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Abstract: The present study focuses on determination of temperature distribution in one dimensional bar using Green’s 

function method. The Green’s Function is obtained using separation of variables, variation formulation principles and 

Heaviside functions. The Boundary Integral Equation is obtained using the fundamental solution, Divergence theorem, Green 

Identities, Dirac delta properties and integration by parts. The solution of heat equation given by the Green’s Function and the 

boundary integral equation has satisfied the uniqueness, regularity and stability of heat equation. The uniqueness, regularity 

and stability have been proved using smooth properties of class k function, Lyapunov function and  2L  Norm. The BEM 

implementation is performed using FORTRAN 95 software. Solutions to the test problems are presented and time 

dependence results are in agreement with computed analytical solutions. 
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1. General Introduction 

1.1. General Description and Terminologies 

1.1.1. Temperature 

Temperature is the measure of coldness or hotness of a 

body. In a qualitative manner, we can describe the 

temperature of an object as that which determines the 

sensation of warmth or coldness felt from contact with it. A 

convenient operational definition of temperature is that it is 

a measure of the average translational kinetic energy 

associated with the disordered microscopic motion of atoms 

and molecules. The International System of Units (SI) for 

temperature is Kelvin (K). Other units are degree Celsius, 

Fahrenheit, Rankine, Delisle, Newton, Reaumur and Romer. 

1.1.2. Heat Flux 

Temperature and heat flow are two important quantities in 

the problems of heat conduction. Temperature at any point in 

the solid is completely defined by its numerical value 

because it is a scalar quantity, whereas heat flow is defined 

by its value and direction. The basic law which gives the 

relationship between the heat flow and temperature gradient 

is by French mathematician Jean Baptiste Joseph Fourier. He 

focused on a stationary, homogeneous, isotropic solid 

(materials in which thermal conductivity is independent of 

direction).The law is of the form 

Tkq ∇−=       (1) 

1.1.3. Modes of Heat Transfer 

Heat is energy transferred from a high temperature system 

to lower temperature system. Its International System of 

units (SI) is Joule (J). Heat transfer is a discipline of thermal 

engineering concerned with generation, use, conversion and 

exchange of thermal energy and heat between physical 

systems. There are three modes of heat transfer namely 

conduction, convection and radiation. 

Conduction:  refers to the heat transfer that occurs across 

the medium (solid or fluid). Heat can be conducted between 

two bodies which are in contact with each other; heat flows 

from one body to the other. Materials that allow heat to 

travel through them are called conductors. Metals are good 
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conductors of heat. Non-conductors (insulators) include 

plastic, clay, wood and paper. The rate of heat flux (rate of 

heat transfer per unit area) in a solid object is proportional to 

the temperature gradient. The Fourier law is 

dx

dT
kAqx −=               (2) 

Convection:  refers to the heat transfer that occurs 

between a surface and fluid when they are at different 

temperatures. Convection heat transfer mode is comprised 

of two mechanisms such energy transfer due to random 

molecular motion (diffusion) and energy transferred by the 

bulk or macroscopic motion of the fluid (advection). 

Convection leads to the fact that good insulators (like air) 

can transfer heat efficiently -as long as the air is allowed to 

move freely. Trapped air, as between panes of a double 

window, cannot transfer heat well because it cannot mix 

with air of a different temperature. Convection heat transfer 

may be classified according to the nature of the flow. Forced 

convection takes place when the flow is caused by an 

external agent such as fan, pump or atmospheric winds. 

Natural convection is caused by buoyancy forces due to 

density differences caused by temperature variations in the 

fluid. Free convection flow field is self-sustained flow 

driven by the presence of a temperature gradient.  Mixed 

convection is experienced when natural and forced 

convection occurs together. Newton’s law of cooling is 

( )∞−= TThq s''
     (3) 

Radiation is the transfer of heat in form of waves through 

space (vacuum). Heat is carried by electromotive waves 

from one medium to another. Radiation takes place between 

two surfaces by emission and later absorption. Stefan 

Boltzmann’s equation is given by 

( )4

1

4

2 TTASeq −=           (4) 

1.2. Literature Review 

Ozisik (1968) studied the physical significance of Green’s 

function in heat conduction. He presented the general 

expressions for the solution of inhomogeneous transient heat 

conduction problems with energy generation, 

inhomogeneous boundary condition, and a given initial 

condition, in terms of Green’s function for one, two and 

three dimensional problems of finite and semi-infinite 

regions. 

Chang and Tsou (1977) in their book entitled “Heat 

conduction in Anisotropic Medium Homogeneous in 

cylindrical Regions-Unsteady State” discussed about the 

analytical solution of heat conduction in an anisotropic 

medium that is homogeneous in circular cylindrical 

co-ordinates. They considered boundary conditions of 

Dirichlet, Neumann and mixed types of solid cylinder and 

hollow cylinder of finite and infinite lengths. 

Cannon and John (1984) in their book entitled “The one 

dimensional Heat Equation” researched on some Green's 

function solutions in 1D.A variety of elementary Green's 

function solutions in one-dimension are recorded here. In 

some of these, the spatial domain is the entire real line 

(-∞, ∞). In others, it is the semi-infinite interval (0, ∞) 

with either Neumann or Dirichlet boundary conditions. 

Beck (1984) derived the Greens function solution for the 

linear, transient heat conduction equation in the form that 

included five kinds of boundary conditions and also 

demonstrated the conditions under which it was permissible 

to use the product property of one dimensional Green’s 

functions. 

Greenberg (1986) in his book “Application of Greens 

Function in Science and Engineering” analyzed some 

application of Green’s function to solve conduction heat 

transfer, acoustic gravitational potential and vibration 

problems. 

James and Jeffrey (1987) applied Green’s function to 

solve heat conduction equation in three dimensions 

obtaining an integral equation for temperature in terms of 

the initial and boundary values of the temperature and flux. 

Copper and Jeffery (1998) studied the flow of heat in one 

dimension through a small thin rod. They used the derivation 

of the heat equation, and Mat lab’s to model the motion and 

showed graphical solutions. They used two methods to solve 

the rate of heat flow through an object. The first method was 

derived from the properties of the object. The second 

method was derived by measuring the rate of heat flow 

through the boundaries of the object. 

Eduardo (2001) formulated a table of Green’s Function 

that enable us to derive transient conduction solutions for 

rectangular co-ordinates system and also provided a 

numbering system that enables efficient cataloging and 

locating of Green’s Function. The Green’s Function was 

obtained using Eigen functions expressions. 

Praprotnik et al. (2002) discussed the numerical solution 

of the two dimensional Heat Equation. An approximation to 

the solution function is calculated at discrete spatial mesh 

points, proceeding in discrete time steps. The starting values 

are given by an initial value condition. They explained how 

to transform the differential equation into a finite difference 

equation which can be used to compute the approximate 

solution. 

Vijun (2004) analyzed piezoelectric parallel Bimorph 

using BEM. He concluded that BEM solves these problems 

faster than the other methods. He also predicted temperature 

distribution using combined BEM and FEM for heat transfer 

in fuel cell. 

Onyango et al. (2008) in their study on restoration of 

boundary conditions in one-dimensional transient inverse 

heat conduction problems used BEM to represent boundary 

conditions with linear relations between temperature and the 

heat flux, together with the space or time-dependent ambient 

temperature of environment surrounding the heat conductor. 

Venkataramam et al. (2010) used the physical approach of 

the method of images to obtain Green’s function for 

cylinders and spheres. They found temperature distribution 

in infinite cylinders and spheres with different types of 

discrete heat generation sources such as ring and spiral 
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sources and showed that for discrete sources Green’s 

function determined by method of images yielded analytical 

solutions. 

Misawo F. (2011) researched on a solution of one 

dimensional transient Heat transfer problem using Boundary 

Element Method (BEM).She modeled the flow of heat from 

a hot cylindrical metal billet to a liquid of uniform 

temperature. The cylinder was considered to have many thin 

slabs across the volume which when heated summed up to 

form the whole volume. 

Duhamel’s method relates the solution of boundary-value 

problems of heat conduction with time-dependent boundary 

conditions and heat sources to the solution of similar 

problem and heat sources by means of simple 

relation .Duhamel’s method is a useful tool for obtaining the 

solution of a problem with time-dependent boundary 

conditions and heat sources whenever the solution of a 

similar problem with time- independent boundary 

conditions and heat source is available. A proof of 

Duhamel’s method is given by Bartels and Churchil (1942) 

for a building condition of first kind. This method is used to 

solve heat conduction in semi-infinite solid, semi-infinite 

rectangular strip and long solid cylinder. 

1.3. Research Objectives 

The purpose of this work is to determine one dimensional 

temperature distribution on a metallic bar using the Green’s 

Integral Method. The specific objectives are: 

1. To determine a general Green’s function solution 

equation applicable to the solution of heat transfer 

by conduction. 

2. To apply the Green’s function solution equation 

considered to determine boundary integral equation 

for temperature distribution. 

3. To determine temperature and flux profile using 

BEM. 

1.4. Significance of the Study 

In recent years, applied mathematics has developed a 

strong interest in the science of heat and mass transfer. This 

is mainly due to its many applications in engineering, 

astrophysics, and geophysics and power generation, among 

others 

Heat transfer is of great significance to branches of 

science and engineering. Heat transfer is very important to 

engineers who have to understand and control the flow of 

heat through the use of thermal insulation, heat exchangers 

such as boilers, heaters, radiators, refrigerators and other 

devices. Thermal insulators are materials specifically 

designed to reduce the flow of heat by limiting conduction, 

convection or both. Radiant barriers are materials which 

reflect radiation and therefore reduce the flow of heat from 

radiation sources. A heat exchanger is a device built for 

efficient heat transfer from one fluid to another, whether the 

fluid is separated by a solid wall so that they never mix, or 

fluids are directly contacted. 

Heat exchangers are widely used in refrigerators, air 

conditioning, space heating, power production, and 

chemical processing, the radiator in car, in which the hot 

radiator fluid is cooled by the flow of air over the radiator 

surface. The modern  Electric and electronic plants require 

efficient dissipation of thermal losses,  hence a thorough 

heat transfer analysis  is important  for  proper seizing for 

fuel elements in the nuclear reactor  cores  to minimize 

burn out. 

The performance of an aircraft also depends upon the ease 

with which the structure and the engine can be cooled. The 

utilization of solar energy which is widely used in 

refrigerators, air conditioning space heating, power 

production and chemical production readily available 

requires a thorough knowledge of heat transfer for proper 

design of the solar collectors and associated equipments. 

2. Governing Equations 

Heat transfer problems can be described by set of 

equations namely:  the heat equation, Heaviside function, 

Dirac-Delta Function, the Divergence theorem, Green 

Identities and Laplace equation 

2.1. The Heat equation 

Consider a heated solid body with constant thermal 

conductivity, k, with solution domain 10 << x  , the 

conservation law for heat transfer in the body in one 

dimension is given the heat equation 

�� � ����           (5) 

for k > 0. This equation which is also known as the 

diffusion equation can be solved by imposing boundary 

conditions. The most common four boundary conditions 

applicable to it are: 

Dirichlet boundary condition, which specify the 

dependent variable u(x,t) at each point of the boundary, I = 

(0, l) of the region within which  solution is required, 

mathematically we can represent Dirichlet Boundary 

conditions as: 

���, 	
 � ���	
, ��
, 	
 � ���	
 

Neumann boundary condition, which specify the flux of 

the dependent variable u(x,t) at each point of the boundary, 

I=(0,l) of the region within which solution is required, 

mathematically can be represented as: 

����, 	
 � ���	
, ���
, 	
 � ���	
 

Robin boundary condition or mixed boundary condition is 

a combination of Dirichlet and Neumann boundary 

conditions. It specifies the flux and the function u(x,t) at 

each point of the boundary  I = (0, l) of the region within 

which the solution is required, mathematically is represented 

as: 

���, 	
 � ���	
, ���
, 	
 � ���	
 

Periodic boundary condition, which specify the dependent 
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variable u(x,t)  in periodic shape. Mathematically is 

represented as: 

���1, 	
 � ��
, 	
 

2.2. Heaviside Function 

It is unit step function, named after the electrical 

engineer Oliver Heaviside, it is defined as:  

( )




>
<

=−
11

10

xif

xif
axH   (6) 

Heaviside function and Dirac-Delta function is related by 

the following property 

( ) ( )x
dx

xdH δ=     (7) 

2.3. Dirac-Delta Function 

Sometimes is called the Unit Impulse Function. It models 

phenomena of an impulse nature such as action of heat flow 

over a very short time interval or over a very small region. 

Situation like this occurs in mechanics especially when a 

force concentrated at a point caused by deformation on solid 

surface, impulse forces in rigid body dynamics, point mass 

in gravitational field theory, point charges and multipoles in 

electrostatics. And more important for this study is as point 

heat sources and pulses in theory of heat conduction. The 

Green’s Function is the response of a differential equation, 

and the Dirac Delta function describes the impulse. 

The Dirac Delta Function ( )xδ   is zero when x≠0, and 

infinite at x=0 in such a way that the area under the function 

is unity i.e.: 

���
 � 0  ��     � � 0      (8a) 

���
 � ∞  ��    � � 0      (8b) 

� ���
 �� � 1
∞

�∞
        (8c) 

2.3.1. Physical Interpretation of Dirac Delta and 

Fundamental Solution 

The Dirac delta function is used in physics to represent a 

point source. A continuous temperature distribution in 

3-dimensional space is described by a temperature density, 

typically denoted ( )xρ . The total temperature of the 

distribution is given by integrating the temperature density 

all over space: 

� � � ������
     (9) 

Now suppose that I have a single point charge, q, at 

position 'x . The charge density of a point charge should be 

zero everywhere except at 'xx = , since there is no charge 

anywhere except at this point. On the other hand, at 'x , we 

have a finite charge in an infinitely small volume, so the 

density should be infinite there. 

Finally, it must satisfy, ( )∫= xxdQ ρ3
 since q is the 

total charge. These requirements are uniquely satisfied by  

( ) ( )'xxqx −= δρ (Temperature density of a point charge 

q at 'x ) 

One would have similar expressions for the (mass) 

density of a point mass m. 

The function  ( )xδ  is essentially a bookkeeping device; 

it is a singular function which is zero everywhere except at 

the position x = 0 (the origin of the coordinate system) where 

it is infinite. Some basic properties of Dirac delta are: 

• ( )∫= xxdQ ρ3
 

• ( ) ( )'xxqx −= δρ  

• ( ) ( ) 13 =xxd δ  

• ( ) ( ) ( ) ( ) ( )afaxxdxfx
a

ax =−= ∫
∞

∞−

δδδ 1
 

• ( ) ( ) 1' =−∫
∞

∞−

xxxdxf δ  

• ( ) ( )xxxx −=− '' δδ  

2.4. The Divergence Theorem 

This theorem is also known as Gauss Theorem. It states 

that the flux of a smooth vector field F
�

through a closed 

boundary 
Ω∂=µ

equal to integral of its divergence. 

Mathematical statement is 

∫∫ Ω
Ω= dFdivdxnF
��

ˆ
µ

      (10) 

where  n̂  is the outward normal to surface µ and is 

enclosed Ω region. 

Gauss theorem is very important in vectorial calculus. If 

F
�

is continuous vector field and its components have 

continuous partial derivatives in Ω, then 

∫∫∫∫∫ =Ω⋅∇
Ω µ

µdnFdF ˆ
��

       (11) 

2.5. Green’s Identities 

Take vector function  UVF ∇=
�

 where U and V are 

arbitrary scalar fields, defined in Ω. Then 

UVUVF ∇⋅∇+∇=⋅∇ 2
�

     (12) 

n

V
UnUVnF

∂
∂=⋅∇=⋅ ˆˆ

�
      (13a) 

n

U
VnUVnF

∂
∂=⋅∇=⋅ ˆˆ

�
      (13b) 

Substituting equations (12) and (13b) into equation (11) 



 American Journal of Applied Mathematics 2013; 1(4): 55-70 59 

 

yields Green’s first identity:  

( ) µ
µ

d
n

U
VdUVUV ∫∫∫∫∫ ∂

∂=Ω∇⋅∇+∇
Ω

2
   (14) 

If VUF ∇=
�

, substituting this in divergence equation 

(10) results into: 

( ) µ
µ

d
n

V
UdVUVV ∫∫∫∫∫ ∂

∂=Ω∇⋅∇+∇
Ω

2
  (15) 

Subtracting equation (15) from (14) gives Green’s 

Theorem (Green’s second identity) i.e.  

( ) ∫∫∫∫∫ 








∂
∂−

∂
∂=Ω∇−∇

Ω µ n

U
V

n

V
UdUVVU 22

(16) 

2.6. Fundamental Solution of the Problem 

A fundamental solution for a linear partial differential 

operator L is a formulation in the language of distribution 

theory of a Green's function. In terms of the Dirac delta 

function δ(x), a fundamental solution G is the solution of the 

inhomogeneous equation. 

( )xLG δ=       (17) 

The usefulness of the Green function is evident once you 

make the following realization. Any distribution of source 

(i.e. charge density for instance) can be written as a sum, or 

integral in the continuous case, of point sources. Therefore, 

if we know how the system reacts to a point source, then we 

should be able to determine how it reacts to any distribution 

of source, since we can sum up all the contributions. It is 

absolutely critical here that the differential operator is linear. 

The fundamental solution is an approximation which is 

used in boundary integral equation. 

Consider heat transfer equation (5), a modeled for heat 

transfer through a metallic bar, is obtained using method of 

separation of variables see equation 19, under prescribed 

initial conditions u(x,0)=f(x), Boundary conditions are 

±∞→→ xasU 0            (18) 

( ) ( ) ( )xGtFtxU =,             (19) 

Substituting equation (19) into heat equation (5) results 

into , xxT kFGGF = , dividing this equation by kFG gives   

tCon
G

G

kF

F xxt tan== , where the constant is 
2D−  

Solving 
2D

kF

Ft −= i.e. 02 =+ FkDFt  results into: 

( ) tkDectF
2

1

−=            (20) 

where  1c
 is constant. 

Solving, 
2D

G

Gxx −=  i.e. 
02 =+ GDGxx

 , yields: 

( ) xeceicxG iDDx −+= 32
       (21) 

Where  2c  and 3c  are constants. 

Substituting equations (21) and 20 into (19) gives: 

( ) ( )iDxiDxtkD ececectxU −−= 322 _,
2

     (22) 

Substituting the boundary conditions U(∞,t)=U(-∞,t)=0 

into (22)  results into: 

The physical significance of boundary condition is that 

using Dirac delta function, ( ) 00 ≠= xifxδ  , the 

integration on interval is zero . 

( ) ( )tkDiDxAetxU 2, −=           (23) 

Integrating (23) with respect to D on (-∞, ∞) results into: 

( ) ( ) ( )tkDiDxeDAtxU
2

, −
∞

∞−
∫=  

( ) ( ) ( )dDeDAtxU tkDiDx 2

, −
∞

∞−
∫=        (24) 

Substituting the initial condition, U(x,0)=f(x) into (24) 

gives 

( ) ( ) DdDeDAxf ix

∫
∞

∞−

=          (25) 

Then using Fourier transform theorem, equation (25) 

becomes: 

( ) ( ) ''
2

1 ' dxexfDA Dix−
∞

∞−
∫=

π
  (26) 

Inserting (26) into equation (24) yields 

( ) ( ) ( )
2

'1
, ' '

2

iDx kD t ix DU x t e f x e dx dD
π

∞ ∞
− −

−∞ −∞

  =  
  

∫ ∫  (27) 

Rearranging equation (27), we obtain: 

( ) ( ) ( ) ''
2

1
,

2' dxxfdDetxU tkDDxxi

∫ ∫
∞

∞−

∞

∞−

−−









=
π

 (28a) 

And equation (28) reduces into, 
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( ) ( ) ( ) '',',, dxxftxxGtxU ∫
∞

∞−

=       (28b) 

( ) ( ) dDetxxG tkDDxxi

∫
∞

∞−

−−=
2'

2

1
,',

π
     (29a) 

or  

( ) ( ) ( ){ } 21
, ', cos ' sin '

2

kD tG x x t x x D i x x D e dD
π

∞
−

−∞

= − + −∫  (29b) 

The second integrand in equation (29b) is zero since sine 

is an odd function. 

( ) ( ){ }dDDexxtxxG tkD

∫
∞

∞−

−−=
2

'cos
2

1
,',

π
  (29c) 

Integrating equation (29c) using integration 

rule, ∫
∞

∞−

−
− = a

b

ax e
a

bxdxe 4

2

2

cos
π

 

Where our kta = , ( )'xxb −=  , then equation (29c) 

becomes the Green’s function for heat equation 

( )
( )

kt

xx

e
kt

txxG 4

'
2

4

1
,',

−−

=
π

         (30) 

Substituting equation (30) into equation (28b) results into: 

( )
( )

( ) ''
4

1
, 4

'

dxxfe
kt

txU kt

xx−−∞

∞−
∫=

π
   (31a) 

When ( ) ( )'xxxf −= δ   and using Dirac delta function, 

( ) 1=−∫
∞

∞−

dxaxδ  , see equation (8c) 

Equation (31a) reduces to, fundamental solution of one 

dimension, heat equation given by 

( ) ( ) ( )
kt

xx
e

kt
txxGtxU

ππ 4

'

4

1
,',,

2−−==   (31b) 

Using Heaviside function, H, which is introduced to 

emphasize the fact that the fundamental solution is zero if  

ott ≤  equation (31b) reduces into: 

( ) ( )
( )

( )
( )ott

xxe

o

o
o

ttk

ttH
txtxU

−
−−

−
−

=
4

'
2

4
,',,

π
    (31c) 

Where ott −   it the time period. 

2.7. The Boundary Integral Equation 

We are using Greens theorem equation (16), taking 

V=G(x,t), when we first rewrite the heat equation using the 

Del operator, 
2

2

x∂
∂=∆ . 

( ) ( )txUktxU t ,, ∆=                (32) 

Where Ω∈≤ 'xx  and ott ≤<0 . 

Given that the Green’s function G(x,t), satisfies properties 

of heat and Green’s functions, namely: 

GkGt ∆−=                    (33a) 

( ) Ω∂= ontxG 0,              (33b) 

( ) ( )', xxtxG o −= δ         (33c) 

Multiplying the heat equation (32) by Green’s function, 

( )txxG ,', and integrating over the volume and over time 

integral we get: 

( ) ( )
0 0

o ot t

t
G U dxdt G k U dxdt

Ω Ω
⋅ = ⋅ ∆∫ ∫∫ ∫ ∫∫     (34) 

Integrating the LHS of (34) by parts by letting u=G and  

� � !� 

Therefore, �� � "�  and v=U, then the LHS of (34) 

becomes 

( ) ( ) ( )0

0 0

|
o o

o

t t

t

t tG U dxdt G U dx U G dxdt
Ω Ω

Ω

⋅ = ⋅ − ⋅∫ ∫∫ ∫∫ ∫ ∫∫   (35a) 

Using equation (33a), to simplify equation (35), we obtain 

( ) ( ) ( )0

0 0

|
o o

o

t t

t

tG U dxdt G U dx kU G dxdt
Ω Ω

Ω

⋅ = ⋅ + ∆∫ ∫∫ ∫∫ ∫ ∫∫   (35b) 

Integrating RHS of (35b) twice by parts by taking u=G and  

2

2

U
dV U

n

∂= ∆ =
∂

 then simplify we have, 

( ) ( ) ( )

( )

0 0 0

0

o o o

o

t t t

t

U
G k U dxdt kU Gdxdt kG dS x dt

n

G
kU dS x dt

n

Ω Ω
∂Ω

∂Ω

∂⋅ ∆ = ∆ +
∂

∂−
∂

∫ ∫∫ ∫ ∫∫ ∫ ∫

∫ ∫

 

(36a) 

Substituting equation (33b), on Ω∂ into above equation 

results into: 
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( ) ( ) ( )
0 0 0

o o ot t t
G

G k U dxdt kU Gdxdt kU dS x dt
nΩ Ω

∂Ω

∂⋅ ∆ = ∆ −
∂∫ ∫∫ ∫ ∫∫ ∫ ∫  

(36b) 

Equating (35b) and (36b) gives, 

( ) ( ) ( )

( )

0 0

0

0

0 0

0

. | o

t t

t

t

GU dx kU G dxdt kU Gdxdt

G
kU dS x dt

n

Ω Ω Ω

∂Ω

+ ∆ = ∆

∂−
∂

∫∫ ∫∫∫ ∫∫∫

∫ ∫

   (37) 

Equation (37) reduces into: 

( ) ( )
0

0

0

. | o

t

t G
GU dx kU dS x dt

nΩ
∂Ω

∂=−
∂∫∫ ∫ ∫    (38) 

Writing the Left Hand Side of (38) as 

( ) ( ) ( )0 0. | ' , ';0,otGU dx U x x dx f G x x t dx
Ω

Ω Ω

= ⋅ − − ⋅∫∫ ∫∫ ∫∫  (39a) 

Which by property of delta function we get, 

( ) ( ) ( )0 0 0. | ', , ';0,otGU dx U x t f G x x t dx
Ω

Ω

= − ⋅∫∫ ∫∫  (39b) 

Inserting (39b) into (39a) we get, 

( ) ( ) ( )
0

0 0

0

', , ';0,

t

n

G
U x t f G x x t dx kU dS x dt

nΩ
∂

∂− ⋅ =−
∂∫∫ ∫ ∫ (40a) 

Making ( )0,' txU the subject of the formula gives heat 

function, (BIE) in the solution domain which will then be 

discritised using BEM. 

( ) ( ) ( )
0

0 0

0

', , ';0,

t

n

G
U x t f G x x t dx kU dS x dt

nΩ
∂

∂= ⋅ −
∂∫∫ ∫ ∫  (40b) 

2.8. Statement of the Problem 

People who work under high temperature conditions need 

to know the temperature distribution in those areas after a 

certain period of time. They should be equipped with 

knowledge on temperature distribution from high 

temperature to low temperature and insulation methods to 

minimize heat lose. 

Heat distribution in a metallic rod has been determined 

using non linear methods and found not accurate. We are 

using numerical method, Green function method to 

improve the accuracy through the use of boundary integral 

method assuming the metallic bar has the following 

dimensions. 

Consider heat flow from boundary x=0 to x=1, with 

specified Dirichlet and Robin boundary conditions, 

unknown temperatures are obtained numerically using 

BEM technique. 

 

Figure 1.1. Geometrical Configuration of the research problem 

2.9. Assumption of the Study 

i. The metallic bar is of unit length. 

ii. Temperature is discretely distributed. 

iii. Thermal conductivity of the metallic bar is one. 

3. Methodology 

The Green’s function integral method is selected because 

the solution is always in the form of an integral and can be 

seen as a recasting of boundary value problem into integral 

form. The Green’s function method is useful if the Green’s 

function is known and if the integral expressions can be 

evaluated. Overcoming these limitations offers Green’s 

function several advantages for solution of linear heat 

conduction problems. Even if the integral has to be 

evaluated numerically this is generally more accurate than 

numerical solution such as finite differences especially for 

discrete sources. The advantages of the Green’s function 

method s are the following; 

1. It is flexible and powerful. For a given geometry it can 

be used as building block to the temperature resulting 

from: space-variable initial conditions, time and space 

variable boundary conditions and time and space 

variable generation. 

2. It has a systematic solution procedure. For a given 

Geometry, the Green’s function for a particular type of 

boundary conditions can be determined once .This can 

be used for any type of source, and the solution for 

Temperature can be written immediately in the form of 

integrals. The systematic procedure saves time and 

reduces the possibility of error, which is particularly 

important for two and three dimensional geometrics. 

3. It has minimal computation labor when compared to 

purely numerical finite difference or finite element 

methods. It has much better accuracy than finite 

difference techniques. 

4. Alternative form of the solution can improve series 

convergences. For heat conduction in finite bodies, 
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infinite series solution for heat conduction problems 

driven by non-homogeneous boundary conditions 

problem exhibit slow convergences, requiring a very 

large number of terms to obtain accurate numerical 

values. For some of these problems, an alternative 

formulation of the Green’s function solution reduces 

the number of required series terms. 

3.1. Method of Solution 

In this study for simplicity we reduce the heat equation to 

one dimension, unsteady case which is then written using 

Greens function method which uses variation formulation 

principles. The fundamental solution of heat equation 

G(x,x`,t) is obtained using method analytical approach. The 

heat equation is then discritised using BEM when in 

cooperating the Greens function. The boundary conditions 

are then prescribed by describing the temperature 

distribution on the specified boundaries of the solution 

domain. 

3.2. Numerical Discretisation of the BIE 

This technique is necessary because it transforms the 

Boundary Integral Equation into a linear system of equations 

that can be solved by a numerical approach. In choosing the 

interval points it is important that any corner of the boundary 

µ and also any point where a prescribed boundary condition 

changes are included. This ensures each of the intervals of 

the boundary is smooth, so that the normal is well defined at 

each nodal point, and a single boundary condition applies 

within each interval. The interval of the boundary is 

symmetrically distributed about any of the axes of symmetry, 

and such axes intersect with the boundary at interval points 

rather than at nodal points. 

By the classical BEM methodology, Brebbia et al (1984), 

and using the fundamental solution for the time dependent 

heat equation in one dimension given by equation (31c) the 

heat equation can be transformed into the following 

boundary integral equation, 

( ) ( ) ( )

( )
1

2

0 0 1

0

, , ', , , ',

, , ',

s

s

U G
U x t G x x t t U x x t ds

n n

UG x t x t ds

∂ ∂ = − ∂ ∂ 

+

∫

∫
  (40c) 

The integral over 3S  vanishes due to the Heaviside 

function in expression (31c). 

The discretisation of the BIE (40c) is performed using the 

following steps: 

The boundaries 1S and 2S  are discretised into a series of 

small boundary elements. 

{ } { }1 1

1

0 (0, ( ,0
N

f j j

j

S t t t−

=

 = × = × ∪    (41a) 

{ } { }2 1

1

1 (0, ( ,1
N

f j j

j

S t t t−

=

 = × = × ∪  (41b) 

T he boundary 3S  is discretised in a series of small cells 

[ ] { } ]{ { }
0

3

1

0,1 0 , 0

N

k k

k

S x x
=

= × ×∪   (41c) 

Over each boundary element the temperature U and the 

flux
n

U

∂
∂

are assumed to be constant and take their values at 

the midpoint, 
2

~ 1 jj

j

tt
t

+
= −

(42) i.e.    

( ) ( )0, 0, j oU t U j U j= for ( )
jj ttt ,1−∈    (43) 

( ) ( ) 11, 1, j jU t U j U= = for ( )
jj ttt ,1−∈     (44) 

( ) ( )
0

0,0,
'

j

j

U jU t
U

n n

∂∂
=

∂ ∂
for  ( )

jj ttt ,1−∈   (45) 

( ) ( )
1

1,1,
'

j

j

U jU t
U

n n

∂∂
=

∂ ∂
for  ( )

jj ttt ,1−∈  (46) 

Also, over each cell the temperature U is assumed to be 

constant and takes its value at the midpoint, 

 
2

~ 1 kk
k

xx
x

+
= −           (47) 

( ) ( ) 0
,0 ,0

k k
U x U x U= =ɶ  for ]( kk xxx ,1−∈   (48) 

With the approximations (43) to (48) and k=1, the boundary 

integral equation (40b) is discretised as:  

( ) ( ) ( )

( ) ( )

( )

1 1

1 1

0

1

' '

0 0 0 0 0 0

1 1

0 0 0 1 0 0

1 10 1

0'

0

1

, , ,0, , ,1,

, ,1, , ,1,

, ,0, ',0

j j

j j

j j

j j

k

k

t t
N N

j j

j jt t

t t
N N

j j

j jt t

xN

k

j x

U x t U G x t t dt U G x t t dt

G G
U x t t dt U x t t dt

n n

U G x t x dt

− −

− −

−

= =

= =

=

= +

∂ ∂− −
∂ ∂

+ 

∑ ∑∫ ∫

∑ ∑∫ ∫

∑ ∫

 

For 

( ) [ ] ](, 0,1 0,1x t ∈ ×      (49) 

Where #$  and #�  represent the outward normal at the 

boundaries x=0 and x=1 respectively. 

Equation (50) can be rewritten in the equivalent 
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discretised boundary integral form of the time-dependent 

heat equation in one dimension as: 

( ) ( ) ( ) ( ) ( )

( )
0

0 ' 1 ' 0 ' 1 '

0 0 0 1

1

0

1

, , , , ,

,

N

j j j j j j j j

j

N

k k

k

U x t C U x t C U x t D U x t D U x t

E x t U

=

=

= + − −

+

∑

∑
          (50) 

Where coefficients are given by 

( )
( )

( )
( )

1 1

2

'

0 0 0

00

'1
, , ',

42

j j

j j

t t

x

j

t t

x x
C G x t x t dt e dt

t tt tπ
− −

− −
= =

−−∫ ∫           

     (51) 

( )
( )

( )
( )

1 1

2

'

0 0

' 00

'1
, , ', ( '

42

j j

j j

t t

x

j

xt t

x xG
D x t x t dt x x e dt

n t tt tπ
− −

− −∂= = −
∂ −−∫ ∫   (52) 

( ) ( ) ( )
( )

1 1

2

0

0

'1
, , ', ,0

42

kjk

k k

xx

k

x x

x x
E x k G x x t dt e dt

t ttπ
− −

− −
= =

−∫ ∫   (53) 

If the boundary integral equation (40b) has these 

approximations applied at every node on the boundary 1S  

then the following set of linear algebraic equations is 

obtained. 

( ) ( )
0

0 ' ' 1 ' ' 0 ' 1 ' 0

0 1 0 1

1 1

' ' 0
NN

x x x x

ij j ij j ij j ij j ik k

j k

C U C U D x U C U E x U
= =

 + − − + =∑ ∑ (54), 

� � 1, %&&&&&, �' ( )0,1* 

Where the influence matrices  +$�,
, +��,

, -$�,
 and -��,

 

are defined by 

+./
$�,

� +/
�,

�0, 	̌.
 , +./
��,

� +/
�,

�1, 	̌.
       (55) 

1.2��'
 � 12��', 	̌.
                  (56) 

Also, on applying the initial condition (48) at the cell 

nodes (�23 , 0) for  � � 1, %$
&&&&&&  , then the values  !2

$  are 

determined, namely, !�
0 � !���4  , 0
 � ���23 ), 

� � 1, %$
&&&&&&      (57) 

Recasting together equations results in a system of 

equations which in a generic form can be written as 

5. 7 �8        (58) 

Where X is a known  NN 44 ×  square matrix which 

includes the influence matrices+$, +�, -$, -� and E given 

by expression (4c)-(44),  7  is a vector of 4N unknowns 

which contains the unknowns !$. , !�. , !$.
'  9#� !�.

'  

recasted as 7. � !$.  for  � � 1, %&&&&& 

3.3. Method of Solution of the Problem 

This section presents method of solution to heat transfer 

problem, in particular, heat flow through a metallic bar 

(along its length) which is analyzed by modeling transfer 

through a geometry (0,1)x (0,1).Rearranging equation (54) 

according to the specified boundary conditions, BEM 

FORTRAN 95 code for the computation of unknown values 

is developed. To validate the numerical implementation, 

solutions to the test problems are presented. The graphs are 

drawn with the help of G-sharp software. 

3.3.1. Problem 1: Approximated Values on the Boundaries 

Consider heat equation !� � �!��  which is modeled by 

heat transfer through a metallic bar with analytical solution 

given by 

!�,	=�2+2	        (59) 

Initial conditions U(x,t)=0, 

Boundary conditions are 

U(0,t)=2t       (60) 

U(1,t)=1+2t      (61) 

!	=2, !��=2, !	=!��  k=1                    (62) 

Assuming heat lost on both ends and insulation on the 

sides, BEM code is implemented considering boundary 

discretisation of 20 Nodes. The results obtained are 

illustrated in the graphs below. 

3.4. Existence and Regularity of Heat Equation Solution 

Using Initial Data, U(x,0)=f(x) 

The equation for conduction of heat in one dimension for 

a homogeneous body has the form 

ut=kuxx 

The Cauchy problem for this equation consists in 

specifying U(0, x)= f(x), where f (x) is an arbitrary 

function. 

Existence and uniqueness theorem is the tool which 

makes it possible for us to conclude that there exists only 

one solution to a first order differential equation which 

satisfies a given initial condition. 

Theorem 1 The heat equation with bounded continuous 

initial data f(x) has a solution for 

−∞ < x < ∞ and t > 0, defined by equation (31b), and u(x, 

t) satisfies u(x, 0) = f(x) in the sense that  

lim��$= ���, 	
 � ���
 

Actually, you can put in functions f which aren’t 

continuous or bounded; all we really need is that f doesn’t 

grow too fast (faster than
2xe  ) or be so discontinuous that 

the integral doesn’t make sense. 

3.4.1. Speed of Propagation 

The heat equation has interesting qualitative features 

such as speed of propagation. 

Recall that for the wave equation information propagated 

at a finite speed. Using equation (31b), suppose that the 

initial condition f(x) is zero everywhere except on some 
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small interval (a, b). Because the exponential function is 

never zero, the integral typically won’t be zero, even for 

small t and x arbitrarily far from (a, b). More generally, the 

initial condition f affect the solution u(x, t) for all x, no 

matter how small t is. The heat propagates with infinite 

speed. 

3.4.2. Smoothing Properties Using Class K Functions 

In a mathematical analysis a differentiability class is a 

classification of functions according to the properties of 

their derivatives. Higher order differentiability classes 

correspond to the existence of more derivatives. Functions 

that have derivatives of all orders are called smooth. 

Consider an open set on the real line and a function f 

defined on that set with real values. Let k be a non-negative 

integer. The function f is said to be of class 
kC  if the 

derivatives 
( )kfff ,........,'',' exist and are continuous 

(the continuity is automatic for all the derivatives except 

for 
( )kf  . The function f is said to be of class ∞C , or 

smooth, if it has derivatives of all orders. The function f is 

said to be of class ∞C , or analytic if f is smooth and if it 

equals its Taylor series expansion around any point in its 

domain. 

In general, the classes Ck can be defined by declaring C0 to 

be the set of all continuous functions and declaring Ck for 

any positive integer k to be the set of all differentiable 

functions whose derivative is in Ck−1. In particular, Ck is 

contained in Ck−1 for every k, and there are examples to 

show that this containment is strict. 
∞C is the intersection 

of the sets Ck as k varies over the non-negative integers. 

First, recall that a function is said to be 
∞C if it is 

infinitely differentiable i.e. we can differentiate as many 

times as we like and the derivatives never develop corners 

or discontinuities. For heat equation solution, the function   

( )
kt

xx

e
kt

4

'
2

2

1
−−

π
 is such a function, with respect to all 

variables. Also, for any t > 0 this function decays to zero 

very rapidly away from 'xx = . As a result, we can 

differentiate both sides of equation (31) with respect to x as 

many times as we like, by slipping the x derivative inside 

the integral to find 

( ) ( ) ( )
2

'1
, ' '

42

n

n

x x
U x t e f x dx

ktx kt ππ

∞

−∞

 − −∂
 =
 ∂  
∫  (63) 

The integral always converges (if, e.g., f is bounded). In 

short, no matter what the nature of f (discontinuous, for 

example) the solution U(x, t) will be 
∞C in x, for any time 

t > 0; the initial data is instantly smoothed out. 

3.4.3. Uniqueness and Stability of Heat Equation Solution 

Using Lyapunov Function 

In the theory of ODEs, Lyapunov functions are scalar 

functions that may be used to prove the stability of 

equilibrium of an ODE. For many classes of ODEs, the 

existence of Lyapunov functions is a necessary and 

sufficient condition for stability. 

A  Lyapunov function is a function that takes positive 

values everywhere except at the equilibrium in question, 

and decreases along every trajectory of the ODE. The main 

advantage of Lyapunov function is that the actual solution 

(whether analytical or numerical) of the ODE is not 

required. This can be extended to PDES heat equation 

which is convertible to ODE via separation of variable. 

If U(x, t) satisfies the heat equation, define the quantity 

( ) ( )21
, ,

2
E x t U x t dx

∞

−∞

= ∫        (64) 

where ( )txE ,  is a Lyapunov function, (assuming the 

integral is finite) similar to the energy for the wave equation. 

It’s not clear if ( )tE above is physically any kind of 

“energy”, but it can be used to prove uniqueness and stability 

for the heat equation. 

It’s easy to compute 

( ) ( ), ,t

dE
U x t U x t dx

dt

∞

−∞

= ∫ (65)  

provided U and tU decay fast enough at infinity which 

we’ll assume. Replace tU  in the integral with xxU  

(since 0=− xxt UU )   to find, 

( ) ( ), ,xx

dE
U x t U x t dx

dt

∞

−∞

= ∫         (66) 

Now integrating by parts (take an x derivative off of xxU , 

put it on u) to find 

( ) ( ) ( ) ( )lim lim 2, , , ,
x x x x

dE
U x t U x t U x t U x t dx

dt

∞

→∞ →∞
−∞

= − − ∫   (67) 

We will assume that U limits to zero as |x| → ∞, in fact, 

impose this as a requirement. Assuming xU  stays bounded, 

we can drop the endpoint limits in 
dt

dE
above (alternatively, 

we could assume xU  limits to zero and U stays bounded). 

We obtain 

2
( , )

dE
U x t dx

dt

∞

−∞

= − ∫         (68) 
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It’s obvious that 0
dE

dt
≤ , so ( )tE  is a non-increasing 

(and probably decreasing) function of t. Thus, for example, 

( ) 00 >≤ tforEE  of course ( )tE is simply the 
2L   

norm of the function ( )txU , , as a function of x at some 

fixed time t, and we’ve shown that this quantity cannot 

increase in size over time. Here’s a bit of notation: we use 

( )
2

., tU to mean the
2L norm of U as a function of x for a 

fixed value of t. With this notation we can formally state 

the  following Lemma: 

Lemma 1 Suppose that ( )txU ,  satisfies the heat 

equation for −∞ < x < ∞ and t > 0 with initial data U(x, 0) = 

f(x). Then ( )
22

., ftU ≤  we can wipe out uniqueness 

and stability at the same time. Consider two solutions 

1U  and 2U  to the heat equation, with initial data 1f   

and 2f . Form the function 21 UUU −= , which has initial 

data 21 ff −   . Apply Lemma 1 to U and you immediately 

obtain 

Theorem 2 If  1U and 2U  are solutions to  the heat 

equation for  −∞ < x < ∞  and t > 0  with initial 

data ( ) ( )xfxU 11 0, =   and ( ) ( )xfxU 22 0, = , and both  

1U and 2U decay to zero in x for all 0>t , 

then ( ) ( )
221221 .,., fftUtU −≤−  . 

To prove uniqueness take 21 ff =  to conclude that at 

all times t > 0 we have 011 =−UU   

Or ( ) ( )( )
2

1 1, , 0U x t U x t dx

∞

−∞

− =∫   

 This for 011 =−UU , so ( ) ( )txUtxU ,, 11 =  for all 

x  and t . 

3.4.4. Uniqueness and Stability of Heat Equation Solution 

Using 2L  Norm 

For the wave equation we measure how close two 

functions f and g are on some interval [ ]bxa <<   

(either a or b can be ±∞) using the supremum norm 

( ) ( )xgxfSUPgf bxa −=− <<∞
(we can also talk 

about the size or norm of a single function, 

as ( )xfSUPf bxa <<∞
= . There’s another common way 

to measure the distance between two functions on an interval 

(a, b), namely 

( ) ( )( )2

2

b

a

f g f x g x dx− = −∫         (69) 

We can also measure the norm of a function with 

( )( )∫=
b

a

dxxff
2

2
        (69) 

The latter quantity is called the
2L  norm, so the distance 

between two functions can be measured as the 
2L norm of 

their difference. It’s easy to see that if 0
2

=f  then f 

must be the zero function, and 0
2

=− gf   

implies gf = . 

The norm 
2L  is very much like the usual Pythagorean 

norm for vectors from linear algebra (or just Calc I), which 

for a vector >=< nxxxX ,.......,, 21 is defined as 

( )2

2
1

n

j

j

X x
=

 
=  

 
∑        (70) 

4. Results and Discussion 

Problem 1 

When temperatures are specified on boundary x=0 and 

x=1 respectively the results at various levels of time are 

computed and illustrated in the graphs below for 20 Nodes. 

 

Figure 1a: Approximated and analytical flux on boundary x=0 

 

Figure 1b: Approximated and analytical flux on boundary x=1 
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Problem 2 

When fluxes are specified on both boundaries the results 

at various levels of time ate computed and illustrated below. 

 

Figure 2a: Approximated and analytical temperatures on the boundary 

x=0 

 

Figure 2b: Approximated and analytical temperatures on the boundary 

x=1 

Problem 3 

When flux and temperatures are specified on either 

boundary the results at various levels of time ate computed 

and illustrated below. 

 

Figure 3a: Approximated and analytical flux on the boundary x=0 

 

Figure 3b: Approximated and analytical temperatures on the boundary 

x=1 

 

Figure 4a: Approximated and analytical temperatures on the boundary x=0 

 

Figure 4b: Approximated and analytical flux on the boundary x=1 
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Table 1: Approximated and analytical results for Problem 1 

Flux on boundary x=0 Flux on BC x=1 

I           II       III 

0.012500  -0.000423  0.000000 

0.037500  -0.000158  0.000000 

0.062500  -0.000333  0.000000 

0.087500  -0.000354  0.000000 

0.112500  -0.000316  0.000000 

0.137500  -0.000258  0.000000 

0.162500  -0.000201  0.000000 

0.187500  -0.000152  0.000000 

0.212500  -0.000111  0.000000 

0.237500  -0.000078  0.000000 

0.262500  -0.000052  0.000000 

0.287500  -0.000032  0.000000 

0.312500  -0.000017  0.000000 

0.337500  -0.000005  0.000000 

0.362500  0.000003  0.000000 

0.387500  0.000010  0.000000 

0.412500  0.000014  0.000000 

0.437500  0.000017  0.000000 

0.462500  0.000019  0.000000 

0.487500  0.000020  0.000000 

0.512500  0.000021  0.000000 

0.537500  0.000021  0.000000 

0.562500  0.000021  0.000000 

0.587500  0.000021  0.000000 

0.612500  0.000020  0.000000 

0.637500  0.000019  0.000000 

0.662500  0.000019  0.000000 

0.687500  0.000018  0.000000 

0.712500  0.000017  0.000000 

0.737500  0.000016  0.000000 

0.762500  0.000016  0.000000 

0.787500  0.000015  0.000000 

0.812500  0.000014  0.000000 

0.837500  0.000014  0.000000 

0.862500  0.000013  0.000000 

0.887500  0.000012  0.000000 

0.912500  0.000012  0.000000 

0.937500  0.000011  0.000000 

0.962500  0.000011  0.000000 

0.987500  0.000010  0.000000 

I      II           III 

0.012500  2.003779  2.000000 

0.037500  1.999221  2.000000 

0.062500  1.999874  2.000000 

0.087500  1.999616  2.000000 

0.112500  1.999678  2.000000 

0.137500  1.999725  2.000000 

0.162500  1.999784  2.000000 

0.187500  1.999835  2.000000 

0.212500  1.999878  2.000000 

0.237500  1.999912  2.000000 

0.262500  1.999939  2.000000 

0.287500  1.999960  2.000000 

0.312500  1.999977  2.000000 

0.337500  1.999989  2.000000 

0.362500  1.999998  2.000000 

0.387500  2.000005  2.000000 

0.412500  2.000010  2.000000 

0.437500  2.000013  2.000000 

0.462500  2.000015  2.000000 

0.487500  2.000017  2.000000 

0.512500  2.000018  2.000000 

0.537500  2.000018  2.000000 

0.562500  2.000018  2.000000 

0.587500  2.000018  2.000000 

0.612500  2.000018  2.000000 

0.637500  2.000017  2.000000 

0.662500  2.000017  2.000000 

0.687500  2.000016  2.000000 

0.712500  2.000015  2.000000 

0.737500  2.000015  2.000000 

0.762500  2.000014  2.000000 

0.787500  2.000013  2.000000 

0.812500  2.000013  2.000000 

0.837500  2.000012  2.000000 

0.862500  2.000012  2.000000 

0.887500  2.000011  2.000000 

0.912500  2.000010  2.000000 

0.937500  2.000010  2.000000 

0.962500  2.000009  2.000000 

0.987500  2.000009  2.000000 

I: Specified values, II: Approximated values, III: Analytical values. 

Table 2: Approximated and analytical results for Problem 2 

Temperature on boundary x=0 Temperature on boundary x=1 

I     II          III 

0.012500  0.025053  0.025000 

0.037500  0.075059  0.075000 

0.062500  0.125079  0.125000 

0.087500  0.175094  0.175000 

0.112500  0.225096  0.225000 

0.137500  0.275091  0.275000 

0.162500  0.325084  0.325000 

0.187500  0.375075  0.375000 

0.212500  0.425067  0.425000 

0.237500  0.475060  0.475000 

0.262500  0.525055  0.525000 

0.287500  0.575049  0.575000 

0.312500  0.625045  0.625000 

0.337500  0.675041  0.675000 

0.362500  0.725038  0.725000 

0.387500  0.775035  0.775000 

0.412500  0.825033  0.825000 

0.437500  0.875031  0.875000 

0.462500  0.925029  0.925000 

0.487500  0.975028  0.975000 

0.512500  1.025026  1.025000 

0.537500  1.075025  1.075000 

0.562500  1.125024  1.125000 

0.587500  1.175023  1.175000 

0.612500  1.225022  1.225000 

0.637500  1.275021  1.275000 

0.662500  1.325020  1.325000 

0.687500  1.375019  1.375000 

0.712500  1.425018  1.425000 

0.737500  1.475018  1.475000 

0.762500  1.525017  1.525000 

0.787500  1.575017  1.575000 

0.812500  1.625016  1.625000 

0.837500  1.675015  1.675000 

0.862500  1.725015  1.725000 

0.887500  1.775014  1.775000 

0.912500  1.825014  1.825000 

0.937500  1.875014  1.875000 

0.962500  1.925013  1.925000 

0.987500  1.975013  1.975000 

I       II          III 

0.012500  1.024523  1.025000 

0.037500  1.074749  1.075000 

0.062500  1.124848  1.125000 

0.087500  1.174916  1.175000 

0.112500  1.224960  1.225000 

0.137500  1.274987  1.275000 

0.162500  1.325003  1.325000 

0.187500  1.375014  1.375000 

0.212500  1.425021  1.425000 

0.237500  1.475025  1.475000 

0.262500  1.525028  1.525000 

0.287500  1.575029  1.575000 

0.312500  1.625030  1.625000 

0.337500  1.675030  1.675000 

0.362500  1.725030  1.725000 

0.387500  1.775030  1.775000 

0.412500  1.825029  1.825000 

0.437500  1.875028  1.875000 

0.462500  1.925027  1.925000 

0.487500  1.975027  1.975000 

0.512500  2.025026  2.025000 

0.537500  2.075025  2.075000 

0.562500  2.125024  2.125000 

0.587500  2.175023  2.175000 

0.612500  2.225022  2.225000 

0.637500  2.275022  2.275000 

0.662500  2.325021  2.325000 

0.687500  2.375020  2.375000 

0.712500  2.425019  2.425000 

0.737500  2.475019  2.475000 

0.762500  2.525018  2.525000 

0.787500  2.575017  2.575000 

0.812500  2.625017  2.625000 

0.837500  2.675016  2.675000 

0.862500  2.725016  2.725000 

0.887500  2.775015  2.775000 

0.912500  2.825015  2.825000 

0.937500  2.875014  2.875000 

0.962500  2.925014  2.925000 

0.987500  2.975013  2.975000 

I: Specified values, II: Approximated values, III: Analytical values. 
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Table 3: Approximated and analytical results for Problem 3 

Heat Flux on boundary x=0 Temperature on boundary x=1 

I          II          III 

0.012500  -0.000423  0.000000 

0.037500  -0.000156  0.000000 

0.062500  -0.000303  0.000000 

0.087500  -0.000270  0.000000 

0.112500  -0.000198  0.000000 

0.137500  -0.000129  0.000000 

0.162500  -0.000078  0.000000 

0.187500  -0.000042  0.000000 

0.212500  -0.000019  0.000000 

0.237500  -0.000003  0.000000 

0.262500  0.000008  0.000000 

0.287500  0.000015  0.000000 

0.312500  0.000020  0.000000 

0.337500  0.000023  0.000000 

0.362500  0.000025  0.000000 

0.387500  0.000027  0.000000 

0.412500  0.000028  0.000000 

0.437500  0.000029  0.000000 

0.462500  0.000030  0.000000 

0.487500  0.000030  0.000000 

0.512500  0.000031  0.000000 

0.537500  0.000031  0.000000 

0.562500  0.000031  0.000000 

0.587500  0.000031  0.000000 

0.612500  0.000031  0.000000 

0.637500  0.000030  0.000000 

0.662500  0.000030  0.000000 

0.687500  0.000030  0.000000 

0.712500  0.000029  0.000000 

0.737500  0.000029  0.000000 

0.762500  0.000028  0.000000 

0.787500  0.000028  0.000000 

0.812500  0.000027  0.000000 

0.837500  0.000027  0.000000 

0.862500  0.000026  0.000000 

0.887500  0.000025  0.000000 

0.912500  0.000025  0.000000 

0.937500  0.000024  0.000000 

0.962500  0.000024  0.000000 

0.987500  0.000023  0.000000 

I         II       III 

0.012500  1.024523  1.025000 

0.037500  1.074749  1.075000 

0.062500  1.124848  1.125000 

0.087500  1.174914  1.175000 

0.112500  1.224956  1.225000 

0.137500  1.274979  1.275000 

0.162500  1.324992  1.325000 

0.187500  1.374999  1.375000 

0.212500  1.425001  1.425000 

0.237500  1.475002  1.475000 

0.262500  1.525001  1.525000 

0.287500  1.575000  1.575000 

0.312500  1.624998  1.625000 

0.337500  1.674997  1.675000 

0.362500  1.724995  1.725000 

0.387500  1.774994  1.775000 

0.412500  1.824992  1.825000 

0.437500  1.874991  1.875000 

0.462500  1.924990  1.925000 

0.487500  1.974989  1.975000 

0.512500  2.024989  2.025000 

0.537500  2.074988  2.075000 

0.562500  2.124988  2.125000 

0.587500  2.174987  2.175000 

0.612500  2.224987  2.225000 

0.637500  2.274987  2.275000 

0.662500  2.324987  2.325000 

0.687500  2.374987  2.375000 

0.712500  2.424986  2.425000 

0.737500  2.474987  2.475000 

0.762500  2.524987  2.525000 

0.787500  2.574987  2.575000 

0.812500  2.624987  2.625000 

0.837500  2.674987  2.675000 

0.862500  2.724987  2.725000 

0.887500  2.774987  2.775000 

0.912500  2.824988  2.825000 

0.937500  2.874988  2.875000 

0.962500  2.924988  2.925000 

0.987500  2.974988  2.975000 

I: Specified values, II: Approximated values, III: Analytical values. 

Table 4: Approximated and analytical results for Problem 4 

Temperature on boundary x=0 Heat Flux  on boundary x=1 

I             II        III 

0.012500  0.025053  0.025000 

0.037500  0.075059  0.075000 

0.062500  0.125083  0.125000 

0.087500  0.175107  0.175000 

0.112500  0.225121  0.225000 

0.137500  0.275125  0.275000 

0.162500  0.325124  0.325000 

0.187500  0.375120  0.375000 

0.212500  0.425113  0.425000 

0.237500  0.475106  0.475000 

0.262500  0.525098  0.525000 

0.287500  0.575090  0.575000 

0.312500  0.625083  0.625000 

0.337500  0.675076  0.675000 

0.362500  0.725069  0.725000 

0.387500  0.775063  0.775000 

0.412500  0.825057  0.825000 

0.437500  0.875052  0.875000 

0.462500  0.925047  0.925000 

0.487500  0.975043  0.975000 

0.512500  1.025039  1.025000 

0.537500  1.075035  1.075000 

0.562500  1.125032  1.125000 

0.587500  1.175029  1.175000 

0.612500  1.225026  1.225000 

0.637500  1.275023  1.275000 

0.662500  1.325021  1.325000 

0.687500  1.375018  1.375000 

0.712500  1.425016  1.425000 

0.737500  1.475015  1.475000 

0.762500  1.525013  1.525000 

0.787500  1.575011  1.575000 

0.812500  1.625010  1.625000 

0.837500  1.675009  1.675000 

0.862500  1.725007  1.725000 

0.887500  1.775006  1.775000 

0.912500  1.825005  1.825000 

0.937500  1.875004  1.875000 

0.962500  1.925004  1.925000 

0.987500  1.975003  1.975000 

I           II         III 

0.012500  2.003779  2.000000 

0.037500  1.999220  2.000000 

0.062500  1.999870  2.000000 

0.087500  1.999605  2.000000 

0.112500  1.999656  2.000000 

0.137500  1.999690  2.000000 

0.162500  1.999734  2.000000 

0.187500  1.999771  2.000000 

0.212500  1.999801  2.000000 

0.237500  1.999826  2.000000 

0.262500  1.999846  2.000000 

0.287500  1.999863  2.000000 

0.312500  1.999877  2.000000 

0.337500  1.999889  2.000000 

0.362500  1.999900  2.000000 

0.387500  1.999910  2.000000 

0.412500  1.999919  2.000000 

0.437500  1.999927  2.000000 

0.462500  1.999934  2.000000 

0.487500  1.999941  2.000000 

0.512500  1.999947  2.000000 

0.537500  1.999952  2.000000 

0.562500  1.999957  2.000000 

0.587500  1.999961  2.000000 

0.612500  1.999966  2.000000 

0.637500  1.999969  2.000000 

0.662500  1.999973  2.000000 

0.687500  1.999976  2.000000 

0.712500  1.999979  2.000000 

0.737500  1.999982  2.000000 

0.762500  1.999984  2.000000 

0.787500  1.999986  2.000000 

0.812500  1.999988  2.000000 

0.837500  1.999990  2.000000 

0.862500  1.999992  2.000000 

0.887500  1.999993  2.000000 

0.912500  1.999995  2.000000 

0.937500  1.999996  2.000000 

0.962500  1.999997  2.000000 

0.987500  1.999998  2.000000 

I: Specified values, II: Approximated values, III: Analytical values. 

We have analyzed Dirichlet, Neumann and Robin 

conditions in heat transfer  problems  (1) , (2) and (3), 

respectively and whose results are illustrated in the figures 

namely Figure 1(a) and (b),  Figure 2(a) and (b), Figure 3(a) 

and (b),a Figure 4(a) and (b) and  respectively. 

These are the temperature inside the domain at the nodes 

( ) ( ), 0.5,0.5x t = for 
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Problems 1 is ( )0.5,0.5 1.13923u = , 

Problems 2 is ( )0.5,0.5 1.25007u = , 

Problems 3 is ( )0.5,0.5 1.0403u = , and 

Problems 4 ( )0.5,0.5 1.3489u = , respectively 

Whereas the analytical solution is ( )0.5,0.5 1.250000u = . 

From figure 1a flux is zero and the approximated flux 

increases then fluctuates as time goes by. After some time 

the approximated flux increases and start to converge 

towards analytical flux. From figure 1b flux on boundary 

x=1 is two and the approximated values decrease at the 

beginning then increases as time increases to converge at 

the analytical solution which is the equilibrium point. 

Considering temperature inside the domain at the node (05, 

0.5) the approximated temperature, u=1.13923 is lower 

compared to the analytical one u=1.250000.Comparing the 

approximated and analytical values the difference is small, 

hence BEM is accurate method through the use of Dirichlet 

boundary conditions. 

In figure (2a) and figure (2b), temperature varies directly 

proportional to time indicating energy transfer from 

boundary x=0 to x=1.Using the domain at the node (05, 05) 

the approximate temperature, u=1.25007 and analytical 

temperature, u=1.25000 is the same. Since the analytical 

and approximated values agree then BEM is effective 

method using Neumann boundary conditions. 

From figure 3a Flux is zero and the approximated values 

increases and fluctuates at the beginning then as times 

moves the approximated values increases and tends to 

diverge away from the analytical flux. From figure 3b 

temperature increases as time increases on boundary x=1. 

Considering the temperature inside the domain at the node 

(05, 0.5) the approximated temperature, u=1.0403 is 

extremely lower compared to the analytical temperature, 

u=1.250000. The difference between the analytical and 

approximated values is small showing the success of BEM 

Method through the use of Robin boundary conditions. 

In figure 4a on boundary x=0 temperature is directly 

proportional to time. From figure 4b on boundary x=1 

analytical heat flux is two and the approximated values 

decreases at the beginning the increases at time increases 

and converges to the analytical flux.  Considering the 

temperature inside the domain at the node (0.5, 0.5) the 

approximated temperature, u=1.3489 is higher compared to 

the analytical temperature, u=1.250000. Comparing the 

analytical and the approximated values, the difference is 

very small and BEM is accurate method though the use of 

Robin boundary conditions when the boundaries are 

interchanged. 

4.1. Conclusion and Recommendations 

4.1.1. Conclusion 

This study analyzed one dimensional temperature 

distribution in a metallic bar of constant thermal 

conductivity. With help of governing equations in chapter 

two fundamental solutions for heat equation and BIE were 

successfully derived. The approximated temperatures and 

fluxes on the boundaries converged with exact showing the 

accuracy of BEM method. 

4.1.2. Recommendations 

Future work can be directed to problems with variable 

thermal conductivity. 
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Nomenclature 

A Area, >� 

q Heat transfer rate, W 

h Convectional heat transfer coefficient, W/>� K 

k Thermal conductivity, W/MK 

T Temperature, K 

∞ Infinity symbol 

∇  Del operator 

t Dimensional time, s 

x Length variable, M 

q  Heat flux, K/s 

s Surface 

e Emissivity 

S Stefen Boltzmann’s constant 

L Length of metallic bar, M 

U, V Arbitrary scalar fields 

a, b Distance, M 

H Heaviside function 
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µ  Closed Boundary 

ρ  Density, Kg/   

δ  Delta 

π  Pi 

f  Function 

div  Divergence 

F
�

 Vector field 

Ω Enclosed region 

 Outward unit vector normal to µ 

Abbreviations 

BEM  Boundary Element Method 

BIE   Boundary Integral Equation 

FEM         Finite Element Method 

SI   International System of Unit 

FDM  Finite Difference Method 

ODE   Ordinary Differential Equations 

PDE   Partial Differential Equations 
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