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Abstract: In this paper, homotopy perturbation method (HPM) is employed to provide an approximate, but detailed, 
solution for the nonlinear differential equation that describes the calcium stimulated calcium release mechanism. Comparison 
to the exact solutions shows that the method is extremely efficient, if initial guess is suitably chosen. 
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1. Introduction 

There are a number of phenomena in biological sciences, 
where the precursor of a particular process is the appearance 
of a travelling wave of chemical concentration, mechanical 
deformation, electrical signals and so on [1-3]. 

There are, for example, both chemical and mechanical 
waves that propagate on the surface of many vertebrate eggs. 
In the case of the egg of Medaka fish, a Calcium (Ca++) wave 
sweeps over the surface; it emanates from the point of sperm 
entry. Another example, related to interacting populations, is 
the progressing wave of an epidemic, on which, for instance, 
the rabies epizootic spreading a country. Another example is 
the movement of microorganisms moving into a food source 
chemotactically directed [1].The existence of wave 
phenomena in biomedical sciences requires a detailed study 
of travelling waves, and the search for analytic solutions of 

the equations that govern them. 
In order to show the importance of this article, we follow 

the reference [1] to give a brief, and elementary, introduction 
to the formalism of biological waves about the calcium 
stimulated, calcium release mechanism (CICR). This is 
relevant, for instance, to understand how the membrane 
enclosing certain fertilized amphibian eggs works.  

Due to the importance of the CICR mechanism, this work 
proposes to implement an approximate solution with good 
accuracy that describes the behaviour of such process; this is 
done by using the homotopy perturbation method. 

This paper is organized as follows. In Section 2, we 
introduce the CICR mechanism. In Section 3, we introduce 
the basic concepts of the HPM method. Section 4 will 
present the approximate solution for CICR mechanism. In 
Section 5, we summarize our findings.  Finally, a brief 
conclusion is given in Section 6. 
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2. Introduction to the CICR Mechanism 

During the development of living systems there is almost 
continual interchange of information at both inter and intra 
cellular level. Embryogenesis is an example on how such 
communication is necessary for a sequential development. 
Propagating waveforms of varied biochemical 
concentrations are the transmission medium of such 
information. In the developing embryo, diffusion 
coefficients of biological chemicals can be very small: 
values in the order of 10-9 to 10-11 cm2 sec-1 are very common. 
Such small diffusion coefficients imply that, to cover 
macroscopic distances on the order of several millimetres, it 
would require a very long time if diffusion is the main 
process involved. 

Taking into account that one-dimensional diffusion 
equation has the form [1, 3] 

∂u/∂t=D(∂2u/∂x2),               (1) 

for a chemical of concentration u; the time to convey 
information in the form of a changed concentration over a 
distance L is O(L2/D). If L is in the order of, say 1mm, 
typical times with the above diffusion coefficient are within 
the range O(107 to 109 sec), which is excessively long for 
most processes in early stages of embryonic development. 
Simple diffusion, therefore, is unlikely to be the main 
vehicle for transmitting information over significant 
distances. 

In contrast to the above, when reaction kinetics and 
diffusion are coupled, travelling waves of chemical 
concentration exist and create a biochemical change much 
faster than diffusion processes controlled by equations like 
(1). This coupling gives rise to reaction diffusion equations 
that has the form 

∂u/∂t=D(∂2u/∂x2)+f(u),             (2) 

where u is the concentration, f(u) denotes the kinetics, and 
Dis the constant diffusion coefficient. 

A biochemical switch is a mechanism whereby 
sufficiently large perturbation from one steady state can 
move a system to another steady state. An important 
example, which arises experimentally, is known as the 
calcium stimulated, calcium release mechanism. In this 
process, if calcium (Ca++) is perturbed above a given 
threshold concentration, causes the further release of 
sequestered calcium, that is, the system moves to another 
steady state. This happens, for instance, in certain calcium 
sites on the membrane enclosing fertilised amphibian eggs. 
Besides releasing calcium, such membrane is capable to 
recapture it. If the concentration of Ca++ is denoted by u, it is 
possible to model the kinetics by the spatially homogeneous 
rate law, see (2). 

du/dt=A(u)−r(u)+L,               (3) 

where L represents a small leakage, A(u) is the autocatalytic 
release of calcium, and r(u)is the recapture of the released 

calcium. We assume that the recapture of the released 
calcium is governed by first order kinetics, and the 
autocatalytic calcium production saturates for high Ca++ 
[4-7]. Under those assumptions, we arrive at the reaction 
kinetics model equation, with the specific forms for A(u) and 
r(u), shown in the following equation 

du/dt=L+(K1u
2/K2+u2)−K3u,           (4) 

where 

f(u)=L+(K1u
2/K2+u2)−K3u,           (5) 

here K1, K2, K3, and L are positive parameters. 
It is possible to systematize the study of (4) considering 

different cases for L parameter. Following, a brief 
description for each case is presented. 

If L=0, there are three steady states (u1, u2, and u3) [1], 
two stable and one unstable [8]. As L increases above certain 
threshold value LC, u1, and u2 coalesce and then disappear. 
So, if initially u=u1, a perturbation of L large enough can 
result in shifting the steady state to u3, the larger of the two 
stable steady states, where it will remain (see Section 4.4). 

Equation (4) is a nonlinear differential equation. From the 
qualitative theory of this kind of equations [8], we know that 
equalling to zero the right side of (4) we obtain the critical 
points, which represent rest points in the evolution of a 
system and define the steady states. Nevertheless, the 
qualitative theory provides the asymptotic behaviour of the 
solution, that is, for t→∞. 

This work assumes that the system begins at some point 
u=u(0), evolves, and use the homotopy perturbation method 
(HPM) to find, analytically, a highly accurate solution to (4). 
To this end, we exemplify using the following values: K1=3, 
K2=1, and K3=1; considering cases L=0 (L<LC), L=1 
(L>LC), and L=LC with LC=0.0858683119, besides this work 
will calculate an approximate version that describes the 
CICR switching mechanism. 

3. Homotopy Perturbation Method 

(HPM) 

The Homotopy Perturbation Method [9, 10] was proposed 
by Ji Huan He; it was introduced as a powerful tool to solve 
various kinds of nonlinear problems. As is well known, 
nonlinear phenomena appear in several scientific fields, 
such as applied mathematics, physics and engineering. 
Scientists in those disciplines constantly face the task of 
finding solutions to nonlinear ordinary 
differential equations, partial differential equations and 
systems of nonlinear ordinary differential equations. There 
are several methods available to find approximate solutions 
to nonlinear problems, like: variational approaches [11, 12], 
Tanh method [13], exp-function [14], Adomian’s 
decomposition method [15, 16], parameter expansion [17], 
the HPM [9, 10, 18-24] among others. 

The homotopy perturbation method could be considered 
as combination of classical perturbation techniques and 
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homotopy (whose origin is based in topology); but has been 
able to reduce limitations found in traditional perturbation 
methods. For instance, the method does not need a small 
parameter or linearization, in fact, only requires less 
iteration to obtain highly accurate solutions. This method 
has been used successfully to solve integral equations, for 
example, the case of Volterra integral equations [22]. 
The method requires an initial approximation, which should 
contain as much information as possible about the nature 
of the solution. Often it can be achieved 
through an empirical knowledge of the solution. 

To get an idea of how HPM works, consider a general 
nonlinear equation in the form 

A(u)−f(r)=0, r ∈Ω,               (6) 

having boundary conditions 

B(u,∂u/∂n)=0, r∈Γ               (7) 

where A is a general differential operator, B a boundary 
operator, f(r) a known analytical function, and Γ is the 
domain boundary Ω. A can be divided into two parts, L and 
N; here L is linear and N is nonlinear. Therefore, (6) can be 
rewritten as 

L(u)+N(u)−f(r)=0.               (8) 

Generally, homotopy can be constructed in the form [9] 

H(v,p)=(1−p)[L(v)−L(u0)]+p[A(v)−f(r)]=0, 
p ∈ [0,1], r ∈Ω,                (9) 

or 

H(v,p)=L(v)−L(u0)+pL(u0)+p[N(v)−f(r)]=0, 
p ∈ [0,1], r ∈Ω,             (10) 

where p is a homotopy parameter, whose values are in the 
range p ∈[0,1], u0 is the first approximation to the solution 
of (6), which satisfies the boundary conditions. 

We can assume that solutions for (9) or (10) may be 
written as power series of p. 

v=v0+v1p
1+v1p

2+⋅⋅⋅,              (11) 

substituting (11) into (10) and equating terms having 
identical powers of p, we can find values for the sequence u0, 
u1, u2, ⋅⋅⋅. When p→1, results to the approximate solution of 
(6) may be shown as 

v=v0+v1+v2+v3+···.             (12) 

Another way to build a homotopy, relevant to the purpose 
of this paper, is considering a general equation in the form 

L(u)+N(u)=0,                 (13) 

where L(u) and N(u) are the linear and no linear operators, 
respectively; so that solution for L=0 describes, in the best 
way, the original nonlinear system. 

By the homotopy technique 

(1−p)LD(v)+p(L(v)+N(v))=0,         (14) 

where LD is a linear operator employed in the homotopy 
method. 

Again, is assumed that solution for (14) can be written in 
the form (11), by taking the limit when p→1, results in the 
approximate solution for (13). 

4. Application of HPM to Solve the 

Equation Calcium Stimulated, 

Calcium Release 

To obtain the value of LC we solve, simultaneously, 
equations f(u)=0 and f'(u)=0, using the following values: 
K1=3, K2=1, and K3=1, see (5), such that the obtained value 
is LC=0.0858683119, with its corresponding critical point 
u=0.1773105825. 

Equation (4) can be rewritten in the form 

u'(t)+u2(t)u'(t)+u3(t)−3u2(t)−Lu2(t)+u(t)−L=0, (15) 

Next, the linear and nonlinear parts are identified as 

L(u)=u'(t)+u(t)−L,              (16) 

N(u)=u'(t)u2(t)+u3(t)−3u2(t)−Lu2(t).       (17) 

From (16) it is possible to create a linear function for the 
homotopy method 

LD(u)=au'(t)+bu(t)+c−L,          (18) 

where a, b, and c are adjustment parameters. 
Substituting (11) into (14) (LD is obtained from (18)) and 

equating terms with identical powers of p, we obtain 

av0'(t)+bv0(t)+c−L=0,          (19) 

av1'(t)+bv1(t)+(v0
2(t)−a+1)v0'(t)+v0

3(t)− 
(3+L)v0

2(t)+(1−b)v0(t)−c=0.         (20) 

Next, solution for (19) and (20) are obtained for different 
cases of L. For all the cases the adjustment of parameters is 
performed employing the NonlinearFit command of Maple 
(release 15) software. 

4.1. Case when L=0 

 

Figure 1. Phase plane for (4) when L=0. 
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Fig. 1 shows the phase plane of (4) whenL=0. In the same 
figure we see that this equation has critical points atu=0, 
u=3/2−1/2√5, and u=3/2+1/2√5 (those are values obtained 
from (5) when f(u)=0). 

Differential equations (19) and (20) will be solved, 
applying initial conditions v1(0)=0.9, v2(0)=0, and L=0. 

First, we adjust the values of a, b, and c, so we choose the 
lowest order approximation. 

u(t)=v0(t)=97/37−[(31/18)exp(-11t/21)].  (21) 

Fig. 2 shows the comparison between (21) and the exact 
solution. It can be seen that while the critical point 
(3/2−1/2√5, 0) is unstable, the point (3/2+1/2√5, 0) is stable 
and the system evolves asymptotically towards it [8]. It 
becomes clear that, even taking the lowest order of 
approximation, still it is possible to obtain a highly accurate 
solution. 

 

Figure 2. Approximate solution (21) and exact solution for (15). 

To improve the previous approach, we adjust parameters a, 
b, and c so that the second order approximation is chosen 

u(t)=v0(t)+v1(t)=(-2exp(-54t/19)/677)− (8exp(−36t/19)/29) 
+34/13+(−26/16−35t/24)exp(−18t/19).       (22) 

Now, Fig. 3 shows the comparison between (22) and the 
exact solution. It is evident the accuracy of (22) as an 
approximate solution to (4).  

Next, differential equations (19) and (20) (with L=0) are 
solved using initial conditions v1(0)=0.2 and v2(0)=0. 

 

Figure 3. Approximate solution (22) and exact solution for (15) when L=0. 

As before, values for parameters a, b, and care adjusted so 
we choose the lowest order approximation (see Fig. 4). 

u(t)=v0(t)=(70/349)exp(−37t/59).  (23) 

 

Figure 4. Approximate solution (23) and exact solution for (15) when L=0. 

To improve the previous approach, parameters a, b, and c 
are adjusted at the second order approximation 

u(t)=v0(t)+v1(t)=(17exp(–133t/44)/212)–(5exp(–133t/44) 
/22)+(25/72+3t/67)exp(–134t/133),       (24) 

where Fig. 5 shows the comparison between (24) and the 
exact solution. Point (0, 0) is stable and the system evolves 
asymptotically towards it. Therefore, (24) is a highly 
accurate approximation to (4). 

 

Figure 5. Approximate solution (24) and exact solution for (15) when L=0. 

4.2. Case when L=LC 

Fig. 6 shows the phase plane of (4) for L=LC. It can be 
seen that this equation has critical points at u=0.1773105825 
and u=2.731246007. 

 

Figure 6. Phase plane for (4) when L=LC. 
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Next, (19) and (20) are solved using initial conditions 
v1(0)=0, v2(0)=0, and LC=0.0858683119. For this case, 
parameters a, b, and c are adjusted to choose the lowest 
order approximation 

u(t)=v0(t)=13/80−(13/80)exp(−8t/27),  (25) 

where Fig. 7 shows the comparison between (25) and the 
exact solution. It can be seen that the critical point 
(0.1773105825, 0) is stable and the system evolves 
asymptotically towards it. Therefore, even using the lowest 
order approximation, is possible to obtain an accurate 
solution. 

Solving (19) subject to initial conditions v1(0)=0.9 and 
v2=0, parameters a, b, and c are adjusted in order to choose 
the lowest order approximation 

u(t)=v0(t)=52/19−(90/49)exp(−15t/28).  (26) 

 

Figure 7. Approximate solution (25) and exact solution for (15) when 
L=LC. 

Fig. 8 shows the comparison between (26) and the exact 
solution. The point (2.731246007, 0) is stable and the system 
evolves asymptotically towards it. It is evident the accuracy 
of (26) as an approximate solution for (4). 

 

Figure 8. Approximate solution (26) and exact solution for (15) when 
L=LC. 

4.3. Case when L=1 

Fig. 9 shows the phase plane of (4) when L=1. In addition, 
it can be seen that this equation has one critical point at 

u=3.806300717. 
Solving (19) and (20) subject to initial conditions 

v1(0)=0.9, v2(0)=0, and L=1; adjusting a, b, and c the second 
order approximation is chosen 

u(t)=v0(t)+v1(t)=(−73exp(−86t/33))/97+(115exp(−33t/19)) 
/36+53/14+(−293/55+37t/53)exp(−33t/38).    (27) 

Fig. 10 shows the comparison between (27) and the exact 
solution. We see that the point (3.806300717, 0) is stable, 
thus, the approach is accurate. 

 

Figure 9. Phase plane for (4) when L=1. 

 

Figure 10. Approximate solution (27) and exact solution for (15) when 
L=1. 

4.4. CICR Mechanism Case 

In this section a highly accurate approximation is 
calculated that exemplifies a perturbation of L for a steady 
state leading a transition towards other steady state. It means 
that HPM was able to successfully adapt to the different 
steady states depending of the perturbation of L. This result 
is the main contribution of this work to the study of CICR 
mechanism with semi-analytical methods. 

Suppose the case where initially L=LC, at steady 
stateu1=0.1773105825. Now, the state is perturbated leading 
to an increase from L=LC to L=LC+∆L, where is chosen to 
exemplify ∆L. The result is a transition from the original 
steady state towards a new steady state u2=3.338922. 

After applying HPM, is observed that the first 
approximation has good accuracy (see Fig. 11), being of the 
form 
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u(t)=v0(t)=47/14−(47/14)exp(−18t/37).  (28) 

5. Discussion 

The nonlinear phenomena appear in several sciences 
fields, such as applied mathematics, physics, engineering, 
medicine, chemistry and biology. Scientists in those 
disciplines are constantly faced with the task of finding 
solutions for nonlinear ordinary differential equations. 

 

Figure 11. Approximate solution (28) and exact solution for (15). 

In fact, the possibility of finding analytical solutions in 
those cases is very difficult. In particular, for equations like 
(4), the natural way to proceed is the use of techniques for 
qualitative theory of nonlinear differential equations; 
however, it is known that they provide the asymptotic 
behavior of the solution. In this paper, we used the 
homotopy perturbation method (HPM) to find a very simple 
and accurate solution for (4). The possibility of finding 
analytical expressions for quantities that describe a system is 
very important. In our case, we described, successfully, the 
detailed evolution of the concentration of Ca++, from its 
initial value to its asymptotic value given by stable critical 
points by means of analytical expressions provided in this 
work. At Section 4.4 we chose an initial value to exemplify 
the CICR mechanism. Fig. 11 showed that our 
approximation has good accuracy.The ultimate goal is that 
using the method presented in this paper, it would help to 
analyse in more detail the calcium stimulated, calcium 
released mechanism. 

6. Conclusions 

In this paper, HPM method is employed to find an 
analytical expression for the equation that governs the CICR 
mechanism. We followed in all detail the dynamical 
evolution in the concentration of Ca++ from its initial value 
to its asymptotic value. This information is, clearly, very 
important and contrasts with the one obtained from 
traditional techniques using qualitative theory of nonlinear 
differential equations; where we know the asymptotic 
behavior of the solution. A relevant fact is that, depending if 
the trial function is suitably chosen is possible to obtain an 
approximation highly accurate even using the lowest order. 
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