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Abstract: In this paper, the joint distribution functions for simultaneous velocity, temperature, concentration fields in turbulent 

flow under going a first order reaction in a rotating system in presence of dust particles have been studied. The various properties 

of the constructed joint distribution functions such as, reduction property, separation property, coincidence and symmetric 

properties have been discussed. Lastly, the transport equations for the joint distribution function of velocity, temperature and 

concentration in convective turbulent flow under going a first order reaction in a rotating system in presence of dust particles 

have been derived. 
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1. Introduction 

Nowadays, the two major and distinct areas of 

investigations in statistical mechanics are the kinetic theory of 

gases and the statistical theory of fluid mechanics. In the past, 

several researchers discussed the distribution functions in the 

statistical theory of turbulence. A distribution function may be 

specialized with respect to a particular set of dimensions. 

Distribution functions may also feature non-isotropic 

temperatures, in which each term in the exponent is divided by 

a different temperature. Particle distribution functions are 

often used in plasma physics to describe wave-particle 

interactions and velocity-space instabilities. Distribution 

functions are also used in fluid mechanics, statistical 

mechanics and nuclear physics. The mathematical analog of a 

distribution is a measure; the time evolution of a measure on a 

phase space is the topic of study in dynamical systems. 

Lundgren [1] derived the transport equation for the 

distribution of velocity in turbulent flow. Bigler [2] gave the 

hypothesis that in turbulent flames, the thermo chemical 

quantities can be related locally to few scalars and considered 

the probability density function of these scalars. Pope [3] 

derived the transport equation for the joint probability density 

function of velocity and scalars in turbulent flow. Kollman and 

Janica [4] derived the transport equation for the probability 

density function of a scalar in turbulent shear flow and 

considered a closure model based on gradient flux model. 

Kishore and Singh [5] have derived the transport equation for 

the joint distribution function of velocity, temperature and 

concentration in convective turbulent flow. The Coriolis force 

helps to clarify the relation between angular momentum and 

rotational kinetic energy and how an inertial force can have a 

significant affect on the movement of a body and still without 

doing any work. On a rotating earth the Coriolis force acts to 

change the direction of a moving body to the right in the 

Northern Hemisphere and to the left in the Southern 

Hemisphere. This deflection is not only instrumental in the 

large-scale atmospheric circulation, the development of 

storms, and the sea-breeze circulation Also a first-order 

reaction is defined a reaction that proceeds at a rate 

that depends linearly only on one reactant concentration. Later, 

some researchers extended their works including coriolis 

force. In the continuation, Sarker and Azad [6], Azad and 

Sarker [7] deliberated the decay of temperature fluctuations in 

homogeneous turbulence before the final period for the case of 

multi- point and multi- time in a rotating system and dust 

particles. Azad and Sarker [8] discussed the decay of 

temperature fluctuations in MHD turbulence before the final 
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period in a rotating system. Also, Azad et al. [9], Sarker et al. 

[10], Azad et al. [11], Aziz et al. [12], Azad et al. [13] 

discussed the First Order Reactant in MHD turbulence before 

the final period of decay for the case of multi-point multi-time 

and  multi -point single time considering rotating system and 

dust particles. Following the above researchers, Aziz et al. [14, 

15], Azad et al. [16] had further studied the statistical theory of 

certain distribution functions in MHD turbulent flow for 

velocity and concentration considering first order reaction 

with a rotating system and dust particles. Aziz et al. [17] 

extended their study for the first order reactant in MHD 

turbulence before the final period of decay for the case of 

multi-point and multi-time in a rotating system in presence of 

dust particle.  Sarker et al.[18] studied the hhomogeneous 

dusty fluid turbulence in a  first order reactant for the case of 

multi -point and multi -time prior to the final period of decay. 

Azad et al. [19] studied the transport equatoin for the joint 

distribution function of velocity, temperature and 

concentration in convective tubulent flow in presence of dust 

particles. Molla et al.[20] discussed the decay of temperature 

fluctuations in homogeneous turbulence before the final 

period in a rotating system. Bkar et al. [21], Bkar et al.[22, 23] 

premeditated the first-order reactant in homogeneous dusty 

fluid turbulence prior to the ultimate phase of decay for 

four-point correlation considering rotating system. Bkar et al. 

[24, 25] studied the decay of MHD turbulence before the final 

period for four- point correlation among dust particle and 

rotating system. Molla et al. [26] studied the transport 

equation for the joint distribution function of velocity, 

temperature and concentration in convective turbulent flow in 

presence of coriolis foce. But at this stage, one is met with the 

difficulty that the N-point distribution function depends upon 

the N+1-point distribution function and thus result is an 

unclosed system. This so-called closer problem is encountered 

in turbulence, Kinetic theory and other non-linear system. 

In this study, we have derived the transport equation for the 

joint distribution function of velocity, temperature and 

concentration in convective turbulent flow in presence of dust 

particles undergoing a first order reaction in a rotating system. 

Various properties of the distribution function for velocity, 

temperature, concentration in convective turbulent flow in 

presence of dust particles have been discussed. 

2. Basic Equations 

The equation of motion and field equations of temperature 

and concentration in a rotating system in presence of dust 

particles under going a first order reaction are shown by 
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where, ( )t,xuα = Component of turbulent velocity, ( )t,xθ  = 

Temperature fluctuation, c = Concentration of 

contaminants,ν  = Kinematic viscosity, ƒ=
ρ

KN = Dimension 

of frequency, N = Constant number of density of the dust 

particle, ρ  = Fluid density, D= Diffusive coefficient for 

contaminants, γ  =
p

T

c

k

ρ
 = Thermal diffusivity, pc =Specific 

heat at constant pressure, αv = Dust particle velocity, Tk  = 

Thermal conductivity, αβm∈  =Alternating tensor, 

mΩ =Angular velocity of a uniform rotation, R=Constant 

reaction rate. Here u and x are vector quantities in the whole 

process. 

3. Formulation of the Problem 

Throughout the study, it is considered that the turbulence 

and the concentration fields are homogeneous. The fluid 

velocity u, temperature θ and concentration c are randomly 

distributed functions of position and time and satisfy their 

field equations. Different members of ensemble are subjected 

to different initial conditions and the aim is to find out a way 

by which the ensemble averages can be determined at the 

initial time. The present aim is to construct a joint distribution 

functions, study its properties and derive an equation for the 

transport equation for the joint distribution function of 

velocity, temperature and concentration in convective 

turbulent flow in a rotating system in presence of dust particles 

for a first order reaction. 

4. Joint Distribution Function in 

Convective Turbulence and their 

Properties 

It is considered that the fluid velocity u, temperature θ, 

concentration c at each point of the flow field in turbulence. 

Lundgren [1], Sarker and Kishore [27, 28] studied the flow 

field on the basis of one variable character only (namely the 

fluid velocity u) but we can study it for two or more variable 

characters as well. For each Corresponding point of the flow 

field, three measurable variables represent by v, φ and ψ are 

taken and denoted the pairs of these variables at the points 
( ) ( ) ( )n21 x,x,x −−−−−−−−  as ( ) ( ) ( )( )111 ,,v ψφ , ( ) ( ) ( )( )222 ,,v ψφ  - 

- - - - - - -- -, ( ) ( ) ( )( )nnn ,,v ψφ  at a fixed instant of time. It is 

possible that the same pair may be occurring more than once; 

therefore, we simplify the problem by an assumption that the 

distribution is discrete (in the sense that no pairs occur more 

than once). Instead of considering discrete points in the flow 
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field if it is possible to consider the distribution of the 

variables v, φ and ψ over the entire flow field is continuous , 

statistically behavior of the fluid may be described by the 

distribution function ( )ψφ,,vF  which is normalized so that 

( ) ψφψφ dddv,,vF∫ 1= , 

where the integration ranges over all the possible values of 

v,φ  and ψ . 

It also shall be made use of the same normalization 

condition for the discrete distributions. The joint distribution 

functions of the above quantities can be defined in terms of 

Dirac delta-functions. 

The one-point joint distribution function ( ) ( ) ( ) ( )( )1111
1 ,, ψφvF  

is defined in such a way that 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1111111
1 ,, ψφψφ dddvvF  

is the probability that the fluid velocity, temperature and 

concentration field at a time t are in the element 
( )1dv  about 

( )1v , 
( )1φd  about 

( )1φ  and 
( )1ψd  about

( )1ψ  respectively 

and is given as 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )〉−−−〈= 1111111111
1 cvu,,vF ψδφθδδψφ  (4) 

where, δ is the Dirac delta-function defined as 

( ) { vuintpotheat1
otherwise0dvvu

==−∫δ
 

Two-point joint distribution function is given by 
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and three point distribution function is shown by 
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Similarly, an infinite numbers of multi-point joint 

distribution functions can be defined by ( )4,3,2,1
4F , ( )5,4,3,2,1

5F  

and so on. The joint distribution functions so constructed have 

the following properties. 

4.1. Reduction Properties 

Integration with respect to pair of variables at one-point 

lowers the order of distribution function by one. For example 
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and so on. 

Also the integration with respect to any one of the variables 

reduces the number of Delta-functions from the distribution 

function by one as 
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and 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )〉−−−−〈=∫ 2222111122,1
2 ccdvF ψδφθδψδφθδ  

and so on. 

4.2. Separation Properties 

The pairs of variables at the two points are statistically 

independent of each other if these points are far apart from 

each other in the flow field i.e., 
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4.3. Co-Incidence Property 

When two points coincide in the flow field, the components 

at these points should be obviously the same that is F 2
(1, 2)

 

must be zero. Thus 

( ) ( ) ( ) ( ) ( ) ( )121212 and,vv ψψφφ ===  

but also F2
(1, 2) 

must have the property 

( ) ( ) ( ) ( ) ( )1
1

2222,1
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and hence it follows that 
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Similarly 
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4.4. Symmetric Conditions 

( ) ( )n,r,s,2,1
n

n,s,r,2,1
n FF ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ =  

4.4.1. Continuity Equation in Terms of Distribution 

Functions 

An infinite number of continuity equations can be derived 

for the convective turbulent flow and the continuity equations 

can be easily expressed in terms of distribution functions and 

are obtained directly by div u = 0.  
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and similarly 
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which are the first order continuity equations in which only 

one point distribution function is involved. For second-order 

continuity equations, if we multiply the continuity equation by 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )222222 cvu ψδφθδδ −−−  

and if we take the ensemble average, we obtain 
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The Nth-order continuity equations are 
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The continuity equations are symmetric in their arguments 

i.e. 
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Since, the divergence property is an important property and 

it is easily verified by the use of the property of distribution 

function as 
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and all the properties of the distribution function obtained in 

section (4) can also be easily verified. 

4.4.2. Equations for the Evolution of Joint Distribution 

Functions 

This in fact, is done by making use of the definitions of the 

constructed distribution functions, the transport equation for 

( )txvF ,,,, ψφ  is obtained from the definition of F and from 

the transport equations (1), (2), (3). Differentiating equation (4) 

with respect to t we get, 
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Using equation (1), (2) and (3) in equation (15) yields 
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ψ
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ψ
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φ
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ψ
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α
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α
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β
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βββ

β
α

β
α
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α
α

     (16) 

Various terms in the above equation can be simplified as 

that they may be expressed in terms of one point and two point 

distribution functions. The 2
nd

, 3
rd

 and 4
th

 terms on the left 

hand side of the above equation are simplified in a similar 

fashion and take the forms as follows; 

( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )
( ) ( )( )
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
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∂
∂

−
∂

∂−−=

−
∂

∂
∂
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1
v

u
vu

x
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u
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1

1
11

1
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1
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α
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β
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α
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∵

 (17) 

( ) ( )( ) ( ) ( )( ) ( )
( )
( ) ( )

( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
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( ) ( )( )11

1
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11

1
11111

x
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x
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φ
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β
α

β
α

−
∂
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−
∂

∂
∂
∂−−−

 (18) 

( ) ( )( ) ( ) ( )( ) ( )
( )
( ) ( )

( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )( )11
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c
x
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x

c
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ψ

φθδδ

β
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β
α

−
∂
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−
∂

∂
∂
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 (19) 

By adding the equations (17), (18) and (19), it follows  
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( ) ( )( ) ( ) ( )( ) ( )
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1

11111
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1
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1
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−
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1
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1
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1
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F
v

x

α
β

α
β
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β
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∂

∂
=

∂

 (20) 

[ ]functionondistributiofpropertiestheApplying  

The 5
th

, 6
th

, 7
th

 and 8
th

 terms on left hand side of equation 

(16) can be reduced as, 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )( )
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2

2
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
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        (22) 
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 (23) 

and 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
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α
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α
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∂
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∂
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∂

∂−=

−
∂
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 (24) 

Similarly, 9
th

, 10
th

 and 11
th

 terms of left hand side of (16) 

can be simplified as follows 
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( ) ( )( ) ( ) ( )( ) ( ) ( )
( )

( )
( ) ( )( )

( ) ( ) ( ) ( ) ( )
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2 1
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u v c
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and 
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( ) ( )( ) ( )
1 1 1 1 1 1 1 (1) (1)

11 1
u v Rc c R Fδ δ θ ϕ δ ψ ψ

ψ ψ
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∂ ∂
            (27) 

Substituting the results (20)-(27) in equation (16), the transport equation for one point distribution function ( ) ( )ψφ,,
1

1 vF  in 

turbulent flow in a rotating system is obtained as 
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Similarly, a transport equation for two-point distribution function ( )2,1
2F in turbulent flow in presence of dust particles can be 

derived by differentiating equation (5) with respect to t and using equation (1),(2),(3) and simplifying in the same manner yields 
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Continuing in this way, the equations for evolution of 
( ) ( )4,3,2,1

4
3,2,1

3 F,F and so on can be derived. Logically, it is 

possible to have an equation for every ( )egerintanisnFn
 but 

the system of equations so obtained is not closed. It seems that 

certain approximations will be required for closing the system. 

5. Results and Discussion 

If the reaction rate R=0, the transport equation for one point 

joint distribution function ( )( )ψφ,,vF 1
1

 in turbulent flow 

undergoing a first order reaction, equation (28) becomes 
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which was obtained earlier by Molla [33] 

If the system is non rotating and the fluid is clean then 0=Ωm
& 0ƒ =  and the transport equation (28) for one point join 

distribution function ( ) ( )ψφ,,vF
1

1
 in turbulent flow becomes 
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this was obtained earlier by Kishore and Singh [5].  

6. Conclusion 

For closing the transport equations for the joint distribution 

functions, some approximations are required. If the particles 

are ionized i.e., in plasma turbulence case, it can be provided 

closure form easily by decomposing ( ) ( ) ( )2
1

1
1

2,1
2 FFasF . But such 

type of approximations can be possible if there is no 

interaction or correlation between two particles. If ( )2,1
2F is 

decomposed as 

( ) ( ) ( ) ( )2
1

1
1

2,1
2 1 FFF ε+=            (32) 

( ) ( ) ( ) ( ) ( )3
1

2
1

1
1

23,2,1
3 1 FFFF ε+=            (33) 

where ε is the correlation coefficient between the particles. If 

there is no correlation between the particles, ε will be zero and 

joint distribution function can be decomposed in usual way. 
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Here, we are considering such type of approximation only to 

provide closed form of the equation i.e., to approximate 

two-point equation as one point equation. The transport 

equation for the joint distribution functions of velocity, 

temperature, and concentration have been shown here to 

provide an advantageous basis for modeling the turbulent 

flows in presence of dust particles and a rotating system due to 

a first order reaction. 
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