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Abstract: In this study we consider MHD steady fluid flow between two infinite parallel vertical porous plates with heat 

transfer. The governing equations considered we reduced to specific form according to the geometry of the studied problem. 

The non-dimensional governing equations involved in the present analysis are solved using the finite difference technique and 

the expressions for velocity and temperature distributions have been obtained. The effect of different parameters such as 

magnetic parameter, Prandtl number, thermal Grashoff number, and the temperature and velocity distributions are discussed.  
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1. Introduction 

Fluid is a substance that undergoes deformation when an 

external force is applied to it however small it may be. 

Steady motion is one where there is no velocity variation 

along the direction of flow otherwise it is termed as unsteady. 

Magneto hydrodynamics as a word was first used by Hannes 

Alfen in 1942 for which he received a Nobel Prize in physics 

in 1970. Initially MHD include only the study of  strictly 

incompressible fluids but today it is applied to studies of 

partially ionized gases as well. Other names have been 

suggested such as magneto fluid- mechanics, magneto 

aerodynamics or hydro-magnetics but still the original 

Nomenclature persists. 

Magneto hydrodynamics (MHD) is the study of flow of 

electrically conducting fluid in the presence of magnetic field. 

The word magneto hydrodynamic (MHD) is derived from: 

Magneto-meaning magnetic field, Hydro meaning Liquid and 

Dynamics which means movement. Hydrodynamics is the 

study of fluid flow and the forces that cause the flow in the 

absence of the electromagnetic field. In MHD a current is 

induced when a current conductor moves in a magnetic field. 

Hence when a viscous conducting fluid flows in the presence 

of a transverse magnetic field, electromagnetic forces act on 

the fluid particles thereby altering the geometry of the motion. 

The presence of magnetic fields leads to forces that in turn 

act on the fluid potentially altering the geometry and the 

strength of the magnetic fields themselves. MHD phenomena 

results from the mutual effect of a magnetic field and a 

conducting fluid flowing across it. Thus electromagnetic 

force is produced in a fluid flowing across a transverse 

magnetic field and the resulting current and magnetic fields 

combine to produce a force that resists the fluid motion. The 

current also generates its own magnetic field which distorts 

the original magnetic field and the Science of MHD is a 

detailed study of these phenomena which occur both in 

nature and in engineering. 

For a long time it has been suspected that most of the 

matter in the universe is in plasma or highly iionized gaseous 

state and much of the basic knowledge in the area of 

electromagnetic fluid dynamics evolved from these studies. 

2. Literature Review 

The concept of MHD is largely perceived to have been 

initiated by Faraday when he did the first quantitative 

observation of Magneto hydro dynamics. He did experiments 

with mercury as a conducting fluid flowing in a glass tube 

placed in magnetic field and observed that voltage was 

induced in direction perpendicular to both the direction of 

flow and magnetic field. He further showed that when an 

electric field is applied to a conducting fluid in the direction 
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which is perpendicular to magnetic field, a force is exerted on 

the fluid in the direction perpendicular to both electric field 

and magnetic field. Since then a lot has been done on MHD 

and its related fields Rao et al (1990) studied the heat transfer 

in porous medium in the presence of transverse magnetic field. 

The effects of the heat source parameter and Nusselt number 

were analyzed. They discovered that the effect of increasing 

porous parameter is to increase the Nusselt Number. 

Kinyanjui et al (2003) investigated MHD Stokes problem 

for a vertical infinite plate in dissipative rotating fluid with 

Hall current as Sigey et al (2004) presented an investigation 

on the numerical study on natural convection turbulent heat 

transfer in an enclosure. Rajput et al (2011) studied Natural 

convection in unsteady hydro magnetic couette flow through a 

vertical channel in the presence of thermal radiation. The 

effect of different parameters like magnetic parameter, Prandtl 

number, radiation parameter, thermal Grashof number, 

accelerating parameter and time on the temperature, velocity, 

skin-friction and Nusselt were discussed. 

Okello et al (2007) investigated, unsteady free convection 

incompressible fluid past a semi infinite vertical porous plate 

in the presence of a strong magnetic field inclined at an angle 

α to the plate with Hall and ion-slip current effects. The 

effects of modified Grasshof number, suction velocity, the 

angle of inclination, time, Hall current, ion-slip current, Eckert 

number, Schmidt number and heat source parameter on the 

convectively cooled or convectively heated plate restricted to 

laminar boundary layer were studied. He found that an 

increase in mass diffusion parameter Sc causes a decrease in 

concentration profiles, absence of suction velocity or an 

increase of it causes an increase of concentration profiles, an 

increase of Eckert number causes an increase in temperature 

profiles and also an increase of an angle on inclination leads to 

an increase in primary velocity profiles but a decrease in 

secondary velocity profiles.  

Baoku et al (2010) investigated the problem of hydro 

magnetic Couette flow of a high viscous fluid through a 

porous channel in the presence of an applied uniform 

transverse magnetic field and thermal radiation. Effects of 

permeability parameter for the cases of low, moderate and 

high permeabilities on the numerical solutions were obtained 

for different magnetic parameters and Nahme number. 

Temperature and velocity profiles are presented for different 

Nahme and magnetic field parameters to reveal the coupled 

effects of thermal radiation and magnetic field were shown. 

They concluded that the increase in thermal radiation of the 

fluid results to a decrease in the temperature profiles of the 

hydro magnetic Couette fluid, the permeability of the porous 

medium and thermal radiation have insignificant effects on 

the steady hydro magnetic Couette fluid flow and that the 

increase in magnetic field leads to an increase in the velocity 

profiles with significant effects of low and moderate 

permeability parameters except at high medium permeability 

with very high magnetic field where increase in magnetic 

Okwoyo J. M. and Sing C. B. (2008) presented a paper on 

steady laminar flow of viscous incompressible fluid between 

two parallel infinite plates when upper plate is moving with 

constant velocity and lower plate is held stationary under the 

influence of transverse magnetic field. The resulting 

expression was solved by the application of Laplace transform 

and analytical expression was obtained. Sigey et al (2012) 

carried out a study of magnetic hydrodynamic free convective 

flow past an infinite vertical porous plate in an incompressible 

electrically conducting fluid. The investigation of the effect of 

viscous dissipation on the velocity profiles and temperature 

distribution of the fluid in the presence of a transverse 

magnetic field subject to a constant suction velocity was 

conducted. The partial differential equations governing the 

flows were analyzed using an explicit finite difference method. 

The numerical results of the study showed that an increase in 

the viscous dissipation causes an increase in the velocity 

profiles and temperature distribution of the fluid. This study 

finally asserted that an increase in the viscous dissipation 

parameter or term leads to an increase in velocity and 

temperature profiles. This increase in the velocity profiles and 

temperature profile occurred at a distance away from the 

porous plate. 

A study of magnetic hydrodynamic free convective flow 

past an infinite vertical porous plate in an incompressible 

electrically conducting fluid was considered. The numerical 

results of the study shown that an increase in the Grasshof 

number causes an increase in the velocity profiles; an increase 

of Hartman number causes a decrease of velocity profile 

whereas an increase of Prandtl number causes a decrease in 

temperature distribution (Amenya et al, 2013). 
Nyabuto et al (2013) studied a steady MHD stokes free 

convection flow of an incompressible, electrically conducting 

fluid between two parallel infinite plates subjected to 

constant heat flux and pressure gradient. They obtained 

results on velocity profiles and temperature distribution and 

discussed in detail. An increase in Hartmann is found to 

cause a decrease in velocity profiles and an increase in 

temperature distribution. In addition, an increase in Eckert 

number causes an increase in temperature while an increase 

in Prandtl leads to a fall in temperature distribution. Their 

results were found to merge with the physical situation of the 

flow. In this study we consider MHD steady fluid flow 

between two infinite parallel vertical porous plates with heat 

transfer. 

3. Governing Equations 

MHD governing equations results from a combination of 

two disciplines namely the electromagnetic theory and fluid 

mechanics. The basic equations of MHD for incompressible 

fluids can therefore be written as the Maxwell’s equation, 

Ohm’s law, the equation of continuity and the equation of 

motion. If the fluid is in motion the velocity may be different 

at each location in the fluid. 

Maxwell’s Equations 

This is a set of four equations that describes the 

relationships between electric and magnetic fields and their 

source. In different form they are; 
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The equation of continuity 

This equation expresses mathematically the law of 

conservation of mass. According to this law mass can neither 

be created nor destroyed. Raisinghai (2006) showed that the 

continuity equation gives the fact that increase in the mass of 

the fluid within any closed surface drawn in the fluid at any 

time must equal to the excess of mass that flows out. 

The equation in vector form is; 

( ) 0. =∇+
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q
t

�
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ρρ
                 (1) 

For any incompressible fluid in which density is constant 

the equation in Cartesian coordinates becomes;  
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v
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Equation of Momentum 

The equation of momentum is also called the equation of 

motion. The law of conservation of momentum states that 

initial momentum is equal to the final momentum. Using 

Newton’s second law of motion which states that the net force 

acting on a body is equal to the product of mass and 

acceleration and applying this on an infinitesimal fluid 

element the Navier stokes equation for an incompressible, 

viscous fluid becomes; 

( ) bFVPVV
t

V ρυρρ +∇+−∇=∇+
∂
∂ ���

�

2.          (3) 

From Faraday’s law that states that if current is passing 

through a conductor under a magnetic flux then the conductor 

experiences a force perpendicular to both of them and is 

proportional to the product of their magnitude. Hence, force 

acting on the conductor is 

                      (4) 

This force is called the Lorentz’s force or electromagnetic 

force, hence the equation can be written as  
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Since this is a two dimensional flow the equation describing 

the motion are reduced to; 

( )
2 2
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3.1. Geometry of the Problem 

In this study we consider the steady, two dimensional 

laminar free convective flow of an electrically conducting 

viscous incompressible fluid between two infinite parallel 

porous plates with a transverse magnetic field applied as 

shown in the figure, x-axis is taken between the plates parallel 

to each and in the vertically upward direction and y-axis is 

taken normal to the plates. A magnetic field of

 

uniform 

strength is applied transversely to the direction of flow. Since 

the plates are infinite in length all variables are functions of y 

only. The assumption is that the velocity and magnetic 

distribution vectors are respectively of the form.

 [ ]0,, vuVV
��

=  

 

 

Figure 1.1. Geometry of the research problem 

3.2. Specific Approximations and Assumptions of this Study 

We take the origin at the lower edge of the plates, x-axis 

along the plates and the y-axis normal to the plates. We also 

make the following approximations and assumptions. 

1. The fluid is finitely conducting. This makes the viscous 

dissipation and joules heating negligible but induced 

magnetic field is not negligible. 

2. Body forces caused by gravity and magnetic field are 

important in this study 

3. There is no variation of flow and heat transfer quantities 

in the z-direction 
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4. Hall effects and polarization effects are negligible 

5. The density is constant except in its contribution to the 

buoyant forces 

6. The plates are electrically non-conducting 

7. The plates are infinite in length and hence all variable are 

functions of y 

8. The magnetic Reynolds number is small 

3.3. MHD Dimensional Parameters 

Fluid motion is governed by various forces. Inertia force 

(ability to resist change) always exists in all flow problems. 

By considering the ratio of inertia force to any other force 

governing the particular flow such as viscous force, 

gravitational force, pressure force or magnetic force we obtain 

some dimensionless parameters. The following dimensionless 

parameters will be very useful. 

3.4. The Magnetic Pressure Number (RH) 

This is the ratio of the magnetic pressure to the dynamic 

pressure. Hence 
2 2
0

2 2 2

1e H
H
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u u m
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= = = where 
0

e
HV H

µ
ρ

=  

and is the speed of Alfven’s wave and 
m

H

U
M

V
=  is the 

magnetic mach number. For 1<HR  the terms due to the 

magnetic field in the equation of motion may be neglected and 

the fluid motion may not be affected noticeably by the 

magnetic field. For 1HR ≥  the fluid flow will be affected 

greatly by the magnetic field. Also the flow pattern in MHD 

may be different when Mm is greater or less than unity, usually 

referred to a super-Alfven or sub-Alfven flow respectively. 

3.5. The Prandtl Number (Pr) 

This is the ratio of viscous force to the thermal force and is 

defined as
K

C
P

p

r

µ
= . It shows the relative importance of 

viscous dissipation to the thermal dissipation. 

3.6. The Magnetic Prandtl Number (Pm) 

This is the ratio of vorticity diffusion to magnetic diffusion 

and defined as σµ
ρ
µυσ

e

He

m
VR

R
P === . It is similar to Prandtl 

number (Pr). Magnetic Prandtl number (Pm) depends on the 

properties of the fluid and is a measure of the relative 

magnitude of the thickness of the boundary layer to that of the 

magnetic boundary layer. It is usually very small for most 

conducting fluids but has a significant influence in the 

engineering use of MHD and the experimental study of the 

flow problems of MHD in the laboratory 

3.7. The Magnetic Number (Rm) 

This is the ratio of magnetic force to the inertial forces. 

Hence
σρ

σ
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u

L
BR Hm =




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
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2

1

 If the magnetic Reynolds 

number is very large, we usually use RH to show the effect on 

the flow field by the magnetic field. For small Rσ we use Rm to 

show the electromagnetic effects on the flow field. 

3.8. The Grashoff Number (Gr) 

This is the ratio of buoyant forces to the viscous forces. It is 

defined a; 
2

3

υ
β TLg

G r

∆= . The larger the Grashoff number the 

stronger the convective current. If buoyant forces are 

neglected it is absent in that particular problem. For 0>rG , 

the plate is cooling and for 0<rG , the plate is getting heated. 

It is a measure of the thermal equivalence of kinetic energy of 

the flow to the imposed temperature difference and arises from 

the inclusion of the viscous dissipation term in the energy 

equation. Hence is absent when viscous dissipation is 

neglected 

3.9. Final Set of Governing Equations 

1. Continuity Equation (Mass conservation) 

Using the assumptions and approximations as discussed 

above, we can reduce the general equations of continuity, 

momentum and induction. The flow is assumed to be moving 

upwards with a constant velocity U. For a steady and 

incompressible fluid flow the equation of continuity reduces 

to; 
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∂
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                (6) 

But, all the variables depend on y. Therefore, 

0=
∂
∂=

∂
∂

z
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x

u
                     (7) 

Giving that  

0=
∂
∂
y

v
                       (8) 

On integrating this equation we have; 

( ) 0VyV −=                   (9) 

2. Momentum equation 

Considering the momentum equation with Lorentz force we 

have; 

( ) ( )BJFVPVV
t

V
b

�����

�

×++∇+−∇=∇+
∂
∂ ρρυρρ 2.           (10) 

Where B
�

is the magnetic flux and is given as HB eµ=
�

 

For a steady and incompressible fluid flow and from the 

reduced continuity equation 0=
∂
∂

x

u
the left hand side of this 

equation reduces to 

y

u
V

∂
∂−= 0                  (11) 

The pressure gradient in the x-direction results from the 
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change in the elevation of the fluid. Hence; 

( )ρρρρρρ −=+−=∇− ∞∞gPFb          (12) 

Using the volumetric coefficient of thermal expansion 

defined by 
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Also, the term BJ
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× is reduced as follows; 
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Now, making use of equations (11), (13), (14), and (21) the 

momentum equation becomes; 
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V x
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Making use of equations (9) and (17) the induction equation 

becomes; 
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Making use of equations (9) and (15) the energy equation 

becomes; 

2
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These equations are solved under the following boundary 

conditions 

dy −=  ( ) 0=− du ( ) 0=− dH x ( ) wTdT =−  

dy +=  ( ) 0=+ du ( ) 0=+ dH x ( ) ∞=+ TdT  

3.10. Method of Solution and Discussion of Results 

3.10.1. Non-Dimensionalization 

It is paramount convenient and more informative to work 

with dimensionless derivatives such that we can alter the 

boundary conditions for experimental purpose. In this case the 

following non-dimensional parameters are used to 

non-dimensionalize the final set of the governing equations. 
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Using the above non-dimensional parameters, the specific 

governing equations become; 
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Multiplying through by 
2
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L the equation becomes; 
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Dropping the dashes and re-writing this equation we have; 
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Magnetic induction equation becomes; 
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Dividing through by 

eL µ
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and dropping the dashes we 

have; 
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Hence we obtain; 
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Re-arranging 
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The non dimensionalzed energy equation becomes; 
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Applying the non-dimensional parameters, the energy 

equation becomes; 
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Rearranging the energy equation, it becomes; 
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Hence the three equations on non-dimensionalzed 

equations are; 

3.10.2. The Momentum Equation 
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3.10.3. The Magnetic Induction Equation 
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3.10.4. The Energy Equation 

002

2

=+
η
θ

η
θ

d

d
PV

d

d
r

              (37) 

The equations (35), (36) and (37) were solved using the 

following dimensionless boundary conditions; 

0)1( =−U 1)1( =−θ 0)1( =−xH  

0)1( =+U 0)1( =+θ 0)1( =+xH  

These equations are solved by the method of linear ordinary 

differential equations and the results plotted by use of a 

MATLAB programming application. 

4. Results and Discussions 

To analyze the effects of various flow parameters on 

velocity and induced magnetic field distributions we maintain 

all the values of other parameters constant and then vary the 

concerned parameter. The figures herein show the effects of 

those parameters. 

Fig 4.1 shows the temperature distribution for various 

values of the suction parameter when other parameters are 

held constant. From the graph as suction parameter increases 

the temperature of the fluid decreases. 

 

Fig 4.1. Temperature distributions for different values of suction parameter 

Fig 4.2 shows that as the Prandtl number increases 

temperature of the fluid decreases. In heat transfer problems 

Prandtl number controls the relative thickness of the 

momentum and thermal boundary layers. When Prandtl 

number is small as for liquid metals it means that the heat 

diffuses very quickly and the thermal boundary layer is much 

bigger than the velocity boundary layer. 

 

Fig 4.2. Temperature distributions for different values of Pr 

Fig 4.3 shows as the Grashoff number increases the velocity 

increases. Grashoff number gives the ratio of buoyancy forces 

to the viscous forces. When the Grashoff number increases 

velocity increases too showing the buoyancy forces are more 

significant in this flow 
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Fig 4.3. Velocity distributions for different values of Gr 

Fig 4.4 shows that as the magnetic field parameter increases 

the velocity also increases. This shows that the magnetic field 

strength cannot be neglected such study. 

 

Fig 4.4. Velocity distribution for different values of M 

Fig 4.5 shows that the as the Prandtl number decreases the 

velocity increases. Decrease in Prandtl number means the 

viscous forces are decreasing as the thermal forces increase 

hence increasing the velocity of the fluid particles. 

 

Fig 4.5. Velocity distribution for different values of Pr 

 

Fig 4.6. Velocity distributions for different values of Vo 

Fig 4.6 shows that as the suction velocity parameter 

increases the velocity decreases. This shows the suction 

velocity parameter cannot be neglected in this case since it has 

effects on the velocity distribution between the plates. 

Fig 4.7 shows that the amplitude of the wave increases as 

the Grashoff number increases. This shows increase in the 

strength of magnetic field. 

 

Fig 4.7. Induced magnetic field distributions for different values of Gr 

Fig 4.8 shows that as the magnetic field parameter increases 

the amplitude of the field lines also increases hence an 

increase in the strength of the magnetic field. 

 

Fig 4.8. Induced magnetic field distribution for different values of M 
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Fig 4.9 shows that a decrease in Prandtl number leads to the 

increase in the amplitude of the magnetic field lines. This 

shows an increase in the viscous forces in the fluid leads to an 

increase in the strength of the magnetic field. 

 

Fig 4.9. Induced magnetic field distribution for different values of Pr 

Fig 4.10 shows that as the suction parameter increases the 

amplitude of the magnetic field lines increases and shifts 

towards the cooler plate showing the induced magnetic field is 

stronger nearer the cooler plate where buoyancy forces are 

less. 

 

Fig 4.10. Induced magnetic field distribution for different values of Vo 

From Fig 4.7, Fig 4.8, Fig 4.9 and Fig 4.10 it is also found 

that the lines of force are in a direction opposite to the fluid 

flow that is with the gravitational force. 

5. Conclusions 

In this study the hydro magnetic steady flow between two 

parallel porous plates and heat transfer in the presence of a 

strong magnetic field applied transverse to the direction of 

flow is considered. The plates were at different temperatures 

and infinite in length and to diminish the natural free 

convection which would otherwise occur intensively on the 

vertical heated plate, the plates are porous so as to maintain the 

temperature a constant.  

It is concluded that increasing the Prandtl number and the 

suction parameter, decrease in fluid temperature is evident. 

Increasing the Grashoff number and the magnetic field 

parameter leads to increase in velocity whereas increase in the 

Prandtl number and suction velocity decrease the velocity. On 

the magnetic field parameter and the suction parameter when 

increased, this leads to the increase in the amplitude of the 

magnetic field lines. 

Nomenclature 

L  Characteristic length  

H
�

 Applied magnetic field  

0H  Intensity of applied magnetic field  

xH  Induced magnetic field in the x-direction  

B
�

 Magnetic flux field 

vC  Specific heat at constant volume 

pC  Specific heat at constant pressure 

rG  Grashoff number 

M  Magnetic field parameter 

rP  Prandtl number 

P  Pressure 

T  Absolute Temperature 

0V  Suction velocity 

J
�

 Current density 

E
�

 Electric field 

mP  Magnetic Prandtl number 

V
�

 Velocity vector 

θ  Non-dimensional temperature 

eµ  Magnetic permeability 

β  Coefficient of thermal expansion 
µ  Dynamic viscosity 
ρ  Density 
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