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Abstract: In this article, we construct the traveling wave solutions involving parameters of nonlinear evolutions equations 

via the Benney-Luke equation using the exp(-Φ(ξ))-expansion method. The traveling wave solutions are expressed in terms of 

hyperbolic, trigonometric and rational functions. When the parameters are taken special values, the solitary waves are derived 

from the traveling waves. The proposed method is direct, concise elementary and effective and can be used for many other 

nonlinear evolutions equations. 

Keywords: Exp(-Φ(ξ))-Expansion Method, Benney-Luke Equation, Nonlinear Evolution Equations,  

Traveling Wave Solution 

 

1. Introduction 

The nonlinear evolution equations (NLEEs) that are 

studied in theoretical physics, especially in the context of 

wave phenomena leads to various forms of wave solutions. 

They are solitary waves, shock wave, cnoidal waves, snoidal 

waves and various other types. These waves appear in 

various scenarios in daily real life situations. For example, 

solitons appear in the propagation of pulse through optical 

fibers while shock waves appear in the supersonic jet flow. 

Another example is where cnoidal waves appear in shallow 

water waves although an extremely rare phenomena. 

In recent years, several direct methods for finding the 

explicit traveling wave solutions to nonlinear evolution 

equations (NLEEs) have been proposed such as the extended 

tanh-method [1], the extended tanh-function method[2], the 

variational iteration method[3], Exp-function method[4], the 

complex hyperbolic-function method[5], the extended F-

expansion method[6], the generalized Riccati equation 

rational expansion method[7], the Sub-ODE method[8], the 

(G'/G)-Expansion Method[9,10,11, 12, 13,14], the ansatz 

method[15],  Outline of the Tanh-Coth Method [16], Cauchy 

Problem [17,18,19] and so on. 

The aim of this paper was to apply the exp(-Φ(ξ))-

expansion method [20,21] to construct the new exact 

traveling wave solutions for nonlinear evolution equations in 

mathematical physics via the Benney-Luke equation.The 

organization of the paper is as follows: In section 2, a 

description of the main steps of the exp(-Φ(ξ))-expansion 

method for finding the traveling wave solutions of nonlinear 

equations are given. In section 3, we apply this method to 

the nonlinear Benney-Luke equation; in section 4 we discuss 

the results and discussion of the traveling wave solutions. 

Finally concluding remarks are presented in section 5. 

2. Description of the exp(-Φ(ξ))-

Expansion Method 

In this section, we will describe the algorithm of the exp(-

Φ(ξ))-expansion method for finding traveling wave solutions 

of nonlinear evolution equations. Suppose that a non linear 

equation in two independent variables x and t is given by,
 

( , , , , , , ) 0,
t x tt xx xt

P u u u u u u =KKKK
 

x R∈ , 0t > (2.1) 

where ( ) ( , )u u x tξ = is an unknown function, P is a 

polynomial of u(x ,t) and its partial derivatives in which the 

highest order derivatives and non linear terms are involved.  
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Step 1.Combining the independent variables x and t into 

one variables x V tξ = ±  , we suppose that  

( , ) ( )u x t u ξ=
 

x V tξ = ±
                  

(2.2) 

where { }0Rω ∈ −  is the velocity of relative wave mode. 

The traveling wave transformation equation (2.2) permits 

us to reduce equation (2.1) to the following ordinary 

differential equation (ODE) 

( , , , ) 0F u u u′ ′′ =KKK
                        

(2.3) 

Where F  is a polynomial in ( )u ξ  and its derivatives, 

whereas 
2

2
( ) , ( )

d u d u
u u

d d
ξ ξ

ξ ξ
′ ′′= = , and so on.  

Step 2. Suppose the traveling wave solution of Eq. (2.3) 

can be expressed as follows: 

( )
0

( ) exp( ( ))
N

i

i

i

u Aξ ξ
=

= −Φ∑                       (2.4) 

Where i
A (0 )i N≤ ≤  are constants to be determined, 

such that 0
N

A ≠ , and ( )ξΦ = Φ satisfies the following ODE,  

( ) exp( ( )) exp( ( ))ξ ξ µ ξ λ′Φ = −Φ + Φ + .          (2.5) 

Eq. (2.5) gives the following solutions: 

Family 1: When
2 4 0, 0,λ µ µ− > ≠  

2

2 ( 4 )
( 4 ) tanh ( )

2
( ) ln

2

k
λ µλ µ ξ λ

ξ
µ

  −
  − − + −

   Φ =  
 
 
 
 

(2.6) 

2

2 ( 4 )
( 4 ) coth ( )

2
( ) ln

2

k
λ µλ µ ξ λ

ξ
µ

  −
  − − + −

   Φ =  
 
 
 
 

 (2.7) 

Family 2: When
2 4 0, 0,λ µ µ− < ≠  

2

2 (4 )
(4 ) tan ( )

2
( ) ln

2

k
µ λµ λ ξ λ

ξ
µ

  −
  − + −

   Φ =  
 
 
 
 

(2.8) 

2

2 (4 )
(4 ) cot ( )

2
( ) ln

2

k
µ λµ λ ξ λ

ξ
µ

  −
  − + −

   Φ =  
 
 
 
 

(2.9) 

Family 3: When
2 4 0, 0, 0λ µ µ λ− > = ≠ , 

( ) ln
exp( ( )) 1k

λξ
λ ξ

 
Φ = −  + −                

(2.10) 

Family 4: When
2 4 0, 0, 0λ µ µ λ− = ≠ ≠ , 

2

2( ( ) 2)
( ) ln

( ))

k

k

λ ξξ
λ ξ

 + +Φ = − +                

(2.11) 

Family 5: When
2 4 0, 0, 0λ µ µ λ− = = = , 

( )( ) ln kξ ξΦ = +
                             

(2.12) 

where k is an arbitrary constant and , , , ,
N

A V λ µLL  are 

constants to be determined later, 0
N

A ≠ , the positive integer 

N can be determined by considering the homogeneous 

balance between the highest order derivatives and the 

nonlinear terms appearing in Eq. (2.3). 

Step 3. We substitute Eq. (2.4) into (2.3) and then we 

account the function exp(-Φ(ξ)). As a result of this 

substitution, we get a polynomial of exp(-Φ(ξ)). We equate 

all the coefficients of same power of exp(-Φ(ξ)) are equal to 

zero. This procedure yields a system of algebraic equations 

whichever can be solved to find 1 2, , , , ,A A V λ µLL . 

Substituting the values of 1 2, , , , ,A A V λ µLL  into Eq. (2.4) 

along with general solutions of Eq. (2.5) completes the 

determination of the solution of Eq. (2.1). 

3. Application 

In this section, we will make use of the exp(-Φ(ξ))-

expansion method to find the exact solitary wave solutions 

to the Benney-Luke equation. Let us consider the Benney-

Luke equation in the form 

2 0
tt xx xxxx xxtt t xx x xt

u u u u u u u uα β− + − + + =
         

(3.1) 

Where α and β  are positive number such that

1
3

α β σ− = − is a Sobolev type equation and studied for a 

very long time. The dimensionless parameter σ is named the 

Bond number, which captures the effects of surface tension 

and gravity force and is a formally valid approximation for 

describing two-way water wave propagation in presence of 

surface tension [22]. 

Using the traveling wave variable x V tξ = − , Eq. (3.1) 

converts into the following ODE for ( , ) ( )u x t u ξ= ,  

2 2 (4)( 1) ( ) 3 0V u V u Vu uα β′′ ′ ′′− + − − =
            

(3.2) 

Eq. (3.2) is integrable, therefore integrating with respect 

to ξ once and choosing the integration constant to zero, we 

obtain 

2 2 3 23
( 1) ( ) 0

2
V u V u Vuα β′ ′− + − − =              (3.3) 
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Where, primes denote the differentiation with regard to ξ . 

By balancing the highest order term 2
u′  and nonlinear term 

of the highest order 3
u , we obtain 1N = . Therefore, the 

exp(-Φ(ξ))-expansion method admits the solution of the 

Eq.(3.3) in the form 

0 1 1
( ) (exp( ( ))), 0u A A Aξ ϕ ξ= + − ≠             (3.4) 

By substituting the Eq.(2.5) and (3.4) into the Eq.(3.3) and 

equating the coefficient of (exp( ( )))iξ−Φ , are equal to zero, 

yielding a set of algebraic equations as follows: 

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1

3
2 2 0

2
AV A V A VA V A A Aµ α µ λ β µ µ β µ λ µ α µ− − + − + + − =

                              
(3.5) 

3 2 3 2 2 2

1 1 1 1 1 1 18 3 8 0A A A V A VA V A AVα µ λ λ α λ β λ µ λ β µ λ λ− + − + − + − =
                                     

(3.6) 

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

3
8 7 7 3 8 0

2
A AV V A A VA A VA V Aα µ β λ α λ µ λ β µ− − + − − + − + =

                

(3.7) 

 

2 2

1 1 13 12 12 0VA V A Aλ β λ α λ− + − =
             

(3.8) 

2 2

1 1 1

3
6 6 0

2
A VA V Aα β− − + =

                        
(3.9) 

Solving the algebraic Eq. (3.5) to (3.9), we obtain a set of 

solution as follows: 

2 2

0 02

1
2 2

(1 4 ) (1 4 )
, ,

1 4

4 ( )

(1 4 ) (1 4 )

V A A

A

β µ β λ α µ α λ
β µ β λ

α β
β µ β λ α µ α λ

+ − + −
= ± =

+ − 


− = ±
+ − + − 

(3.10) 

Where λ  and µ are arbitrary constants. 

By substituting Eq.(3.10)into Eq.(3.4), we have 

0
2 2

4( )
( ) (exp( ( )))

(1 4 ) (1 4 )
u A

α βξ ϕ ξ
β µ β λ α µ α λ

−= ± −
+ − + −

(3.11) 

Where 

2 2

2

(1 4 ) (1 4 )

1 4
x t

β µ β λ α µ α λ
ξ

β µ β λ
+ − + −

= ±
+ −

 

Now substituting Eq. (2.6) to Eq. (2.12) into Eq. (3.11) 

respectively, the traveling wave solutions of the Eq.(3.1) are 

obtained as follows: 

Family 1: When
2 4 0, 0,λ µ µ− > ≠  

1,2 0
2

2

( , )
4

4 tanh ( ( ))
2

Q
u x t A

k
λ µλ µ ξ λ

= ±
 −
 − − + −
 
 

, 

3,4 0
2

2

( , )
4

4 coth ( ( ))
2

Q
u x t A

k
λ µλ µ ξ λ

= ±
 −
 − − + −
 
 

, 

Where 

2 2

2

2 2

(1 4 ) (1 4 )
,

1 4

8( )

(1 4 ) (1 4 )

x t

Q

β µ β λ α µ α λ
ξ

β µ β λ
α β µ

β µ β λ α µ α λ

+ − + −
= ±

+ −
−=

+ − + −

 

Family 2: When
2 4 0, 0,λ µ µ− < ≠  

5,6 0
2

2

( , )
4

4 tan ( ( ))
2

Q
u x t A

k
µ λµ λ ξ λ

= ±
 −
 − + −
 
 

 

7,8 0
2

2

( , )
4

4 cot ( ( ))
2

Q
u x t A

k
µ λµ λ ξ λ

= ±
 −
 − + −
 
 

 

Where  

2 2

2

2 2

(1 4 ) (1 4 )
,

1 4

8( )

(1 4 ) (1 4 )

x t

Q

β µ β λ α µ α λ
ξ

β µ β λ
α β µ

β µ β λ α µ α λ

+ − + −
= ±

+ −
−=

+ − + −

, 

Family 3: When
2 4 0, 0, 0λ µ µ λ− > = ≠ , 

9,10 0( , ) ( exp ( ( )) 1)u x t A Q kλ ξ= ± + − , 

Where 

2 2

2

2 2

(1 ) (1 )
,

1

4( )

(1 ) (1 )

x t

Q

β λ α λ
ξ

β λ
α β λ

β λ α λ

− −
= ±

−
−=

− −

, 

Family 4: When
2 4 0, 0, 0λ µ µ λ− = ≠ ≠ , 
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2

11,12 0

2( ) ( )
( , )

( ) 2

k
u x t A

k

α β λ ξ
λ ξ
− += ±

+ +
, 

Where x tξ = ± , 

Family 5:  When
2 4 0, 0, 0λ µ µ λ− = = = , 

13,14 0

4( )
( , )u x t A

k

α β
ξ

−= ±
+

, 

Where x tξ = ± , 

4. Results and Discussion 

In this section, we describe the physical explanation and 

graphical representation of the solutions of the Benney-Luke 

equation. 

4.1. Explanation 

The solution ( , )u x t to the solitary wave Eq.(3.1) play an 

important role for describing different types of wave 

propagation of pulses through optical fibers while shock 

waves appear in the supersonic jet flow. The Eq.(3.1) is 

given not only more new multiple explicit solutions but also 

many types of exact traveling wave solutions. The exact 

traveling wave solutions are obtained from the explicit 

solutions by choosing the particular value of the physical 

parameters. So we can appropriate values of the parameters 

to obtained exact solutions. There are various types of 

traveling wave solutions that are particular interest in 

solitary wave theory. In this research work, some important 

traveling wave solutions are described and presented 

graphically. 

The solution 1
( , )u x t is presented the kink type 

solitonsolution. Kink solitons are rise from one asymptotic 

state at ξ → −∞  to another asymptotic state at ξ → + ∞ . 

These solitons are referred to as topological solitons. The 

Fig. 1 has been shown the shape of the solution 1
( , )u x t  for 

0
6, 3, 8, 1.5, 1, 0.5A kα β λ µ= = = = = =  within the interval

3 , 3x t− ≤ ≤ . The solution 5
( , )u x t  is presented the periodic 

soliton solution for the various values of the physical 

parameters. The Fig. 2 has been shown the shape of the 

solution 5
( , )u x t  for 0

7, 1, 1, 1, 0Aα β λ µ= = = − = = 2k =
within the interval 10 , 10x t− ≤ ≤ . For the values of 

0
5, 2, 1, 0, 3, 0A kα β λ µ= = = = = =  within the interval

10 , 10x t− ≤ ≤ , the solution 9
( , )u x t  is presented the soliton 

profile which is shows in Fig. 3. The solution 11
( , )u x t  is 

also presented the singular kink type soliton solution which 

is shows in Fig. 4 for 0
8, 3, 1, 0.8, 0k Aα β λ= = = = =

within the interval 10 , 10x t− ≤ ≤ . Finally, Fig. 5 shows an 

exact singular kink type solitary wave profile corresponding 

to 13
( , )u x t  with fixed parameters 0

7, 3, 2, 2k Aα β= = = =
within the interval 10 , 10x t− ≤ ≤ . 

 

4.2. Graphical Representation 

In this sub section, the graphical representations of the 

solutions are given below in the figures (Fig. 1-5) with the 

aid of mathematical software Maple 13. 

 

Fig. 1. Kink type soliton profile, Shape of 1
( , )u x t  when 

6, 3, 8, 1.5α β λ µ= = = =
0

1, 0.5A k= = with 3 , 3x t− ≤ ≤  

 

Fig. 2. Periodic type soliton profile, Shape of 5
( , )u x t  when 

7, 1, 1, 1α β λ µ= = = − =
0

0, 2A k= = with 10 , 10x t− ≤ ≤ . 

 

Fig. 3. soliton profile, Shape of 9
( , )u x t  when 

5, 2, 1, 0α β λ µ= = = =
0

3, 0A k= = with 10 , 10x t− ≤ ≤ . 
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Fig. 4. Singular kink  typesoliton profile, Shape of 11
( , )u x t  when 

8, 3, 1α β λ= = =
0

0, 0.8A k= = with 10 , 10x t− ≤ ≤ . 

 

Fig. 5. Singular kink  typesoliton profile, Shape of 13
( , )u x t  when 

0
7, 3, 2, 2A kα β= = = = with 10 , 10x t− ≤ ≤ . 

5. Conclusion 

In this paper, the exp(-Φ(ξ))-expansion method has been 

successfully applied to construct new traveling wave 

solutions for the Benney-Luke equation. This study shows 

that the exp(-Φ(ξ))-expansion method is quite efficient and 

practically well suited for use in finding exact solutions for 

the problems considered here. Being concise and effective, 

the exp(-Φ(ξ))-expansion method can also be used to many 

other nonlinear equations. 
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