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Abstract: In this paper we speak about angular momentum, we have shown that the separation of the total angular 

momentum of the electromagnetic field into its orbital and spin parts. It is dictated by quantum mechanics of photons 

reproduces. Therefore, the results are derived from the proprieties of Fourier and Maxwell fields by Darwin, with the 

correspondence results that derived heuristically by many authors. 
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1. Introduction 

Darwin’s theory of evolution is the widely held notion that 

all life is related and has descended from a common ancestor. 

Darwin’s general theory presumes the development of life 

from non-life and stresses a purely naturalistic. That is 

complex creatures evolve from more simplistic ancestors 

naturally over time. In this work, we will review the work 

done by Iwo Bialynicki-Birula1 and Zofia Bialynicka-

Birula2 �1�, to show that the Darwin separation of the total 

angular momentum for an arbitrary electromagnetic field into 

two parts follows from the photon picture of the 

electromagnetic field with some remarks. 

2. Generator of the Poincar´e Group 

The Poincar´e group is the group of Minkowski spacetime 

isometries. It is a ten dimensional noncompact Lie group. 

The abelian group of translations is a normal subgroup, while 

the Lorentz group is also a subgroup, the stabilizer of the 

origin. The Poincar´e group itself is the minimal subgroup of 

the affine group which includes all translations and Lorentz 

translations. More precisely, it is a semi direct product of the 

translations and Lorentz group. 

In a relativistic theory, we must first of all define the 

operators representing ten generators of the Poincar´e group, 

that must obey the following commutation relations. 

���, �	�
 = 0, ���, 
	�
 = 0, ���, �	� 
 = −�ℎ��	�           (1) 

��	�, ���
 = 0, �
	�, 
��
 = �ℎ����
�� , � �	� , ��� 
 == −�ℎ������
��    (2) 

�
	�, ���
 = �ℎ������� , �
	�, ��� 
 = �ℎ������� , ��	� , ���
 = �ℎ�����   (3) 

where, P�  is the generators of translation in space 

(momentum), ��  is the translation in time (energy), 
� is the 

rotation (angular momentum), ��  are the Lorentz boosts 

(momentum of energy), and � is speed of light. 

The representation of the generators of the Lorentz group 

for massless particles was given by Lomont and Mose [2]. 

We will review here a modified version of these generators 

for photons �3�, �4�, �6� that exhibits its geometrical meaning. 

The momentum operator, by definition, acts on the 

wavefunctions in momentum representation as a 

multiplication by hk . The complete list of generators also 

contains the operator of angular momentum and the boost 

operator �1� 
�� = ℎ$�                                             (4) 

�� = ℎ%                                                (5) 


� = �ℎ& × % + ℎ)*+�                           (6) 

�� = �ℎ$�&                                          (7) 

Where +� = �
|�| , the photon helicity operator )* has the 

eigenvalues ± 1 

& = ∇� − �)* ∝ /%0, ∇�= 1
1�                     (8) 

stands for the covariant derivative on the light cone. These 

operators act on the two-component photon wavefunctions 
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2/%0 = 3 24/�0
25/%06                                (9) 

and satisfy the commutation relations (1), (2) and (3) 

appropriate for the Poincar´e group. The components of the 

photon wavefunction correspond to two eigenvalues of )*, 

)* 3 24/�0
25/%06 = 3 24/�0

−25/%06                          (10) 

here L and R are used to denote the eigenfunctions of the 

helicity operator since they correspond to left-handed and 

right-handed circular polarization. 

The properties of the covariant derivative are obtained 

from the commutation relations for the angular momentum 

and they read �1�, 
�&�,&�
 = �)*���7

89
|�|:                               (11) 

These conditions determine the vector ;/%0  up to a gauge 

transformation 

;/%0 →  ;/%0 + ∇�=/%0                            (12) 

Which is connected to the change of the phase of the 

wavefunction, in analogy to the theory of charged particles 

coupled to an electromagnetic field. In order to solve the 

problem of the total angular momentum separation into two 

parts for the classical electromagnetic field, we shall employ 

the correspondence between the fundamental physical 

quantities (energy, momentum, and angular momentum) in 

photon quantum mechanics and in Maxwell theory. In the 

quantum mechanics of photons these quantities are 

represented by the operators /40– /70 . The generators 

/40, /50 ,(6) and (7) are Hermitian with respect to the 

following Lorentz-invariant scalar product �1�, 

A2|BC = D EF�
GHI 2J/%0 ∙ B/%0 = D EF�

GHI
�24∗/%0B4/%0 + 25∗/%0B5/%0�                                         (13) 

3. Maxwell’s Theory 

Maxwell’s equations can be cast into covariant form. The 

Einstein expression of it, is that, the general laws of nature 

are to be expressed by equations which holds for all systems 

of coordinates that are covariant with respect to any 

substitution whatever generally covariant. 

Maxwell’s theory of electromagnetism is alongside with 

Einstein’s theory of gravitation, on the most classical field 

theories. The revolutionary work of Maxwell, puplished in 

1865 took the individual and seemingly unconnected 

phenomena of electricity and magnetism and brought them 

into a Coherent and unified theory [16], [18]. This unified 

theory of electricity and magnetism depicts the behavior of 

two fields. Maxwell discussed his idea in terms of model in 

which vacuum was like an elastic solid, he tried to explain 

the meaning of his new equations in term of mathematical 

model. There was much reluctance to accept his theory, first 

because of the model, and second because there was at first 

no experimental justification. But today, we understand 

better that what counts are the equations themselves and not 

the model used to get them. If we chose units in which 

MN =∈N= � = 1,  then the covariant form of Maxwell’s 

equations take the form[7], [8]:  

∇ ∙ P = Q                                        (14) 

∇ × R − 1S
1T = 
                                   (15) 

∇ ∙ R = 0                                         (16) 

∇ × P + 1U
1T = 0                                    (17) 

Where P is the electric, and R is magnetic field, Q is the 

charge density, and 
 is the current density. Taking the 

divergence of equation /140 and substituting equation /150 

into resulting equation. Now, we can obtain the continuity 

equation �22�, �23� 
∇ × 
 + 1W

1T = 0                               (18) 

Now we have used the fact that for any vector H and scalar 

ψ the following identities hold: 

∇ ∙ /∇ × H0 = 0                             (19) 

∇ × /∇Z0 = 0                                (20) 

Also, since equation (16) always holds, this means that R 

must be curl of a vector function, namely the vector potential 

A, 

B = ∇ × A                                     (21) 

Substituting equation (21) into equation (17) we obtain 

∇ × ]P + 1^
1T_ = 0                         (22) 

Which means that the quantity with vanishing curl in 

equation (22) can be written as the gradient of scalar function, 

namely the scalar potential `. 

P = −∇∅ − bc
bd                              (23) 

The minus sign attached to the gradient is for technical 

convenience. These quantities, in Maxwell theory are given 

as space integrals of corresponding densities built from 

quadratic expressions in field vectors. The convenient tool in 

this construction is a complex vector F, that was called the 

Riemann–Silberstein (RS) vector in [1], [5], [9]. and given by 

e = f∈g
� /P + ��R0                           (24) 

The Maxwell equations expressed in terms of F are: 

hTe/i, j0 = −��∇ × e/i, j0, ∇ ∙  e/i, j0 = 0,          (25) 
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Now all of the field energy H, the field momentum P, the 

field angular momentum J, and the field moment of energy K 

can be constructed from the energy–momentum tensor of the 

electromagnetic field, and they expressed in terms of the RS 

vector as follows [1], 

� = k
� D lmi n∈N P� + U:

ogp = D lmie∗ ∙ e            (26) 

� = D lm i�∈N P × R� = k
�� D lmie∗ × e             (27) 


 = D lm ii × �∈N P/i0 × R/i0� = k
�� D lmii × /e∗ × e0 (28) 

� = k
� D lmii n∈N P� + U:

ogp = D lm ii/e∗ ∙ e0        (29) 

The above quantities, like their counterparts in photon 

quantum mechanics /40 , /50 ,  /60 , and  /70  serve as the 

generators of Poincar´e transformations of the 

electromagnetic field. They have analogous algebraic 

properties of the Poincar´e group (1), (2) and (3), with 

quantum commutators replaced by Poisson brackets,  �q,r�
�G  

→ �s, t�. 
The solutions of Maxwell equations in vacuum can be 

decomposed into plane waves with positive and negative 

frequencies. This decomposition gives the following Fourier 

representation of e/i, j0: 

D e/i, j0 = √v D EF�
/�w0F :⁄ y/%0�24/%0yz�HIT{��∙| + 25∗/%0y�HITz��∙|�                                       (30) 

Where the complex polarization vector  

y/%0 = k
√� �}k/%0 + �}�/%0�                    (31) 

has the following properties: 

�% × y/%0 = −�$�  y/%0                           (32) 

y/%0 ∙  y/%0 = 0                                        (33) 

y∗/%0 ∙  y/%0 = 1                                       (34) 

y∗/%0 ×  y/%0 = �+�                                  (35) 

y∗/%0 ∙ y/−%0 = 0                                     (36) 

y/%0 ×  y/%0 = 0                                        (37) 

y�∗/%0y�/%0 = k
� ]��� + ����7

�~
|�|_                   (38) 

4. Fourier Theory 

The fact that momentum can be expressed as p = kℏ 

allows us to define a “momentum space” wavefunction that 

is related to the position space wavefunction via the Fourier 

transform. A function f/x0 and its Fourier transform. F/k0 are 

related via the relations: 

f/x0 = k
√�� D F/k0e���dk�

z�                          (39) 

F/k0 = k
√�� D f/x0ez���dk�

z�                        (40) 

These relations can be expressed in terms of p  with a 

position space wavefunction ψ/x0  and momentum space 

wavefunction Φ/p0 as: 

ψ/x0 = k
√��ℏ D ∅/p0e��� ℏ⁄ dp�

z�                      (41) 

∅/p0 = k
√��ℏ D ψ/x0ez��� ℏ⁄ dx�

z�                     (42) 

Parseval’s theorem tells us that�6�: 
D |f/x0|�dx�

z� = D |F/k0|�dk�
z�                       (43) 

These relations tell us that Φ/p0, like ψ/x0, represents a 

probability density. The function Φ/p0 gives us information 

about the probability of finding momentum between a ≤ p ≤
b: 

P/a ≤ p ≤ b0 = D |∅/p0|�dp�
�                       (44) 

Parseval’s theorem tells us that if the wavefunction ψ/x0 is 

normalized, then the momentum space wavefunction Φ/p0 is 

also normalized 

D |ψ/x0|�dx�
z� = 1 ⟹ D |∅/p0|�dp = 1�

z�             (45) 

It is a fact of Fourier theory and wave mechanics that the 

spatial extension of the wave described by ψ/x0  and the 

extension of wavelength described by the Fourier transform 

Φ/p0 cannot be made arbitrarily small. 

5. Spin of the Electron 

We shall now see that, unlike the Schrodinger equation 

where the spin of the electron had to be introduced in an ad 

hoc manner, the Dirac equation naturally leads to the spin of 

the electron. To see this let us evaluate the commutator 

bracket of the orbital angular momentum operator }� = î × � 

with the Dirac Hamiltonian. Thus for the commutator of }�k 

we have 

�}�k, ��
 = �/)*��̂m − )*m�̂�0, ��/;k�̂k + ;��̂� + ;m�̂m0 + ������ = �ℏ�/;��̂m − ;m�̂�0                         (46) 

where we used the position-momentum commutation 

relations to evaluate various terms in this equation. In a 

similar manner, we obtain 

�}��, ��
 =  �ℏ�/;m�̂k − ;k�̂m0                  (47) 

�L�m, H�
 =  iℏc/αkp*� − α�p*k0                  (48) 
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Thus the angular momentum operator }� does not commute 

with the Dirac Hamiltonian. But the total angular momentum, 

being a conserved quantity for a free particle, must commute 

with the free Hamiltonian. This means the orbital angular 

momentum cannot be the total angular momentum. The 

electron must possess an intrinsic angular momentum, which 

when added to its orbital angular momentum, gives the total 

angular momentum, which is the conserved quantity. 

To identify this intrinsic angular momentum, let us 

introduce a matrix operator ∑ ≡ /∑ ,k ∑ , ∑ ,m� 0 defined by 

∑ =� 3�� 0
0 ��6                                      (49) 

Where σ�'s are Pauli spin matrices. Then the commutation 

¡¢ ,
k

H�£ = �p*� ¡¢ ,
k

α�£ + �p*m ¡¢ ,
k

αm£ 

where we have used the condition that ∑ ,�  commutes with α� 

and �. Expressing ∑ ,k  αk and αm in terms of Pauli matrices 

α� , using the anti-commutation relations for α� , and the 

relation ���ℓ = ��¥  where %, ℓ, � are a cyclic permutation 

of (1, 2, 3) we find 

�/ℏ 2⁄ 0 ∑ ,k H�
 = �ℏ�/p*�αm − p*mα�0         (50) 

Adding this to Eq. (122), we find 

�L�k, H�
 + �/ℏ 2⁄ 0 ∑ ,k H�
 = �/L�k + /ℏ 2⁄ 0 ∑ 0,k H�
 = 0.   (51) 

Similarly, by considering the commutators of ∑ ,� and ∑ ,m  

with H�, we can show that 

�/L�� + /ℏ 2⁄ 0 ∑ 0,� H�
 = 0.                       (52) 

�/L�m + /ℏ 2⁄ 0 ∑ 0,m H�
 = 0.                       (53) 

By adding Eqs. (51) through (53) we find that the 

observable }� + ℏ
� ∑ ≡ 
� commutes with the Hamiltonian and, 

therefore, is a constant of motion. The observable 
� may be 

called the total angular momentum of the electron. Thus 

preserving the conservation of angular momentum Dirac 

equation requires the electron to possess an intrinsic angular 

momentum. This instrinsic angular momentum is referred to 

as the spin of the electron. The operator 
ℏ
� ∑ = ℏ

� ]� 0
0 �_  

may be regarded as the spin operator of the electron, where 

∑ = ]� 0
0 �_. Thus spin, an intrinsic property of the electron, 

follows naturally from the Dirac equation. 

6. Separation of Angular Momentum 

In the following we are going to justify the identification 

of the Fourier coefficients with the components of the photon 

wave function in the formula (30) by unifying the field 

picture and the photon picture. We can see that the second 

term in the left hand side of (30) involves complex 

conjugation, and this is dictated by the fact that the photon 

energy is always positive. Therefore, the time evolution of 

the wavefunction is given by the factor yz�§IT Therefore, the 

reversal of the sign in the exponent requires complex 

conjugation and then we discuss the pulling out of the factor 

√v to assure the normalization of 2. 

Firstly, we shall combine now the field picture and the 

photon picture to obtain the decomposition of the total 

angular momentum of the field. To this end, we use the 

substituting of the Fourier representation of the field into the 

formulas /260, /270,(28) and (29), 

� = v D EF�
GHI 2J/%0 ∙ ℎ$�2/%0                           (54) 

� = v D EF�
GHI 2J/%0 ∙ ℎ%2/%0                              (55) 


 = v D EF�
GHI 2J/%0 ∙ ��ℎ& × % + ℎ)*+��2/%0      (56) 

� = v D EF�
GHI 2J/%0 ∙ �ℎ$�&2/%0                        (57) 

We have to note that, the resulting expressions have the 

form of quantum mechanical expectation values: 

� = v¨2©��©2ª                                  (58) 

� = v¨2©��©2ª                                   (59) 


 = v¨2©
�©2ª                                     (60) 

� = v¨2©��©2ª                                   (61) 

As Darwin had anticipated, we can see that, these formulas 

exhibit a perfect agreement between the results obtained from 

the particle picture and from the field picture. Also, every 

value calculated for the total electromagnetic field is a 

product of the quantum mechanical average value per one 

photon, multiplied by N  [1]. This means that, the 

normalization factor N is the total number of photons [1]. 

Now, we may unambiguously split that the total angular 

momentum of the electromagnetic field /560 into two parts 

as done in [1]. The vector 
N  whose integrand is 

perpendicular to the wavevector is the orbital part and the 

vector 
¬ whose integrand is parallel to the wavevector is the 

spin part represented by helicity: 


N = v D EF�
GHI 2J/%0 ∙ ��ℎ& × %�2/%0              (62) 


¬ = v D EF�
GHI 2J/%0 ∙ ℎ)*+�2/%0 = v D EF�

HI +��|24/%0|� − |25/%0|��                 (63) 

The final step of our studding of the above analysis is the 

proof that the expressions for 
N  and 
¬  coincide with those 

obtained by Darwin. In [1] they employ the relation between 

E/%0 and f /%0 that follows from the formula/300: 
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P/%0 = f ­
�∈g

�y/%024/%0 + y∗/%025/%0�          (64) 

where P/%0 is the plane –wave component of the electric field, 

P/i, j0 = D EF�
/�w0F :⁄ �P/%0yz�HIT{��∙| + ��        (65) 

Now, by using the properties of the polarization vectors 

(35) and (37) we get [1]: 

−2��N D EF
®|�| P∗/%0 × P/%0 = −�v D EF

®|�| �y∗/%0 × y/%0|24/%0|� + y/%0 × y∗/%0|25/%0|�� = 
¬                           (66) 

Now, we have to note that, the separation of the total 

angular momentum into its orbital and spin parts is conserved 

in time since both parts are separately time independent. 

7. Another Separation of Angular 

Momentum 

Now by using the formula (13) we may again 

unambiguously split that the total angular momentum of 

electromagnetic field (56) into two parts. The vector 
¯° 

whose integrand is perpendicular to the wave vector is the 

orbital part and the vector 
±° whose integrand is parallel to 

the wave vector is the spin part represented by helicity; then 

we can rewrite (56) by using (13) in the form: 


 = v D EF�
GHI

�24∗/%024/%0 + 25∗/%025/%0�. ��ℎ& × % + ℎ)*+�� (67) 

There for: 


¯° = v D EF�
GHI

�24∗/%024/%0 + 25∗/%025/%0�. ��ℎ& × %�  (68) 


±° = v D EF�
HI

�24∗/%024/%0 + 25∗/%025/%0�. �)*+��      (69) 

We can see that, the formulas (68) and (69) in our above 

analysis are coincide authors, and are separately time 

independent.  

8. Conclusions 

As a conclusion, in this paper we discussed the total angular 

momentum of electromagnetic field into its two parts, the 

orbital and spin. Our main tools, is the quantum mechanics of 

photons. In fact we revisit the results obtained by Darwin using 

Maxwell fields properties. We have also shown that our results 

coincide with previous results obtained vi several authors. Our 

last observation was that, when comparing the energy 

momentum and the total angular momentum of 

electromagnetic field, the two parts of momentum can't be 

expressed as an integral forms of local densities, and the 

formulas (68) and (69) in our above analysis are coincide 

authors, and are separately time independent. 
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