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Abstract: Due to the importance of the wheat crop which represents 90% of the grain consumed, In this papers, we compared 

between the following statistical methods : Box and Jenkins model, exponential smoothing models (with trend and without seasonal) 

and Simple regression for estimating and forecasting to two time series of wheat(production and import). We reached to the 

following results: 1. Brown exponential smoothing model for modeling the imported wheat series. 2. ARIMA (1, 1, 1) model for 

modeling the product wheat series. For the wheat crop, the ratio of production to consumption is expected to reach 6.3% in 2015 and 

continues to decline even up to 5.4% in 2020. This means that the problem of food security well be worse in Yemen. 
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1. Introduction 

The human needs to know the past in order to predict the 

future to find optimal solutions of many problems which 

face humanity in this century. Yemen is one of the Arab 

countries where local demand for food is growing 

exponentially. Therefore, it suffers from a huge lack to 

cover all the population needs of foodstuffs especially 

wheat which represents staple food of most the population. 

Although in recent years the amount production of wheat 

compared with imported wheat reach in 2010 to 92%. 

According to what has mention above we compered these 

statistical methods of time series: Box and Jenkins 

methodology ,exponential smoothing model nd Simple 

regression to estimate and forecast the two wheat time 

series (import,product) from 1961 to 2010 of the 

Organization’s site of Food and Agriculture (FAO) and the 

Central Bureau of Statistics in Yemen. We used these 

programmes SPSS , EVIEWS  and EXCLE . 

2. Theoretical Formulation 

2.1. Holt and Brown’s Exponential Smoothing Method 

In the case where the series has a trend, we can adopt the 

following prediction formula: 

ˆ =
t h t t

y a b h+ +  

The values 
t

a  and 
t

b  are constantly updated by the 

following equations: 

1 1 1 1
= (1 )( )

t t t t
a y a bα α − −+ − +  

and 

2 1 2 1
= ( (1 ) )

t t t t
b a a bα α− −− + −  

This forecast model is known as the model name of HOLT. 

A special case of model HOLT, called model BROWN or dual 

exponential smoothing is obtained when the smoothing 
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constants 
1

α  and 
2

α  are related to the same parameter α , 

by the relations: 
1

= (2 )α α α−  et 
2

=
2

αα
α−

. For these 

two models, we need to give initial values 
0

a  and 
0

b  to 

produce forecasts. Thus we take 
0

b  which equals the 

coefficient simple linear regression calculated on the basis of 

the first five values of the series. Thereafter, 
0

a  is deduced by 

the relation:
0 1 0

=a y b− , as the smoothing constants they are 

set by the user. In practice often gives a value to α  between 

0.01 and 0.30. [3] 

2.2. Stationary Process 

A second process is stationary if: 

� 
2, ( ) <tt Z E X∀ ∈ ∞  

� , ( ) =
t

t Z E X m∀ ∈  

� , , ( , ) = ( )
t t h

t Z h Z Cov X X hγ+∀ ∈ ∀ ∈  

2.3. White Noise 

White noise is a stationary process such that: 

� ( ) = ,
t

E m tε ∀  

� 
2( ) = ,tVar tε σ ∀  

� 
1

( , ) = ( ), , > 0
t t

Cov h t hε ε γ− ∀ ∀  

This notion of white noise corresponds to the usual 

assumptions on residues in multiple regression. Random 

variables 
t

ε  are also called random shocks. we implicitly 

assumes that random shocks 
t

ε  follow a normal distribution 

2(0, )N σ  

2.4. Autocorrelation 

The autocorrelation function is the application ρ  of Z  

in R  defined by: 

( )
( ) = ,

(0)

h
h h Z

γρ
γ

∈  

( )hρ  Measuring the correlation between 
i

X  and 
i h

X +  

because: 

( , ) ( ) ( )
= = ,

(0)( ) ( ) (0) (0)

t t h

t t h

Cov X X h h
h Z

V X V X

γ γ
γγ γ

+

+

∈  

2.5. Autocorrelation Partial 

The partial autocorrelation function with delay k  is 

defined as the partial correlation coefficient between 
t

X  et 

t k
X −  the influence of other variables shifted by k  periods 

1 2,..., 1
,t t Xt k

X X− − − +
 have been withdrawn. 

2.6. Autoregressive Process AR(p) 

Let a process ( , )
t

X t Z∈ ,
t

X  is said autoregressive 

process of order p  ( ( ))AR p  if 

1 1 2 2= ...t t t p t p tX X X Xφ φ φ ε− − −+ + + +  

Where 
t

ε , white noise and 
1 2, ,..., pφ φ φ  are constants. 

2.7. Moving Average Process (MA(Q)) 

Let a process ( , )
t

t Zε ∈ ,
t

X  is said autoregressive process 

of order q  ( ( ))MA q  if 

1 1 2 2= ...t t t t q t qX ε θ ε θ ε θ ε− − −+ + + +  

Where 
t

ε , white noise and 
1 2, ,..., pθ θ θ  are constants. 

2.8. Moving Average Processes Autoregressive 

A stationary process X  has an ARMA  representation 

( , )p q  Minimum if it satisfies: 

( ) = ( ) ,
t t

L X L εΦ Θ  

1( ) = 1 ...t t p t pL X X Xt Xφ φ −Φ + − + +  

1( ) = 1 ...t t q t qX tε θ ε θ ε −Θ + − + +  

where 

10, 0 ( ) =p q t tand L X Xφ θ −≠ ≠  

the polynomials Θ  and Φ  have their upper modules 

strictly roots to 1. 

Θ  and Φ  have not common roots. 

= ( , )
t

t Zε ε ∈  is a white noise of variance 2( ) = 0tV ε σ ≠  

2.9. Process ARIMA 

A process = ( , 0)
t

X X t ≥  is a process ( , , )ARIMA p d q  

[Autoregressive integrated moving average] if it satisfies an 

equation of type : 

=1 =1

(1 )(1 ) = (1 ) , 0
p q

i d i

i t i t

i i

L L X L tϕ δ θ ε− − + ≥∑ ∑  

where δ  constant 
1

( ) =
t t

L X X −  and 
t

ε  is white noise. 

2.10. Augmented Dickey–Fuller Test 

The Augmented Dickey–Fuller test ( )ADF  is a unit root 

test of the null hypothesis of unit root (or non stationarity). 

The ADF  test estimated three models: 

1 1

=1

=
p

t t j t j t

j

X X Xα β ε− −∆ + ∆ +∑  

0 1 1

=1

=
p

t t j t j t

j

X X Xα α β ε− −∆ + + ∆ +∑  
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0 1 1

=1

=
p

t t j t j t t

j

X X Xα α β δ ε− −∆ + + ∆ + +∑  

The null hypothesis of ADF  test is the unit root hypothesis 

of the variable 
t

X  is the hypothesis 
0 1

: = 0H α . The ADF  

test consists of comparing the estimated value Student t  

associated with the parameter 
1

α  to the tabulated values of this 

statistic. The values tabulated for different test however 

tabulated values of Student test. The critical values of this 

statistic, ADF  denoted in the following, are given by 

MacKinnon (1996). The null hypothesis 
0

H  of non-stationary 

of the time series is rejected at the 5% level when the observed 

value of the Student’s t-test is less than the critical value 

tabulated by MacKinnon (1996) or 
0.05

< .
abs

t ADF  

2.11. Box Jenkins Methodology 

This is the technique for select the most appropriate 

ARMA  or ARIMA  model for a given variable. It comprises 

four steps: 

1. Identification of the model, this involves selecting the 

most appropriate lags for the AR and MA parts, as well as 

selecting if the variable requires first-differencing to become 

stationarity. The ACF  and PACF  are used to identify the 

best model. (Information criteria can also be used) 

2. Estimation, this usually involves the use of a least squares 

estimation process. 

3. Diagnostic testing, which usually is the test for 

autocorrelation. If this part is failed then the process returns to 

the identification section and begins again, usually by the 

addition of extra variables. 

4. Forecasting, the ARIMA  models are particularly useful 

for forecasting due to the use of lagged variables. 

3. Application 

3.1. Graph Series 

 

Figure 1. Graph of time series of wheat(product and import)from 1961 to 2010. 

Through the graph figure, we observed a general upward trend over the period, this means that the series is not stationary. 

3.2. Autocorrelation and Autocorrelation Partial 

 

Figure 2. Autocorrelation of time series of wheat(product and import). 
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Figure 3. Autocorrelation partial of time series of wheat(product and import). 

We examine the autocorrelation and partial autocorrelation 

function in figures 2 and 3 we observed that the estimated 

autocorrelation parameter decreases exponentially towards 

zero while that only the first partial autocorrelation parameter 

is not significant. To confirm the previous results we execute 

the Dickey-Fuller test and observed in Figure 4 and 5 that the 

series is not stationary. 

 

Figure 4. Dickey-Fuller test of time series of wheat product. 
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Figure 5. Dickey-Fuller test of time series of wheat import. 

When we execute the first differences, we note of figure 6 and 7 that a stationary series. 

 

Figure 6. Dickey-Fuller test of first differences of wheat product. 
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Figure 7. Dickey-Fuller test of first differences of wheat import. 

we note that the series is stationary. We deduce that d = 1 in the 

ARIMA model (p, d, q). 

3.3. Identification and Selction of Model for Wheat 

Production Series 

Although it appears that each partial autocorrelation 

parameter after the second parameter is not significantly 

different from zero at a = 0.05 but the autocorrelation function 

is gradually decreasing towards zero, this may be sufficient 

evidence that the random process is AR (1). For ensure we test 

the following statistical hypothesis:
0 11

: = 0H ϕ ; 
0 11

: 0H ϕ ≠ , 

11

1 1
( ) = = = 0,141

50
SE

n
ϕ , 

11 11

0,929
= / ( ( )) = = 6,5 > 2

0,141
Z SEϕ ϕ , 

we deduce that the first partial autocorrelation parameter is not 

significantly different from zero at = 0.05α . We examining 

the autocorrelation partial parameters, we find that 

< 0.282 = 2,3,....
kk

for each kϕ , that supports the possibility 

of using the AR (1) and therefore (1,1,0)ARIMA . 

For import wheat series we get the same results. And then 

we compared between ARIMA models with the exponential 

smoothing(Holt,Brown)and simple regression. We get the 

following results. 

 

Figure 8. Cooparison of model. 
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We take 40 observation of the original series and forecast 

for the next ten years, then compare between models by 

MAPE  and choose the best model. The results were as 

follows: 

1. Brown’s exponential smoothing model for predict the 

series of wheat production. 

2. The (1,1,1)ARIMA  model for predict the series of wheat 

exports. 

3.4. Tests of Residues 

We test the best model: 

� Graphic residues confidence limits, ,ACF PACF  

� Graphic dispersion of points in parallel form residuals 

around zero ,ACF PACF  

� Ljung-Box value is significant 

� If the model realizes the previous tests, we use it to 

forecast. 

3.5. Forecasting 

Then we use the previous models to calculate the forecast 

from 2011 to 2020 and the results were as follows: 

 

Figure 9. Forecasting of series of the wheat (product and import). 

 

Figure 10. Graph forecasting of series of the wheat (product and import). 
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4. Conclusion 

Wheat imports will increase from 2.9 million tonnes in 

2011 to 4 million tonnes in 2020, where the proportion of 

imports was 92% in 2010 and it is expect that the wheat import 

proportion will increase to 94% in 2020. whereas, wheat 

production will drop by 6% during this decade. 
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