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Abstract: Malaria is an infectious disease caused by the Plasmodium parasite and transmitted between humans through bites 

of female Anopheles mosquitoes. A mathematical model describes the dynamics of malaria and human population 

compartments in terms of mathematical equations and these equations represent the relations between relevant properties of the 

compartments. The aim of the study is to understand the important parameters in the transmission and spread of endemic 

malaria disease, and try to find appropriate solutions and strategies for its prevention and control by applying mathematical 

modelling. The malaria model is developed based on basic mathematical modelling techniques leading to a system of ordinary 

differential equations (ODEs). Qualitative analysis of the model applies dimensional analysis, scaling, and perturbation 

techniques in addition to stability theory for ODE systems. We also derive the equilibrium points of the model and investigate 

their stability. Our results show that if the reproduction number, R0, is less than 1, the disease-free equilibrium point is stable, 

so that the disease dies out. If R0 is larger than 1, then the disease-free equilibrium is unstable. In that case, the endemic state 

has a unique equilibrium, re-invasion is always possible, and the disease persists within the human population. Numerical 

simulations have been carried out applying the numerical software Matlab. These simulations show the behavior of the 

populations in time and the stability of disease-free and endemic equilibrium points. 
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1. Introduction 

Malaria is an infectious disease caused by the Plasmodium 

parasite and transmitted between humans through bites of 

female Anopheles mosquitoes. It remains one of the most 

prevalent and lethal human infections throughout the world. 

An estimated 40% of the world's population lives in malaria 

endemic areas. Most cases and deaths occur in sub-Saharan 

Africa. It causes an estimated 300 to 500 million cases and 

1.5 to 2.7 million deaths each year worldwide. Africa shares 

80% of the cases and 90% of deaths [7]. 

The environmental conditions in the tropics are the prime 

factor for malaria being endemic. The moderate-to-warm 

temperatures, high humidity and water bodies allow 

mosquito and parasites to reproduce. The epidemiological 

patterns of malaria usually vary with season because of its 

dependence on transmission from mosquitoes. The infection 

can lead to serious complications affecting the brain, lungs, 

kidneys and other organs. Clinical symptoms such as fever, 

pain, chills and sweats may develop a few days after infected 

mosquito bites [18]. Malaria has also gained prominence in 

recent times, since climate change or global warming is 

predicted to have unexpected effects on its incidence. Both 

increase and fluctuations in temperature affect the vector and 

parasite life cycles. This can cause reduced prevalence of the 

disease in some areas, while it may increase in others. Thus, 

climate change can affect the malaria prevalence pattern of 

migration from lower latitudes to regions where the human 

population has not developed immunity to the disease. 

Malaria control is challenging due to many factors. The 

complexity of the disease control process, the cost of the 

control program and resistance of the parasite to anti-malarial 

drugs, and vectors to insecticides, are some of the challenges. 

There is a variation in disease patterns and transmission 

dynamics from place to place, by season and according to 

varying environmental circumstances. The approaches in the 

planning and implementation of prevention and control 

activities also vary based on local realities. 

Malaria cases are exacerbated by the high levels of HIV 

infection that weaken the immune system rendering people 

with HIV more susceptible to contracting the disease [2]. It 

enhances mortality in advanced HIV patients by a factor of 
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about 25% in non-stable malaria areas [13]. Since malaria 

increases morbidity and mortality, it continues to inflict 

major public health and socioeconomic burdens in 

developing countries. It is clear that poverty, while not a 

disease in itself, is a contributing factor not only for malaria, 

but also for almost all diseases that face mankind. Because of 

poverty, communities may have poor sanitation and poor 

drainage, and these two factors allow the mosquitoes to breed 

in ever greater numbers. Poverty also means that people will 

not be able to afford the simple protection of a mosquito net 

or even screens for their windows. A favorite hiding place for 

the Anopheles is in a dark moist room. With an increased 

number of vectors living with you comes an increased chance 

of being bitten by an infected mosquito, which will in turn 

infect you with the parasite [17]. 

Malaria has for many years been considered as a global 

issue, and many epidemiologists and other scientists invest 

their effort in learning the dynamics of malaria and to control 

its transmission. From interactions with those scientists, 

mathematicians have developed a significant and effective 

tool, namely mathematical models of malaria, giving an 

insight into the interaction between the host and vector 

population, the dynamics of malaria, how to control malaria 

transmission, and eventually how to eradicate it. 

Mathematical modelling of malaria has flourished since 

the days of Ronald Ross in 1911 [19], who was awarded the 

Nobel prize for his work. He developed a simple SIS-model 

(Susceptible - Infected - Susceptible) with the assumption 

that at any time, the total population can be divided into 

distinct human compartments. He used a mathematical model 

to show that bringing a mosquito population below a certain 

threshold was sufficient to eliminate malaria. This threshold 

naturally depended on biological factors such as the biting 

rate and vectorial capacity. For the purpose of estimating 

infection and recovery rates, Macdonald [4] used a model in 

which he assumed the amount of infective material to which 

a population is exposed remains unchanged. His model 

shows that reducing the number of mosquitoes is an 

inefficient control strategy that would have little effect on the 

epidemiology of malaria in areas of strong transmission. The 

Ross-Macdonald mathematical model involves an interaction 

between infected human hosts and infected mosquito vectors. 

Bailey [16] and Aron [9, 10] models take into account that 

acquired immunity to malaria depends on exposure (i.e. that 

immunity is boosted by additional infections). Tumwiine et 

al. [12] used SIS and SI models in the human hosts and 

mosquito vectors for the study of malaria epidemics that last 

for a short period in which birth and immunity to the disease 

were ignored. They observed that the system was in 

equilibrium only at the point of extinction that was neither 

stable nor unstable. However, some important results were 

revealed numerically. 

Some recent papers have also included environmental 

effects [11, 5, 6], and the spread of resistance to drugs [14, 

8]. Recently, Ngwa and Shu [15] and Ngwa [3] proposed an 

ODE compartmental model for the spread of malaria. Addo 

[1], Tuwiine, Mugisha and Luboobi [18] developed a 

compartment model for the spread of malaria with 

susceptible-infected-recovered-susceptible (SIRS) pattern for 

human and susceptible-infected (SI) pattern for mosquitoes. 

Yang, Wei, and Li [20] proposed SIR for the human and SI 

for the vector compartment model. Addo [1], Tuwiine, 

Mugisha and Luboobi [18] and Yang, Wei, and Li [20], 

define the reproduction number, R0 and show the existence 

and stability of the disease-free equilibrium and an endemic 

equilibrium. From the model in [20], we can see that the 

number of births for human and mosquito are independent of 

the total human and mosquito populations. However, this 

may not be a reasonable formulation of the model. Clearly, 

the number of births for humans should depend on the total 

human population and the number of births for mosquitoes 

should depend on the total mosquito population. Thus, our 

model is a modification of the model in [20] by introducing 

the total population dependent births for human and mosquito 

populations, and an increased death because of the illness. 

The main objective of the study is to understand the 

important parameters in the transmission and spread of 

malaria disease, try to develop effective solutions and 

strategies for its prevention and control, and eventually how 

to eradicate it. 

2. Formulation of the Model 

The endemic model of malaria transmission considered in 

this study is SIR in human population and SI in mosquito 

population. The model is formulated for the spread of malaria 

in the human and mosquito population with the total 

population size at time t* denoted by Nh(t*) and Nv(t*), 

respectively. These are further compartmentalized into 

epidemiological classes as susceptible Sh(t*), infected Ih(t*) , 

and recovered Rh(t*) human population, and susceptible 

Sv(t*) and infected Iv(t*) vector population. The vector 

component of the model does not include an immune class as 

mosquitoes never recover from the infection, that is, their 

infectious period ends with their death due to their relatively 

short life-cycle. Thus, the immune class in the mosquito 

population is negligible and death occurs equally in all 

groups. The model can be used for diseases that persist in a 

population for a long period of time with vital dynamics. The 

basic model incorporates a set of assumptions. Both the 

human and vector total population sizes are assumed to be 

constant. The recovered individuals in human population 

develop permanent immunity. The populations in 

compartments of both humans and vectors are non-negative, 

and so are all the parameters involved in the model (See 

Table 1). All newborns are susceptible to infection, and the 

development of malaria starts when the infectious female 

mosquito bites the human host. The vectors do not die from 

the infection or are otherwise harmed. 

Individuals move from one class to the other as their status 

with respect to the disease evolves. Humans enter the 

susceptible class through birth rate �	h and leave from the 

susceptible class through death rate �	h, and infective rate 

βhIh. All human individuals, whatever their status, are subject 
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to a natural death, which occurs at a rate αh , and disease 

induced death rate ρh. 

Table 1. State variables, parameters, descriptions and their dimensions of 

malaria model. 

Sh: Number of susceptible humans at time t*. 

Ih:  Number of infected humans at time t*. 

Rh: Number of recovered humans at time t*. 

Sv: Number of susceptible mosquitoes at time t*. 

Iv: Number of infected mosquitoes at time t*. 

Nh: The total human population at time t*. 

Nv: The total mosquito population at time t*. 

μh: Per capita birth rate of human population. Dimension: Time -1 

αh: Per capita natural death rate for humans. Dimension: Time -1. 

ρh: Per capita disease-induced death rate for humans. Dimension: Time -1. 

βh: The human contact rate. Dimension: Mosquitoes-1  Time -1 

γh: Per capita recovery rate of humans. Time -1 

μv: Per capita birth rate of  mosquitoes. Dimension: Time -1 

αv: Per capita natural death rate of mosquitoes. Dimension: Time -1. 

βv: The mosquito contact rate. Dimension: Humans-1	Time -1. 

 
Figure 1. The compartmental model for malaria transmission. 

By considering the above assumptions, notations of 

variables and parameters, the ordinary differential equations 

which describe the dynamics of malaria in the human and 

mosquito populations become 
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∗
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∗
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∗
� ������ � ���� ,                                     (2.5) 

with initial conditions   

���0� � �� , ��	�0� � �� , ���0� � �� ,          (2.6) 

���0� � �� , ���0� � �� .                       (2.7) 

The total population sizes Nh and Nv can be determined by 

�� # �� # �� � ��                           (2.8) 

�� # �� � ��                              (2.9) 

In this model, μhNh and μvNv are denoted the total birth 

rates of human and mosquito, respectively. The terms αhSh,, 

αhIh and αhRh refer to the total number of removed 

susceptible, infected and recovered humans per unit of time. 

The terms αvSv and αvIv are the number of removed 

susceptible and infected mosquito populations per unit of 

time. The term ρhIh is the number of removed human 

population because of the disease per unit of time, whereas 

γhIh is the total recovered human population per unit of time. 

The term βhShIv denotes the rate at which the human hosts Sh 

gets infected by the mosquito vector Iv, and βvSvIh refers to 

the rate at which the susceptible mosquitoes Sv are infected 

by the human hosts Ih at a time, t*. Thus, both these terms are 

important parts of the model describing the interaction 

between the two populations. 

3. Analysis of the Model 

In this section we are going to analyze the basic endemic 

model in eqs. (2.1)-(2.5). This involves scaling, perturbation 

analysis and numerical simulations. The equation for the total 

human population implied by the model is 


$�



∗
� ����� � ��� � %��� .               (3.1) 

Thus, the general solution, where we for simplicity, 

assume Ih to be constant, is 

���&
∗� �

'�

(�)*�
�� # +,�(�)*��


∗

.          (3.2) 

The equation has one equilibrium point 

�� �
'�

(�)*�
��                            (3.3) 

which is negative and hence, unphysical if μh<αh, and 

unstable if μh>αh. This makes it impossible to introduce an 

arbitrary time variation in Nh. The only way to maintain 

constant populations is therefore to remove Rh and Sv , that is,  

eqs. (2.3) and (2.4) in model. The populations Rh and Sv are 

then defined simply as  

�� � �� � �� � �� 	                       (3.4) 

																	�� � �� � ��                                  (3.5) 

3.1. Scaling of the Model 

In order to simplify analysis of the malaria model in eqs. 

(2.1)-(2.5), we work with fractional quantities instead of 

actual populations by scaling the population of each class by 

the total species population. The time scales of each class are 

defined by the birth rates of the human and vector 

populations. It is obvious that the birth rate of the mosquitoes 

is very fast compared to the birth rate of humans, and this 

means  
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�� ≪ ��                                       (3.6) 

We introduce 

.� �
/

(�
, .� =

/

(0
		                             (3.7) 

for the two different time scales for the human and mosquito 

populations, respectively. From the above discussion, we 

have 

.� ≪ .�                                        (3.8) 

For the dependent parameters, the total fixed size of the 

populations provides reasonable scales. We also use the long 

time scale Th=1/μh for the time. Thus, �� = ��1�, �� = ��2� ,                           (3.9) �� = ��3�,                                           (3.10) �� = ��1� ,                                            (3.11) �� = ��2� , &∗ = .�&.                             (3.12) 

The resulting scaled versions of eqs. (2.1)-(2.5) then 

becomes 


4�

 = 1 − �1�2� − �1� ,                           (3.13) 


6�

 = 	�1�2� − �� + ��2�,                        (3.14) 

7 
60

 = 8�1 − 2��2� − �2� ,                           (3.15) 

where the dimensionless parameters are defined  

� = 9�$0(� , � = *�(� ,			� = '�:;�(� ,	                 (3.16) 

� = *0(0 ,				7 = (�(0 ≪ 1,			8 = 90$�(0 .                   (3.17) 

Suitable initial conditions are 1�	�0� = 1� , 2��0� = 2� , 2��0� = 2� . 

The feasible region, i.e. where the model makes biological 

sense, now becomes Ω = =�1�, 2�, 2�� ∈ �:? : 0 < 1B ≤ 1, 0 < 1� + 2� ≤ 1,0 ≤ 2�< 1,0 ≤ 2� < 1D 
We denote the boundary and the interior of Ω by ∂Ω and 

Ω*, respectively. 

3.2. Determination of Basic Reproduction Number 

 We shall use the next generation operator approach as 

described by Diekmann, Heesterbeek and Metz [23] to define 

the basic reproduction number, R0, as the ’expected number 

of secondary cases per primary case in a virgin population’.  

In the scaled version of ordinary differential equations 

from the five states, the only disease states are ih and iv. The 

disease states F and the transfer states V are given by  

( ) h

v

i
V

i

α γ
δ

 +
=  
 

,                               (3.18) 

,
h v

h h v

s i
F

i i i

β
ϑ ϑ
 

=  − 
                              (3.19) 

respectively. 

The differentials of E and F with respect to 2� and 2� at the 

disease free equilibrium, G = �1/�, 0,0� (see below), give  

IE�G � = + = J0 9*8 0K ,                        (3.20) 

and 

IF�G � = L = 	M� + � 00 �N.                    (3.21) 

The matrix +L)/  is defined as the next generation matrix, 

and the basic reproduction number,  R0 , is given by � = %�+L)/�.                         (3.22) 

Thus, 

� = O 9P*Q�*:;� .                          (3.23) 

From this, we can quantify that higher values of β and ϑ 

can allow the outbreak of the disease. Conversely, for small 

values the disease dies out. The reproduction number is a 

powerful parameter which measures the existence and 

stability of the disease in the human and mosquito 

population. If βϑ < αδ�α+γ�,	 i.e. R0 < 1, the disease-free 

equilibrium is the only equilibrium in ∂Ω, and then the 

disease dies out. If βϑ > αδ�α+γ�,	 i.e. R0 > 1, the unique 

endemic equilibrium exists in Ω
*
, and the disease persists 

with the population. 

3.3. Existence and Stability of Disease Free Equilibrium 

The disease-free equilibrium, E0 ∈ ∂Ω, is the steady state 

of the model in the absence of infection, where E0 =�1/	�, 0, 0�. This is obtained from the system (3.13)-(3.15) by 

setting the right hand side equal to 0, and assuming that ih* = 

0 and iv*= 0, where ih* and iv* refer to the equilibrium points. 

The local stability of E0 is then determined from the signs of 

the eigenvalues of the Jacobian matrix. At the disease-free 

equilibrium, E0, the Jacobian matrix is given by 

	W�G � = X−� 0 )9*0 −�� + �� 9*0 8 −�Y              (3.24) 

The characteristic equation of this matrix is given by det	[	W�G � − λ I] = 0, where I is a square identity matrix of 

order 3. The equation thus becomes – �λ + ���λb + cλ + d� = 0,	           (3.25) 
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where c = � + � + �,                           (3.26) d = ��� + ���1 − � �.                     (3.27) 

The roots of the characteristic equation are the eigenvalues of 

the Jacobian matrix. It is clear that the characteristic equation 

has the negative eigenvalue λ/ = −� . All the other 

eigenvalues are determined from the quadratic equation 

λ2 + bλ+c = 0,                                  (3.28) 

where c = � + � + � > 0,                               (3.29) d = ��� + ���1 − � � > 0,                       (3.30) 

if R0 < 1. Thus, according to Routh-Hurwitz criterion [1] for 

a polynomial equation of degree 2 (or derived directly), the 

quadratic equation has only roots (eigenvalues) with negative 

real parts, and the disease-free equilibrium, E0, is locally 

asymptotically stable. Otherwise, if R0  > 1, then c < 0 and it 

is clear that the quadratic equation has some positive roots. 

This leads us to conclude that the disease-free equilibrium 

becomes unstable. 

3.4. Existence and Stability of Endemic Equilibrium 

An endemic equilibrium is a steady state of the model with 

infected humans and vectors, and given by G/ =�1�∗, 	2�∗, 2�∗�  in Ω*. For the existence of an endemic 

equilibrium E1, its coordinates should satisfy the conditions 1�∗ > 0, 2�∗ > 0, 2�∗ > 0. Now, we can find the values of the 

stationary points sh*, ih*, and iv* from eqs. (3.13)-(3.15) as 

follows: 

							1�∗ = P:Q�*:;�P�*:9� ,				                           (3.31)  

						2�∗ = 9P)*Q�*:;�P�*:;��*:9�,                           (3.32) 

				2�∗ = 9P)*Q�*:;�9�P:Q�*:;��.                            (3.33) 

We apply the linearization technique in the system (3.3)-

(3.15) to determine the stability of the equilibrium. At the 

steady states of the model, the Jacobian matrix is given by 

W�G/� = e−β2�∗ − � 0 −�1�∗�2�∗ −�� + �� �1�∗0 8 − 82�∗ −82�∗ − �f .        (3.34) 

Thus, the characteristic polynomial of the Jacobian matrix 

may be written as ��2�∗ + � + λ��λb + g/λ + gb� = 0.    (3.35) 

From this, it is obvious that the characteristic equation has 

one eigenvalue h/ = −��2�∗ + ��  with negative real part. 

The other eigenvalues		hb and h? have negative real parts if g/ > 0 and gb > 0 by the Routh-Hurwitz criterion [1]. Some 

derivations reveal that 

g/ = �9:*��*:;:Q�:*Q��i)/��9:*� ,	                   (3.36) 

gb = *Q�*:;���i)/��*:9� 	.                      (3.37) 

Thus, both a1 and a2 are greater than zero when R0 >1. 

Hence, all roots of the characteristic polynomial have 

negative real parts. From this we can conclude that the 

endemic equilibrium solution is stable, and it exhibits 

persistence of malaria transmission in the population. 

3.5. Perturbation Analysis 

Perturbation theory consists of a set of mathematical 

methods for obtaining approximate solutions to equations 

which are simplified, but solvable, versions of the full 

equations. In the dynamic systems context, so-called singular 

perturbation behavior often occurs if the system exhibits 

highly different time scales, e.g. derived from very different 

birthrates. Singular perturbation is discussed in the classic 

book [21]. A singular perturbation case study of the famous 

Michaelis-Menten enzyme reaction, different to the standard 

one in [21], is given in [22]. Singular perturbation is often 

identified by a small parameter in front of the highest 

derivative. 

For the scaled model defined in Eq. (3.13)-(3.15), the 

small perturbation parameter ε is the ratio between the birth 

rates for humans and mosquitos. Setting ε = 0 results in a 

differential/algebraic system unable to match the initial 

behavior of the full system. This initial behavior requires a 

modified scaling, in what is called the inner region, contrary 

to the large scale outer region. In a final step, the inner and 

outer solutions are merged to a uniform approximation 

virtually identical to the full solution for small ε. For a more 

complete discussion including higher order approximations, 

we refer to [21]. 

3.5.1. Outer Solution 

The system is a singular perturbation case where the small 

parameter ε is in front of the highest derivative of Eq. 3.15. 

However, the leading order perturbation analysis is simple. 

As the equations are written, the long (outer) time scale, Th 

=1/µh, has been used. Setting ε	 =	 0	 in Eqs. (3.13) – (3.15), 

the leading order outer system becomes 


4�i

 = 1 − �1� 2� − �1� ,                     (3.38) 


6�i

 = �1� 2� − �� + ��2� ,                    (3.39) 

0 = 8�1 − 2� �2� − �2� .                          (3.40) 

Thus, we observe a functional dependency between the 

two infected populations: 

2� = P6�iP6�i:Q.                                 (3.41) 

Substituting Eq. (3.41) into Eq. (3.38) and (3.39), we are 

left with the human population equations: 
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4�i

 = 1 − �8 6�i4�iP6�i:Q − �1� ,                     (3.42) 


6�i

 = 	�8 6�i4�iP6�i:Q − �� + ��2� .                  (3.43) 

It appears that one has to solve the outer system 

numerically, as is the case with almost all equations 

originating from practical models. 

3.5.2. Inner Solution 

In this case, the inner solution turns out to be rather trivial. 

This is the initial solution for the time span of the order of .� = 1/��, which is the fast time scale. Mathematically, this 

amounts to introduce τ	 = t/ε and transform the scaled version 

of the ODEs (3.13) – (3.15) into 


��i
m = 0,			 
��i
m = 0,	                       (3.44) 


�0i
m = 8�1 − �� ��� − ���                    (3.45) 

The solutions for �� �n� and �� �n�	are trivial and given by 

the initial conditions: �� �n� = 1��0�,                           (3.46) �� �n� = 2��0�.                            (3.47) 

Thus, for the human variables, the inner solutions remain 

constant. However, the mosquito equation needs to be solved 

along with the given initial condition, that is,  

�� �n� = P6�� �P6�� �:Q − P6�� �P6�� �:Q ,)�P6�� �:Q�m.     (3.48) 

3.5.3. Matching Condition 

We shall assume that the inner and outer expansions are 

both valid for intermediate times, ε ≪ t ≪ 1. This requires 

that the expansions agree asymptotically when τ→∞ and t→0 

as ε→0. Hence, the matching conditions become: 

limm→s �� �n� � lim
→ 1� �&� � 1��0�,      (3.49) 

limm→s �� �n� � lim
→ 2� �&� � 2��0�,        (3.50) 

limm→s �� �n� � lim
→ 2� �&� �
P6�� �

P6�� �:Q
.     (3.51) 

3.5.4. Uniform Solution 

We have constructed leading order inner and outer 

asymptotic solutions in two different regions. Sometimes it is 

convenient to have a single uniform solution. Here this may 

be obtained from the inner and outer solutions as follows: 

�� t �&� = 1� �&� + �� M
uN − 1��0�,           (3.52) 

�� t �&� = 2� �&� + �� M
uN − 2��0�,              (3.53) 

�� t �&� = P6�� �P6�� �:Q − P6�� �P6�� �:Q ,)�P6�� �:Q�
/u 	.    (3.54) 

Thus, introducing the limit values above, �� t �&� = 1� �&�, �� t �&� = 2� �&�                     (3.55) 

�� t �&� = P6�� �P6�� �:Q − P6�� �P6�� �:Q ,vwxy��i�z{|}~ .           (3.56) 

This shows that the uniform solutions of the human 

equations are the outer solutions, whereas for the mosquito it 

is the inner solution. As expected, the limit when t → ∞ is 

identical to the equilibrium limit for the full system.  

3.6. Numerical Results and Discussions 

Our numerical simulations examine the effect of different 

combinations of treatment and preventions on the 

transmission of the disease using Matlab. The main strategy 

to be considered for controlling malaria is the reduction in 

the number of infected humans through a program preventive 

measure. In our model, the interaction coefficient, β, between 

susceptible humans and infective vectors, and the interaction 

coefficient, ϑ, between susceptible vectors and infective 

humans, are more sensitive parameters. 

In Fig. 2, the fractions of the populations, sh, ih, and iv are 

plotted vs. time. With increasing time, the susceptible 

fraction of human population increases and the fractions of 

infected human and vector populations decrease. The 

reproduction number is below one and the disease-free 

equilibrium point, E0 = (1, 0, 0) is stable. The time dependent 

fraction of the populations, sh,  ih, and iv are illustrated in Fig. 

3. In this figure, some changes of parameter values, γ = 40, β 

= 0.4, ϑ = 110, are used. With increasing time, the fraction of 

susceptible humans increases and the fraction of infected 

humans decreases very fast. However, the fraction of infected 

vectors increases very fast as the time decreases and 

conversely decreases when the time increases. The endemic 

equilibrium point, E1 = (0.98, 0.000475, 0.0497), is stable. 

In Fig. 4, the fraction of infected human population is 

plotted against time for various values of β, the constant 

interaction coefficient between susceptible humans and 

infective mosquitoes. That an increase in β increases the 

fraction of infective humans (ih) can be observed from the 

figure. The threshold number, R0, is larger than 1 for values β	
equal to 15 and 20, and this shows that there is a malaria 

invasion into humans. Fig. 5 demonstrates that irrespective of 

the initial conditions, the disease will persist in human 

population as the reproduction number lies above 1. This 

agrees with the stability of the endemic equilibrium point. 

Figure 6 shows the proportions of infected human and 

mosquito population approaching zero. For this plot, the 

reproduction number lies below 1, and the disease-free 

equilibrium point is the only equilibrium. It also remains 

stable. In general, we could observe that increasing the 

contact rates, human to mosquito and mosquito to human, 

leads to the reproduction number R0 being	 larger	 than	 1,	 
and results an increasing malaria prevalence. However, 

controlling these parameters with different control strategies 

allow the reproduction number to become less than 1, and 

then the disease dies out. 
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Figure 2. Numerical simulation of fraction of population with respect to time for parameter values of ε=0.1, β=0.01, γ=0.6, δ=1, α=1, ϑ=0.3, and R0=0.034. 

The initial fractions of the population are:  sh0 =0.5,ih0 = 0.5, and iv0=0.1. 

 
Figure 3. Numerical simulation of fraction of population with respect to time for the parameter values ε=0.1, β=0.4, γ=40, δ=1, α=1, ϑ= 110, and 

R0=1.0359. The initial fractions of the population are sh0 =0.5, ih0 = 0.5, and  iv0=0.1. 
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Figure 4. Variation in infective human population ih with time for various values of the interaction coefficient, β, when the transmission coefficient for humans 

and the other parameters are kept constant. 

 
Figure 5. Numerical simulation of fraction of population with respect to time for parameter values ε=0.001, β=15, γ=0.4, δ=1, α=1, ϑ= 110, and R0=34.33 

The initial fractions of the population sh0 =0.5, ih0 = 0.5, and iv0=0.1. 
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Figure 6. Numerical simulation of fractions of the population with respect to time for parameter values ε=0.001, β=0.01, γ=0.6, δ=1, α=1, ϑ= 120, and 

R0=0.866. The initial fractions of the population are sh0 =0.5, ih0 = 0.5, and iv0=0.1. 

4. Control Strategies and Discussions 

Intervention measures, to prevent or reduce the 

transmission of malaria, are currently being used with a 

degree of success in some parts of the world. Some of the 

methods used include: the situation of irrigated lands far 

from residential areas and cities, house spraying with residual 

insecticides, and most recently the use of mosquito bed nets. 

These methods operate by reducing the contact rates (and 

hence exposure to infection) between the mosquitoes and 

humans. Other measures employ the use of anti-malarial 

drugs which have the effect of reducing the infectivity of the 

human host. Of the numerous anti-malarial activities and 

research efforts supported by Roll Back Malaria Global 

Partnership (RBM) and others, we shall describe some of the 

control strategies, and their effects on the parameters of our 

model. 

Indoor Residual Spraying (IRS): Spraying reduces 

mosquito longevity (and perhaps also fertility). This strategy 

is also likely to kill mosquitoes that rest indoors after feeding 

so it would increase the chances of killing infected 

mosquitoes. Indoor residual spraying increases the mosquito 

death rate, αv, and reduces the number of mosquitoes. 

Increasing αv can be effective in reducing the malaria burden.  

Insecticide-Treated bed Nets (ITN): RBM has been 

promoting the use of insecticide treated bed nets in many 

countries and regions of Africa in order to reduce the 

transmission of malaria; and has succeeded in doing so in 

many regions. Preventing mosquito-human contacts should 

reduce the number of bites per mosquito. This would 

translate into the mosquitoes biting other animals or not 

biting at all. Reducing the number of blood meals that each 

female mosquito gets, would also lower the mosquito birth 

rate, μv, and perhaps reduce the number of mosquitoes. This 

seems to be the most effective control strategy in reducing 

disease transmission. 

Intermittent Prophylactic Treatment for Infants (IPTI): As 

our model shows no distinction between infants, adults and 

pregnant women, we can only model this strategy as a 

general reduction in the probability of transmission of 

infection from an infectious mosquito to a susceptible 

human, βh. The treatment also probably causes a slight 

increase in the human recovery rate, γh, as it may result in 

some infectious people beginning treatment before becoming 

aware of their infection. 

Therefore, all these control strategies are an effective way 

of controlling most of the parameters which are involved in 

our model. In determining how best to tackle malaria, and 

reduce malaria mortality, it is necessary to know the relative 

importance of the different factors responsible for its 

transmission and prevalence.  The fraction of infectious 

humans, ih, is especially important because it represents the 

people that suffer the most and is directly related to the total 

number of malarial deaths. The values of the reproduction 

number and the endemic equilibrium points from different 

values of our parameter tell us how crucial each parameter is 

to disease transmission and prevalence. An increasing 

mosquito to human disease transmission rate, βh, the 

mosquito birth rate, μv, and the human to mosquito disease 

transmission rate, βv, lead to an increase in malaria deaths. 

We would like to classify parameters of our model into 

different categories depending on whether they are important 

in disease transmission and malaria outbreaks, and whether 

we have control of the parameter through the intervention 

strategies. In the first category, we include parameters that 
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are important for disease transmission and spread, that we 

have control of the human to mosquito contact rate, βv, and 

mosquito to human contact rate, βh. The human to mosquito 

contact rate, βh, is controlled by gametocytocidal drugs. The 

mosquito to human contact rate, βv, is controlled by INT and 

IPTI control strategy. The second category is an important 

human demographic parameter, the natural birth rate of the 

human population, μh, which one cannot easily control. An 

increasing per capita disease-induced death rate, ρh, reduces 

the equilibrium human population, Nh, and increases the 

disease prevalence. 

5. Conclusions 

In this study, we have derived and analyzed a 

mathematical model in order to better understand the 

transmission and spread of the malaria disease, and tried to 

find an effective strategy for its prevention and control. The 

model turned out to be inconsistent, and we have modified it 

by eliminating the recovery human and susceptible mosquito 

population from the system. Mathematically, we model 

malaria as a 5-dimensional system of ordinary differential 

equations. We first defined the domain where the model is 

epidemiologically and mathematically well-posed. Our 

analysis yielded a generalization of the formula for the basic 

reproduction ratio for malaria. We defined a reproductive 

number, R0, that is epidemiologically accurate. It provides the 

expected number of new infections from one infectious 

individual over the duration of the infectious period given 

that all other members of the population are susceptible.  

We showed the existence and stabilities of equilibrium 

points of the model. In the model, we demonstrated that the 

disease-free equilibrium point E0, is stable if R0<1, so that 

the disease dies out. If R0>1, disease-free equilibrium is 

unstable while the endemic state emerges as a unique 

equilibrium. Reinvasion is always possible and the disease 

never dies out. We used singular perturbation techniques to 

analyze our model with an argument that mosquito dynamics 

occur on a much faster time scale compared to the human 

dynamics. Therefore, we considered two time scales (fast and 

slow time scale). Numerical simulation of the model shows 

the dynamic properties of human and vector compartments 

versus time and the stabilities of the equilibrium points. One 

can observe from the simulations that the infected human 

population increases with larger values of the contact rates 

from mosquito to human population and human to mosquito 

population. Clearly, all the numerical simulations have 

shown that the disease-free and endemic equilibrium points 

are stable when the reproduction number lies below 1, and 

above 1, respectively. We notice that in order to reduce the 

basic reproduction number below 1, intervention strategies 

need to be focused on treatment and reduction of the contact 

between mosquito vector and human host. Thus, there is a 

need for effective drugs, treated bed nets, and insecticides 

that would reduce the mosquito population and keep the 

human population stable. 
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