world. 

A multi-objective problem has more than one objective function that conflict with each other to be minimized or 
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maximized simultaneously. So, there doesn't typically exist an 

optimal solution that minimizes or maximizes all objective 

functions simultaneously, but instead, it is represented by the best 

tradeoff between competing objectives in the objective space [2, 

3]. It's known that multi-objective optimization involves two 

search spaces: The decision variable space and the objective or 

criterion space. In any optimization approach, the search is 

performed in the decision variable space. Then, the proceedings 

of an approach in the decision variable space can be traced in the 

objective space. In constrained problems, the objective space and 

decision space present feasible and infeasible regions [4-9]. 

There are large numbers of researchers dealing with 

multi-objective optimization programming problems in both 

optimization ways. One of the most widely used methods is 

called the traditional methods. But, the other researches are called 

the heuristic approaches. Most of these researches presented a set 

of efficient solutions in solving such optimization problems. 

Some of them are concerned with providing the preferred or best 

efficient solution in the subset of applications, such as De & 

Yadav [10], Gupta et al. [11], Upmanyu & Saxena [12], Wang 

& Rangaiah [13], Gebreel [3, 14-16], and Kamal et al. [17]. It is 

necessary to find a new way to produce an accurate best point for 

both convex and non-convex or linear and nonlinear 

multi-objective problems within reasonable time. 

Corona approach (CA) will become the major alternative 

for the other heuristic models in the area of multi-objective 

optimization problems because of its faster convergence rate 

and higher accuracy. 

This paper attempts to obtain the best efficient solution of 

multi-objective programming problems using the artificial 

Corona algorithm. The following section begins work with 

preliminaries about this study. After that, the proposed 

algorithm is introduced to solve multi-objective problems in 

section 3. Then, section 4 is devoted to illustrative some 

examples to demonstrate the solution procedures. Finally, 

section 5 gives conclusions and future work. 

2. Preliminaries 

A multi-objective programming (MOP) problem can be 

stated as follows: 

(MOP): 

Minimize/ Maximize: 

F(x) = (f1(x), f2(x),..., fk(x)), k ≥ 2, 

Subject to: 

S = {x ∈ R
n
/ gm(x) ≤ 0, r =1, 2, …, M, 

hl(x) = 0, l =1, 2,..., L}.             (1) 

Where: 

F(x) = (f1(x), f2(x),..., fk(x)) is a vector of k objective 

functions, and k is used to identify the number of objective 

functions, 

x= (x1, x2, …, xn)
T
 is a set of decision variables, 

n is a number of decision variables, 

T is the transpose operator, 

The set S is a non-empty and feasible region included in 

R
n
 that is determined by the constraints on the 

multi-objective problem. It is defined as S={x | x ∈  R
n
,   

gm(x) ≤ 0, m= 1, 2, …, M, hl(x)= 0, l =1, 2, …, L}, 

The inequality gm(x) and equality hl(x) are real valued 

functions defined on S, 

M and L are the numbers of inequality and equality 

constraints, respectively. 

In the following sections, some terminologies are used in 

this paper: 

2.1. Efficient Solution 

A decision vector x
*	∈ S is said to be an efficient solution 

if there does not exist another decision vector x ∈ S such 

that fi(x) ≤ fi(x
*
) for i = 1, 2, …, k and fj(x) < fj(x

*
) for at least 

one index j [2]. 

2.2. Utopia (Ideal) Point 

The point (f1(x�∗), f2(x
∗),..., fk(x�∗ )) in the objective space is 

called utopia (ideal) point [14]. 

2.3. The Best Efficient Point 

The best efficient solution on the efficient set is a feasible 

solution that has the shortest distance to the utopia solution. 

2.4. Euclidean Distance Formula 

The Euclidean distance formula is used to find the distance 

between two points on a plane [17, 18]. This formula 

calculates the distance between two points (x1, y1) and (x2, y2) 

as follows: 

D = �	
x� −	y��
 + 
x
 −	y
�
.            (2) 

The distance between two points is the length of the path 

connecting them. The shortest path distance is a straight line. 

In k dimensional space, the Euclidean distance formula is: 

D = �∑ 
x� −	y��
���� 	.              (3) 

3. The Proposed Algorithm 

Corona virus (CV) was explored, and it is an infectious 

disease that spreads throughout the world. This virus can 

infect people, and these people may die, infect other people, or 

recover after the infection. Therefore, the main goal is to get 

rid of this virus and improve people's health, which 

corresponds to the best solution for a given multi-objective 

optimization problem. The key idea of the proposed algorithm 

is to solve such problem iteratively for providing the best 

efficient solution. The used measure is the minimum 

Euclidean distance from the ideal point to find an efficient 

solution at each iteration. The procedure continues until the 

best efficient solution is satisfied with the current feasible 

solution and does not want to change the multi-objective 

values anymore. A multi-objective optimization problem may 

contain some of constraints, which any feasible solution 
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(including all optimal solutions) must be satisfied. 

In the following sections, a brief overview of the Corona 

search algorithm and its modification procedures to solve 

multi-objective programming problems are introduced. 

3.1. Overview of the Corona Search Algorithm 

The Corona search algorithm is an artificially intelligent 

algorithm that is inspired by the Corona virus to solve 

optimization problems efficiently. First, an initial value for 

each decision variable is selected based on any one of the three 

values (0.5, √0.5, 1). Second, the new Corona vector (x= x1, 

x2, …, xn)
T
 is generated based on the linear formula: 

xi+1= a1 xi + a2,                    (4) 

Where: a1 and a2 are real numbers and they consider as 

spreading rates of Corona virus (controlled parameters). 

The setting values of decision variables and parameters are 

inspired by three cases of the Corona virus: Infection of three 

parts of the human body (nose, throat, and respiratory), 

treatment, or/and death. 

If the new solution is better than the worst one in the Corona 

memory (CM), the new solution is included in the memory 

instead of the worst one. The algorithm continues to run until 

convergence to the required solution, or the maximum number 

of iterations is reached [1]. 

In multi-objective optimization problems, the aim is to find 

a set of non-dominated solutions and after that, the 

decision-makers select one preferred solution for them based 

on their qualitative experiences. But, CA deals with such 

problems to find the best non-dominated solution step by step, 

as shown in the following sections. There is no doubt that it is 

designed to be simple and fast computing. Through this 

process, time is saved for achieving the best solution. 

3.2. The procedure of Corona Approach to Solve 

Multi-objective Programming Problems 

The main steps to implement the proposed approach can be 

stated as follows: 

Step 1: Initialize the problem by Corona approach. 

Step 2: Prepare a memory vector. 

Step 3: Update the Corona memory. 

Step 4: Check the stopping criterion. 

These steps are described in the next four subsections. 

3.2.1. Initialize the Problem by Corona Approach 

The Corona approach begins its search with an initial solution 

within a specified lower and upper bound for each variable, as 

follows: xi
L
 ≤ xi ≤ xi

U
, i = 1, 2, …, n. The lower bound usually 

depends on one of the three real numbers (0.5,	√0.5, 1.0) for 

each decision variable of a multi-objective problem. But the 

upper bound for each variable is calculated by putting all 

variables at zero values in the set of constraints except one 

variable "xi". Then the upper bound has a maximum value of xi. 

3.2.2. Prepare a Memory Vector 

A group of decision variables for a multi-objective problem 

is stored at first in a vector called the Corona memory. CM is 

the core part of the Corona search approach. After that, the 

problem constraints (g1(x), g2(x), …, gM(x), h1(x), h2(x), …, 

hL(x)) and the objective (fitness) functions are stored next to 

these decision variables. In this step, the Corona vector is 

initially filled with any one of the three values (0.5,	√0.5, 1.0). 

The corresponding values of objective functions and 

constraints are calculated and stored in CM as follows: 

CM=[x = x1, x2, …, xn, g1(x), g2(x), …, gM(x), h1(x), h2(x), …, 

hL(x), f1(x), f2(x),..., fk(x)]
T
.          (5) 

3.2.3. Update the Corona Memory (CM) 

The new Corona vector (x= x1, x2, …, xn)
T
 is generated 

based on the Corona formula (xi+1= a1 xi + a2). If the new 

solution is better than the previous one in the CM; judged in 

terms of the distance of objective functions from the utopia 

point and feasibility of constraints (if any); it is included in the 

CM, and the existing worst solution is excluded from the CM. 

3.2.4. Check the Stopping Criterion 

The calculating Euclidean distance of an obtained solution 

depends on determining the utopia point, which optimizes 

individually each of the objective functions. 

The process of creating a new solution from the CM and 

updating memory may be called an iteration. After each 

iteration of the proposed approach: 

1. If the best efficient solution is met, stop. 

2. Otherwise, repeat Steps 2 and Steps 3 until the stopping 

criterion (or the maximum number of iterations that is 

determined arbitrarily) is satisfied, and computation is 

terminated. 

All of these steps are illustrated using pseudo-code as in the 

following Figure 2: 

CV Approach 

Begin 

1- Initialize the CVA: 

Define fitness objectives (F(x) = (f1(x), f2(x), ... , fk(x)), k ≥ 2),       

x= (x1, x2, … , xn)
T, and the constraints (if any) = gm(x) and hl(x), 

Define "a1", and "a2",  

Define the maximum number of iterations (NI).  

2- Generate a new solution: 

Selecting an initial point from these three values: (�. �, √�. �, �),  

with taking into consideration that: 

Max values of xi= the upper bound (xi
U
) of xi, i= 1, …, n. 

3- Calculate the fitness functions: 

while (Max number of iterations < NI) do 

  while ( Vi < number of variables) do 

   Use the selected point to calculate Euclidean distance  

   of fitness functions from the utopia point         

     if the new solution is better than the worst solution  

     then replace the worst solution by the new one with    

          update the Corona memory based on:  

          xi+1= a1 xi + a2 

     end if 

  end while 

end while  

Best efficient solution = find the current efficient solution that has the   

                         minimum distance to the utopia point  

End                                              

Figure 2. Pseudo-code of CV approach. 
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The flowchart of the algorithm execution in a 

multi-objective optimization problem is given in Figure 3: 

 
Figure 3. A flowchart of the procedure of Corona approach to solve 

multi-objective programming problems. 

The following statement can be proved: 

In the objective space of a multi-objective programming 

problem, a solution x
**

 for the proposed algorithm is said to 

be the best efficient solution if and only if there doesn't exist 

another efficient solution x such that: 

Distance (x) > distance (x
**

).           (6) 

Proof: 

The proof comes from the assumption that the solution x
**

 

to the Corona approach is not the best efficient and then shows 

that this assumption violates the definition of the best 

efficient solution. This means that x
**

 has a minimum 

distance from the utopia point. 

It is an important relationship between the optimum value 

to the original MOP problem and its optimum value that is 

achieved by the best point for this problem. 

Corollary: 

In the minimum (maximum) case, the optimum value of any 

multi-objective programming problem (without weights) is 

always less (more) than or equal to the corresponding 

optimum value of the solved problem to get the best efficient 

solution. 

Proof: 

In the minimum case, consider �∗ is the optimal solution to 

the original MOP problem, and �∗∗	 is the best efficient 

solution for this problem. Let �̅ be any other efficient solution 

to the MOP problem, and it lies between two solutions: �∗ 

and �∗∗ such as: 

 
Figure 4. Three efficient solutions for a multi-objective problem. 

Based on lines and line segments definitions [19], it leads 

to: 

F(�∗) ≤ F(�̅).                      (7) 

Since the three solutions are located at the same line 

segment, then 

�̅ = (1- W)	�∗ + W	�∗∗,                (8) 

Where W is a real number with 0 ≤ W ≤ 1, and 

F(�∗) ≤ F(�̅) ≤ (1- W)	F
�∗� + W F(�∗∗),        (9) 

F(�∗) ≤ F(�∗) - W	F
�∗� + W F(�∗∗),         (10) 

F
�∗� ≤ F(�∗∗).                (11) 

Thus the result holds.  

In the same way, it can prove in the maximum case that: 

F
�∗� ≥ F(�∗∗).                     (12) 

3.3. The Main Advantages of CV Approach 

CV approach attempts to find the best efficient solution for 

multi-objective programming problems and has the following 

advantages: 

1. CV approach searches the space of a problem efficiently. 
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It can converge to the final best efficient solution in 

multi-objective linear and nonlinear programming 

problems. 

2. This algorithm obtains the best point for both conflicting 

and non-conflicting multi-objective problems. 

3. The effective parameters (a1 and a2) in its formula 

directly affect the speed of Corona's search. Besides, it 

doesn't have many mathematical requirements related to 

optimization problems. Accordingly, there is a guarantee 

that the CV approach converges to the best point due to 

the nature of its linear formula. 

4. The transformation of multi-objective to single-objective 

optimization doesn't need in this approach for handling 

multiple objectives (i.e., the optimization of a 

multi-objective programming problem cannot use the 

scalarization of objectives). All objectives are treated 

separately. Therefore, it saves some computational time. 

5. The Corona approach is an optimization tool to guide the 

search towards a set of efficient solutions through 

searching for the best efficient solution. It can execute by 

Excel, MATLAB programming, or any other 

computational software. It can end after a few or several 

iterations with an accurate solution. 

6. It uses deterministic transition rules as most of the 

conventional methods rather than derivatives or 

probabilistic transition rules. 

Remarks: 

1. The starting step of the Corona approach is to minimize 

(maximize) the objectives by an initial solution, and try 

to achieve decreasing in the distance from the utopia 

point by the values of a1, and a2, with satisfying the 

constraints (if any). 

2. The Corona approach's performance depends on the 

appropriate selection of values for the decision variables 

and parameters (a1 and a2) of its linear formula. 

3. It is worth mentioning that the best efficient solution is 

obtained without using the weighting method. 

4. When a multi-objective problem is minimized 

(maximized) without weights, its value is lower (greater) 

than or equal to the value of such objectives with the best 

point. 

5. The key difference between the CV optimization 

algorithm and the CV approach to get the best efficient 

solution is the way of evaluating a new solution. In the 

optimization process, the optimal solution is selected 

based on the value of an objective function. But on 

solving a multi-objective problem, the resulted efficient 

solution is evaluated based on its distance from the ideal 

point. Of course, the condition of feasibility must be 

available in both cases. 

6. Corona approach generates a new solution depending on 

CM and Corona formula. If the new solution strictly 

dominates the worst solution, the new solution is 

replaced by the worst solution in the CM.  

7. Throughout the search process, the Corona algorithm 

provides several efficient solutions to a given 

multi-objective problem, which are very useful to 

decision-makers in selecting the preferred solution. 

Furthermore, in the presence of constraint(s), it may 

achieve an infeasible solution in such a search of the 

algorithm. Thus after one run, there are three cases:  

(a) Infeasible solution, (b) Feasible solution but not the 

best solution, (C) Feasible and the best solution (The best 

efficient solution). Figure 5 shows schematically the 

principles of solving multi-objective optimization based 

on the Corona approach. 

 
Figure 5. A schematic of a multi-objective optimization procedure based on 

the artificial Corona algorithm. 

4. Illustrative Examples 

In this section, some examples of several multi-objective 

optimization problems are presented to show the validity and 

effectiveness of the artificial Corona approach. The given 

examples are previously investigated in other works of 

literature. These examples will be solved by Excel software. 

Example 1: 

Consider the multiple-objective linear programming 

problem. It consists of minimizing two linear objectives with 

two decision variables and two bounded constraints as 

follows: 

Min: (f1(x) = x1, f2(x) = (1+x2) / x1), 

Subject to: 0.1 ≤ x1 ≤ 1, 

0 ≤ x2 ≤ 5. 

This problem has been solved by Gupta & Kumar [20] and 

Gebreel [16] using three different artificial intelligent 

algorithms: Genetic algorithm (GA), bacterial foraging 

optimization (BFO), and harmony search algorithm (HSA). 

The steps to solve this example by applying the proposed 

approach are: 

1. Initialize the problem by Corona approach: 
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It can be starting with an initial solution as (x1= √0.5, x2= 

0.5)
T
, and substituting into the two objectives with satisfying 

the inequalities of the problem. Thus, the corresponding 

values of the objective functions are 0.7071 and 2.12134, 

respectively. That leads to the Euclidean distance (D) =1.275. 

2. Prepare a memory vector: 

Firstly, x1 and x2 are set in the Corona memory. Secondly, 

the corresponding objective functions and the Euclidean 

distance are stored in CM, as shown in Table 1. 

3. Update the Corona memory (CM): 

The new Corona vector (x1, x2)
T
 is generated based on the 

Corona formula: x1= (1.0 × 0.7071 + 0.0331672)= 0.7402672 

and x2= (0 × 0.5 + 0.0)= 0.0, which satisfy the two bounded 

constraints. The corresponding objective functions are ��∗= 

	��
∗
x�= 0.7402672, and �


∗= �

∗
x�= 1.35086358 with the 

distance of objective functions from the utopia point is 0.73. 

4. Check the Stopping Criterion: 

As mentioned in the third step, the solution doesn't need any 

change. Therefore, it is considered to be the best solution to 

this problem.  

 
Figure 6. Experimental results for example (1). 

Optimization effects depend on the initialization of the 

Corona vector, and two parameters (a1 and a2), which control 

the search process. The process is continued until the obtained 

solution is feasible and has the minimum distance from the 

utopia point. 

The calculations are shown in Table 1. They give the exact 

minimum distance of objectives from the utopia point of this 

problem. In addition, it is obvious from Figure 6 that the result 

obtained using the Corona search approach is better than those 

reported previously in the paper by Gupta & Kumar [20]. But, 

it gives the same results of GA, BFO, and HSA by Gebreel 

[16] with convergence much faster than them through the 

optimization process.  

Table 1. The best point of example (1) by Corona approach. 

Data Initial solution Update solution based on: xi+1= a1 xi + a2 

x1 √0.5 1.0 × 0.7071 + 0.0331672 = 0.7402672 

x2 0.5 0.0 × 0.5 + 0.0 = 0.0 

f1 0.7071 0.7402672 

f2 2.12134 1.35086358 

f1+ f2 2.82844 2.09113078 

D 1.275137 0.7301009 

It is worth noting that the optimum value of the original 

problem= 2.0 is lower than the optimum value of the solved 

problem to get the best point (2.09113078). 

Example 2: 

The considered multi-objective linear programming 

problem presented by Sitarz [21] has the following form: 

Min: (f1(x) = -x1, f2(x) = -x2), 

Subject to: 

x1 + x2 ≤ 8, 

2x1 + x2 ≤ 12, 

x1 + 2x2 ≤ 14, 

9x1 + 7x2 ≤ 63, 

−4x1 + 10x2 ≤ 61, 

2x1 − x2 ≤ 8, 

14x1 + 3x2 ≤ 72, 

x1, x2 ≥ 0. 

Figure 7 shaded facets constitute the feasible region. The 

obtained non-dominated solutions and the best-selected 

solution are shown in Figure 8 for two objectives. The utopia 

point is calculated as: (	f�∗= -4.8, 	f

∗= -6.5). 

The optimization problem stated before can be solved 

rapidly in just three iterations after the initial step with the 

Corona approach. Where the initial value of decision variables 

is: x1= x2= 1, and the upper bounds are: x1 =14, and x2= 24, 

respectively. 

 
Figure 7. The feasible region in the decision space of example (2). 

 
Figure 8. The best efficient solution in the objective space of example (2). 

As shown in Table 2 and Figure 8, the values of objective 

functions are equal to the negative values of the decision 
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variables. Due to the deterministic nature of the Corona 

approach, the best compromise solution is obtained as 	f�∗= 

-3.15, f

∗= -4.85. The first, second, third, fourth, fifth, sixth, 

and seventh constraints are C1= 8.0, C2= 11.15, C3=12.85, C4= 

62.3, C5= 35.9, C6= 1.45 and C7= 58.65, respectively. The 

Euclidean distance of objectives from the utopia point is D = 

2.33 within reasonable execution time. Its value of objectives 

= the optimum value of the original problem = -8.0. The 

optimal solution is x�
∗=3.5 and x


∗= 4.5. The corresponding 

values of objective functions are -3.5 and -4.5, respectively. 

Table 2. The best point of example (2) by Corona approach. 

Data Initial solution 
Update solution  

The first iteration  The second iteration The third iteration 

x1 1.0 3 × 1.0 + 0.0 = 3.0 1.0 × 3.0 + 0.2 = 3.2 1.0 × 3.2 - 0.05= 3.15 

x2 1.0 5 × 1.0 + 0.0 = 5.0 1.0 × 5.0 - 0.2 = 4.8 1.0 × 4.8 + 0.05= 4.85 

C1 2.0 8.0 8.0 8.0 

C2 3.0 11.0 11.2 11.15 

C3 3.0 13.0 12.8 12.85 

C4 16.0 62 62.4 62.3 

C5 6.0 38.0 35.2 35.9 

C6 1.0 1.0 1.6 1.45 

C7 17 57.0 59.2 58.65 

f1 -1.0 -3.0 -3.2 -3.15 

f2 -1.0 -5.0 -4.8 -4.85 

f1+ f2 -2.0 -8.0 -8.0 -8.0 

D 6.685057965 2.343074903 2.33452350599 2.33345237792 

 

Example 3: 

This problem was presented by Rafei et al. [22] and 

Gebreel [16]. It was solved by TOPSIS for the convex 

non-linear multi-objective problems, genetic algorithm, 

bacterial foraging algorithm, and harmony search algorithm. 

The problem's formulation is as follows: 

Max f1(x) = x�

 + x



 + x!

, 

Max f2(x) = (x1 - 1)
2
 + x2

2
 + (x3 - 2)

2
, 

Min f3(x) = 2x1 + x


 + x3, 

Subject to: 

g1(x) = -x1 + 3x2 - 4x3 + 6 ≥ 0, 

g2(x) = -2x�

 - 3x2 - x3 + 10 ≥ 0, 

x	∈ R
3
, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 2. 

The first and second objectives are transformed to minimize 

cases with multiplying by -1. Then, the problem is formulated 

by three objective functions and the group of constraints as 

follows: 

Min f1(x) = -x�

 - x



 - x!

, 

Min f2(x) = -(x1 - 1)
2
 - x



 - (x3 - 2)
2
, 

Min f3(x) = 2x1 + x


 + x3, 

Subject to: 

g1(x) = -x1 + 3x2 - 4x3 + 6 ≥ 0, 

g2(x) = -2x�

 - 3x2 - x3 + 10 ≥ 0, 

x	∈ R
3
, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 2. 

It is clear from Table 3 that the initial solution is x1= 0.5, x2= 

1.0, and x3= √0.5 with distance = 16.3886. The first updated 

solution is: x1= 0.25, x2= 2.0, and x3= 0.3536 with the distance 

=12.2311. The values of a1 are 0.5, 2.0, and 0.5 for x1, x2, and x3, 

respectively. But, the value of a2 is zero for three variables. The 

best solution is: x�
∗= x!

∗= 0.0, x

∗= 2.721654, and its distance = 

9.072. This result is more accurate than the others. 

Table 3. The best point of example (3) by Corona approach. 

Data Initial solution 
Update solution  

The first iteration  The second iteration The third iteration 

x1 0.5 0.5 × 0.5 + 0.0 = 0.25 1.0 × 0.25 - 0.20 = 0.05 0.0 × 0.05 + 0.0 = 0.0 

x2 1.0 2.0 × 1.0 + 0.0 = 2.0 1.0 × 2.0 + 0.66933 = 2.66933 1.0 × 2.66933+ 0.052324 = 2.721654 

x3 √0.5 0.5 × √0.5 + 0.0 = 0.3536 0.0 × 0. 3536 + 0.0 = 0.0 0.0 

C1 5.7 10.33579 13.95799 14.164962 

C2 5.8 3.52145 1.98701 1.835038 

f1 -1.74 -4.1875 -7.12782 -7.4074005 

f2 -2.94 -7.27329 -12.02782 -12.4074005 

f3 2.7 4.85355 7.22532 7.4074005 

f1+ f2 + f3 -1.98 -6.60723 -11.93032 -12.4074005 

D 16.388583 12.23112 9.20571 9.072179 

 

Example 4: 

This example has been introduced by Anov [23]. It consists 

of two nonlinear objectives, six decision variables with their 

bounds and six constraints as follows: 
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Min: f1(x)= - (25 (x1 - 2)
2
 + (x2 - 2)

2
 + (x3 - 1)

2
 + (x4 - 4)

2
 +     

(x5 - 1)
2
), 

Min: f2(x) = (x�

 + x



 + x!

  

+ x"

 + x#


 + x$

), 

Subject to: 

x1 + x2 - 2 ≥ 0, 

-x1 - x2 + 6 ≥ 0, 

x1 - x2 + 2 ≥ 0, 

-x1 + 3x2 + 2 ≥ 0, 

- (x3 - 3)
2
 - x4 + 4 ≥ 0, 

(x5 - 3)
2
 + x6 - 4 ≥ 0, 

x1, x2, x6 ∈ [0: 10], x4 ∈ [0: 6], x3, x5 ∈ [1: 5]. 

When the proposed approach is applied to this example, the 

best solution is given as: x�
∗= 5.0, x


∗= 1.0, x!
∗= 1.0, x"

∗= 0.0, 

x#
∗=1.0, x$

∗= 0.0, f�
∗ = -242.0, f


∗ = 28.0, C1= 4.0, C2= C4= 

C5= C6= 0.0, C3= 6.0, and its distance from the utopia point = 

40.0. It is clear that the current approach doesn't require a 

significant computational effort to yield an accurate best 

solution with rapid convergence to the utopia point in the 

efficient set. But, Anov presented a group of efficient 

solutions to allow the decision-maker to select any possible 

best compromise solution. 

Example 5: 

This problem deals with the minimization of two nonlinear 

conflicting objective functions with two decision variables, 

two constraints, and two bounds for each variable. 

Min: f1(x) = (x1 − 2)
2
 + (x2 − 1)

2
 + 2, 

Min: f2(x) = 9x1 − (x2 − 1)
2
, 

Subject to: 

x�

 + x



 − 225 ≤ 0, 

x1 − 3x2 + 10 ≤ 0, 

−20 ≤ x1 ≤ 20, −20 ≤ x2 ≤ 20. 

 
Figure 9. The efficient set in the decision space and some solutions in the objective space of example (5). 

This example was solved by Chiandussi et al. [24] using 

four methods: The multi-objective genetic algorithm (MOGA), 

global criterion method, ε-constraint method, and the linear 

combination of weights method. The Pareto front obtained 

from the MOGA is linear with a very large number of 

iterations. The global criterion and the ε-constraint methods 

allow identifying many optimal solutions belonging to the 

Pareto front with a limited number of iterations. The linear 

combination method cannot choose the possible best 

compromise solution correctly. But, the best solution obtained 

by the Corona approach is: x�
∗ = -2.5, x


∗ = 10.5679, f�
∗  = 

113.7947, f

∗ = -114.0447, C1= -107.0695, C2= -24.2037, and 

the distance from utopia point (D)= 146.646. The utopia point 

is: f1
*
 = 10.1, f2

*
 = -217.739. The Corona algorithm's run has 

lower number of steps than these previous methods. Figure 9 

shows the efficient set in the decision space and some 

solutions in the objective space. 

Example 6: 

This example is solved by Gebreel et al. [25] using the 

bacterial foraging and harmony search algorithms. Also, it is 

taken from the work of Abbas & Huda [26]. The original 

mathematical problem is formulated as follows: 

Min: f1(x)= x1 x5, 

Min: f2(x)= x�
%�x!


	x"
", 

Subject to: 

5x�
%� 

x2 ≤ 1, 

2.5x

%�	x!


	+ 1.5x!
%�	x"

%&.#	x#
%&.# ≤ 1, 

xi ≥ 0, where i = 1, 2, 3, 4, 5. 

By applying the Corona model to this problem, the best 

solution is: x�
∗= 8.76017, x


∗= 1.752034, x!
∗= 0.4371853, x"

∗= 

5.370617, x#
∗= 4.144123, f�

∗= 36.3032, f

∗= 18.1516, C1= C2= 

1.0, and D = 40.588238. The corresponding optimum value is 

54.4548, which is greater than the optimum value of the 

original problem (52.12682) without any weights in objective 

functions. But, the compromise optimal solution obtained by 

bacterial foraging and harmony search algorithms is: x1= 

1.271, x2= 0.2542, x3= 0.1665, x4= 5.3706, and x5= 28.5651. 

The corresponding optimum value is equal to 54.45196, C1= 
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1.0000, and C2= 0.999999314. Its distance from the utopia 

point is 40.5883. This means that the CV approach gives 

more robust result than others. 

5. Conclusion 

In the paper, an artificial Corona algorithm is presented as a 

new efficient tool for solving multi-objective programming 

problems. It simulates the epidemic behavior of the Corona 

virus that spreads throughout the world and infects healthy 

people. The inspiration for this model derives from the idea of 

virus transmission and treatment. This approach starts with 

one of three real numbers (0.5,	√0.5, 1.0) for each decision 

variable of a multi-objective problem. After that, it uses its 

linear formula to track the changing distance with iteration to 

determine an efficient solution with the shortest distance to the 

ideal solution. It is called the best efficient solution. 

In the step of updating the solution, the parameters "a1" and 

"a2" in the Corona formula play an important role in setting the 

values of the variables. In each iteration of the algorithm, it is 

important to look at the values of objective functions and their 

distance from the utopia point with the feasibility of 

constraint(s). Moreover, the Corona approach can solve both 

linear and nonlinear problems without scalarization of the 

objectives at an acceptable computation time. 

To illustrate the quality of a generated best solution by the 

proposed approach, some experimental examples are given. In 

some of these examples, the Corona approach gives explicitly 

better results compared to the other works of literature and 

also shows completely satisfactory results in other references. 

These examples are solved using Excel software to simplify 

the search process with accurate results. 

Future Work 

In future studies, this approach can be implemented in many 

different applications for a wide variety of domains. 
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