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Abstract: Using the topological notion of compacity, we present a variational definition for the concepts of limit and 

derivative of a function. The main result of these new definition is that they produce implementable tests to check whether a 

value is the limit or the derivative of a differenciable function. 
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1. Introduction 

Limit is a fundamental concept in mathematics which 

principles date back by the time of the method of exhaustion 

invented by Eudoxo (408-355 aC). 

The strengthening of the concept starting from Newtonian 

Physics at XVIII century, and a precise definition was 

originated as a result of the contributions of mathematicians 

like Cauchy, Bolzano and Weirstrass of the XIX century (see 

[2] for discussion about this subject and original references). 

The started definition was formerly presented by Weirstrass 

and has been known as the ε and δ definition, see [5]. 

Apparently, it has never been changed essentially and 

seems to be the only one available. 

The first contribution of this paper is to bring an 

alternative definition for limit which, roughly speaking, can 

be resumed as the best local approximation for a function. 

We do this in theorem 1 where we show that the value 

L = lim
�→�

	
�� 

is the best local approximation such that, for any value V, 

V≠L, 

|f(x)-V| > |f(x)-L|, 

for any x close to p. 

Also, without using the usual characterization of limit, but 

rather the so called best linear local approximation for a 

function, we propose to obtain an alternative definition for 

the derivative of a function. 

By Theorems 2 and 3, we see that a differentiable function 

at p with domain and image in a finite dimensional linear 

space is the one whose quotient 

	
�� − 	
��
|� − �|  

is locally bounded at p, and with a linear operator L as the 

best local approximation, such that: 

|f(x)-f(p)-L(x-p)| ≤ |f(x)-f(p)-T(x-p)|, 

for all linear operators T and also L=f’(p). 

The insight for Theorems 2 and 3 was given as follows: 

take a curve and the tangent line in a point of it. Any other 

line is a worse local approximations for the curve. 

For example, for f(x)=x2 and p=0 we can get that: 

|x2|≤ |x2-ax|, 

for |x|<|a|/2. 

Finally, in the last section we suggest a possible gain in 

using the presented definition of derivative to obtain a 

numerical derivative approximation. 

In the next section, we work in a general setting. 
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2. Definition of Limit 

Let X and Y be metric spaces with distances denoted by 
| | and B(r,s) the ball with center at s and radius r. 

The first theorem is an alternative definition of limit. 

Observe that the minimum condition on the function is its 

image in a proper metric space, that is, a space which closed 

bounded sets are compact. The main innovation is the 

variational formulation. 

Theorem 1. Let X be a metric space and Y a proper 

metric space. Denote by f:X→Y a function and p an 

accumulation point of X. The value L is the limit 

���
�→�

	
�� = � 

if and only if f is locally bounded at p and 

|f(x)-L|<|f(x)-V|,                   (1) 

for any V∈Y, V≠L, and x∈n(p), where n(p) is a neighborhood 

of p, depending on the choice of V. 

Proof. If f is locally bounded, we can take a ball B ⊂ X 

with center at p and another ball B′ ⊂ Y with center at 0 

such that f(x) ∈B' if x∈B. 

Suppose, by the way of contradiction, that ����→�  
�� 

does not exist or that ����→�  
�� ≠ ". 

In any case, there are #∗>0 and a sequence (xn) ⊂ X, n≥1, 

such that xn→p, if n→+∞ and |f(xn)-L|>#∗ , for all n≥1. 

Without loss of generality we assume  
x_n� ⊂ B. 

From (1), for all V∈Y, we can take nV such that 

|f(xn)-V|> #∗ 

when n>nV, where nV depends on V. 
As B' is a bounded set and Y is a proper metric space, there 

is a finite list of balls B(Vi, #∗) 

1 ≤ i ≤ N, which covers B': 

+, ⊂ - +
./, #∗�12/23               (2) 

From above, take ni so that 

|f(xn)-Vi|>#∗, 

when n>ni. 

Set 4∗∗ = �5674/, 1 ≤ / ≤ 38. If n>4∗∗, we have: 

|f(x_n)- ./|>#∗ 

for any i. 

Therefore, f( �4 ) ∉ - +
./, #∗�12/23  if n>n**, which 
contradicts (2). 

The converse is standard. 
� 

3. Definition of Derivative 

In this section, we state an alternative definition for the 

concept of derivative. 
Let X, Y be normed linear spaces with norm denoted by 

| |, U ⊂ X an open set and f:U→Y, a function. The following 

discussion moves our investigation. 

It is well known that if X is the real space, the derivative 

can be defined as 

f′
p� = ����→�
 
��= 
��

�=� . 

So, by Theorem 1, |f
x� − f
p� − f′
p�
x − p�| ≤ |f
x� −
f
p� − V
x − p�| , for any V and x ∈ n(p), where the 
neighborhood depends on the choice of V. 

Therefore, the derivative is the best linear approximation 

for a function. 

A generalization of this interpretation is not so easy. We 

shall obtain it in two steps. First, in the next theorem, where 

the space of domain has finite dimension and additionally the 

function is continuous in a neighborhood of the point. Second, 

in the last theorem, the converse is obtained, but both spaces 

of the domain and image have finite dimension. 

Theorem 2. Let X, Y be normed spaces, U ⊂ X, an open 

set and suppose X is of finite dimension. Suppose also that 

the function f:U→Y is continuous in a neighborhood of p∈U. 

So f is differentiable at p and has derivative f'(x)=L only if 

(f(x)-f(p))/|x-p| is locally bounded at p and 

|f
x� − f
p� − L
x − p�| ≤ |f
x� − f
p� − T
x − p�|,  (3) 

for all T∈ ℒ(X,Y) and x∈n(p), where the neighborhood n(p) 

depends on the choice of T. 

Proof. Let f be differentiable with derivative f'(p)=L. The 

first part of the theorem is obvious. 
Assume, by the way of contradiction, that (3) is not true. 

For some  A∗, we can get a sequence (�4) ⊂ U, n≥1, �4→p, 

if n→+∞, such that: 

|f(�4)-f(p)-L(�4-p)|> |f(�4)-f(p)- A∗(�4-p)|,  (4) 

for all n≥1. 

Set 

G(x)=f(x)-f(p)-L(x-p), 

H(x)=f(x)-f(p)- A∗(x-p) 

and 

F(x)=|G(x)|-|H(x)|. 

From the continuity of x→G(x) and x→H(x), the function 
x→F(x) is also continuous. 

As F(�4)>0, n≥1, and (�4) is a compact set, we have 

F(�4)>r, n≥1, for some r>0. 
Since the unit ball of X is compact, for any n there exists 

B4 such that |B4-p|=|�4-p| and 

C
A="�D
B4=E�F
|B4 =E| C = |A − "|           (5) 

We claim that (4) is true if we replace �4 by B4, for a 
larger n, if necessary. 

As �4→p and B4→p if n→+∞, we can assert that 

|G(�4)-G(B4)|<
G
H, 
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if n>n., for some n.. 

Similarly, 

|H(�4)-H(B4)| )|<
G
H, 

if n>n.., for some n.. and there is no loss of generality in 

assuming n..≥n.. 

We already know that: 

|G(�4)|-|H(�4)|>r, 

for all n≥1. 

Combining the inequalities, we have 

|G(B4)| > |H(B4)|,                (6) 

if n>n... 

Finally, take s∈(0,|T*-L|). 

From the differentiability, we can find n..., n...≥n.., such 

that: 

C 
B4�= 
��
|B4=�| − " B4=�

|B4=�|C I J
H           (7) 

if n>n.... 

By (6) and (7), both L
B4=�

|B4=�| and T*
B4=�

|B4=�| are in the ball 

B(
 
B4� 
  
���/|B4 
 �|, J
H) 

if n>n.... 

Therefore: 

L 
B4� 
  
��
|B4 
 �| 
 " B4 
 �

|B4 
 �|L I J 

A contradiction of (5). 
� 

Theorem 3. Let X, Y be normed linear spaces of finite 

dimension and U � X, an open set. The function f:X→Y is 

differentiable at p and f'(p)=L if (f(x)-f(p))/|x-p| is locally 

bounded at p and 

|f
x� 
 f
p� 
 L
x 
 p�| ) |f
x� 
 f
p� 
 T
x 
 p�|, 
for any T� M(X,Y) and x�n(p), where the neighborhood n(p) 

depends on the choice of T. 

Proof. Suppose, contrary to our claim, that f is not 

differentiable at p or f'(p)≠ L. 

Consequently, there are #$ N 0 and a sequence (�4)� U , 
n≥1, �4→p, if n→+∞, such that: 

PQ
�4�=Q
E�=R
�4=E�
|�4=�| S N #$               (8) 

for all n≥1. 

Since x→(f(x)-f(p))-L|x-p|, then (f(x)-f(p))/|x-p| is locally 

bounded at p, without loss of generality we can assume that 

|Q
�4�=Q
E�|
|�4=E| | ) R, 

n≥1for some R>0. 

From (8) it follows immediately that, for any T� M(X,Y), 

C 
�4�= 
��
|�4=�| 
 A
�4=��

|�4=�| C N #$             (9) 

if n>nT, where nT depends on the choice of T. 

Next, we construct a list of operators which do not satisfy 

(9) obtaining a contradiction. 

Obviously, - U
V, #$�V�U
W,X�  covers B
0, R� � Y. 

As Y is locally compact, there are N>0 and yj, 1 )  j ) N, 

such that: 

 

Denote S={ x�X, | |x|=1}. For any x�S and BZ, 1<j<N, 
take A�,BZ
�� � M
[, \�  such that A�,BZ
�� � BZ.  Since 

] ^ A�,BZ
]� is continuous, we can find _�,BZ N 0 with the 

property that A�,BZD+
�, _�,BZ�F � +
BZ, #$� 

Let _� be the smallest of _�,BZ , 1 ) Z ) 3. 
Obviously, 

` � a +
�, _�
��`

�. 
From the compacity of S, there are M>0 and a list �1, … , �c, such that 

` � a +
�/, _�/
12/2c

�. 
Set A�/,BZ as A/Z. By (9), there exists 4/Z such that 

C 
�4�= 
��
|�4=�| 
 A/Z
�4=��

|�4=�| C N #$, 

if 4 N 4/Z. 
Setting 4. � �56 4/Z , 1 ) / ) c, 1 ) Z ) 3, 1 we have 

C 
�4�= 
��
|�4=�| 
 A/Z
�4=��

|�4=�| C N #$           (10) 

if 4 N 4., for all i,j. 

For any n≥1 and suitable i,j, we have 
�4=�

|�4=�| �
+D�/, _�/F and 

 
�4�= 
��
|�4=�| � U
Vd, e$� 

Hence, 

L 
�4� 
  
��
|�4 
 �| 
 A/Z
�4 
 ��

|�4 
 �| L I #$, 
which contradicts (10). 

� 

4. Numerical Derivative 

The definition of derivative of a function as the best linear 

approximation provides a method to obtain its numeric value. 

Considering the question more closely, we see that 

differentiability for real functions is not enough and more 

regularity is necessary. 

In spite of it, there is some gain. In fact, we show here that 

it is possible, by that definition, to get a better approximation 

for numeric derivative than the usual methods. 

In general, numerical methods for derivative calculation 
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have error estimations which depend on the machine 

precision. 

As an example, consider the numerical derivative of a real 

function calculated by the finite difference method: 

 
� + g� 
  
� 
 g�
Hg  

According to [3], chapter 5, if f is of class hi , this 

approximation has an error of order # 
H
i when the choice of h 

is optimal, that is, when h is of order 
#  
 jj� 

1
i.  For a 

function f, #   is of the same order as #k where it is the 

machine precision. But in general #  is greater than #k. 

Hence, we can choose a subset B for the last theorem. 

Nevertheless, relative to h and T where |h| ≤ r and T∈B, 

the numerical minimization of an expression remains 

impossible to be done computationally. We remove this 

difficulty, going to another method. 

Theorem 4. Let X, Y be linear finite dimensional spaces, U ⊂ X an open set and f:U → Y of class hH. Take p∈U and 

call f'(p)=m. Setting k1 and kH two approximations of m 

such |k − k1| ≠ |k − kH|. If 

|f(p+h)-f(p)-k1h|≤|f(p+h)-f(p)- kHh|,      (11) 

for any h, |g| = G,  requiring only that r satisfies G <1
c n|k − k1| − |k − kH|n , where c = ko�p| ,,(])|  for 

|] − �| ≤ G. Then 

|k − k1| < |k − kH|. 
Proof. Observe that the space of the norm can be obtained 

by the context. For instance, |(k − k1)g| = |(k − k1)g|\, |g| = |g|[, |(k − kH)| = |(k − kH)|M([,\), | ,,(])| =
| ,,(])|M([H,\), (see [1]). 

From (11): 

|f(p+h)-f(p)-mh+(m-k1)h| < |f(p+h)-f(p) -mh+(m-kH)h|. 

But f is hH so: 

 (� + g) −  (�) − kg =  ,,(])gH
H  

where ] is between p and p+h. 

So 

L ,,(])gH
H + (k − k1)gL < L ,,(])gH

H + (k − kH)gL, 
and hence 

q(k − k1) g
|g|q < q(k − kH) g

|g|q + | ,,(])||g|. 
This gives that: 

q(k − k1) g
|g|q < |(k − kH)| + | ,,(])||g|. 

Since X has finite dimension, there is g∗ ∈ 7g||g| = G} 
such that 

|(k − k1)| = q(k − k1) g∗|g∗|q 
And the last two relations give: 

|(k − k1)| < |(k − kH)| + | ,,(])||g∗|. 
This forces that |k − k1| > |(k − kH)|. In fact, if the 

opposite was true, we would have: 

| ,,(])||g∗| > n|(k − k1)| − |(k − kH)|n 
and so 

|g∗| > n|(k − k1)| − |(k − kH)|n
c  

that is contrary to the assumption that |g∗| = G. 
� 
The last proposition gives a test to decide, between k1 

and k H , which of them is closer to the derivative m 
comparing the residues. But the criterion 

|g| < n|(k − k1)| − |(k − kH)|n
c  

is not practical because uses the value of the unknown m. 

Nevertheless, using the test when the criterion is false will 

not produce worse results. In this case, 

n|(k − kH)| − |(k − k1)|n
c ≤ |g| 

So, if M is not so big, the difference between the errors |k − k1| and |k − kH|is of order |h|. 

We now consider an example to show how using this test. 
Set f(x)=x^3. By the finite difference scheme, supposing 

#k of order 1W=r and using h of order 1W=r
i, the error will 

be of order 1W= 1s
i . To calculated the residues, we observe 

that f(1)=1.0000000, f(1+h)=1.0000002. 

The tables 1 and 2 show firstly that the best approximation 

among 3.0000000, 3.0000010, …, 3.0000090 

is 3.0000000. Next, the second table shows that the best 

approximation among 

3.0000000, …, 3.0000005 is 3.0000000. So the 

approximation 3.000000 has 7 correct digits. 

To clarify the procedure used in the last paragraph, it may 

be convenient to do the following observation. 

If k1 is a better approximation for m than kH (or k1 

is closer than kH to m) then k ≤ k1tkH
H  when k1 < kH 

and k ≥ k1tkH
H  when k1 > kH. 

This gives the algorithm which we shortly describe below. 

For simplicity, suppose that m=0.d100*10f and it is known 

that the digit d1 is correct. Our aim is to obtain the second 

and the third correct digits in the following steps. 

1. Obtain the best approximation among the values 

0.d1t0*10f for t=0,1, …,9 and set it as d. 
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2. Consider the case options: 

Case d=0. Obtain the best linear approximation among 

0.d_10t*10f for t=0, 1, 2, 3, 4, 5; set it as d3 and do d2=0. 

Case 1 ≤ v ≤ w. Obtain the best linear approximation 
among the data 0.d_1(d-1)t1*10f for t1=5, 6, 7, 8, 9 and 
among the data 0.d1dt2*10f for t2=0, 1, 2, 3, 4, 5. If the best 
approximation of the each data group are in the first one, then 
d2=d-1 and $d3=t1. Otherwise d2=d and d3=t2. 

Case d=9. Obtain the best linear approximation among 

data $0.d18t*10f for t=5, 6, 7, 8, 9 and $0.d190*10f. If the 

best approximation is in the first group, set d2=8 and d3=t. 

Otherwise, set d2=9$ and d3=0. 
In general, calling as H the hyperplane equidistant from k1 and kH, so m is in the side of H that contains k1. 

The tables forward shows the numerical results. 

Table 1. Residue calculation. 

m |f(1+h)-f(1)-mh| 

3.0000000 1.0000000*10-7 

3.0000001 1.0000010*10-7 

3.0000002 1.0000020*10-7 

3.0000003 1.0000030*10-7 

3.0000004 1.0000040*10-7 

3.0000005 1.0000050*10-7 

3.0000006 1.0000060*10-7 

Table 2. Residue calculation. 

m |f(1+h)-f(1)-mh| 

3.0000000 1.0000000*10-7 

3.0000001 1.0000001*10-7 

3.0000002 1.0000002*10-7 

3.0000003 1.0000003*10-7 

3.0000004 1.0000004*10-7 

3.0000005 1.0000005*10-7 

5. Conclusion 

We dealt with the definition limit and derivative of a 

function, which is well known, it is a historically intricate 

question. Thus, we proposed alternatives definition of these 

concepts that have, as mainly differences of the standard ones, 

the fact they are implementable forms and also that such 

definitions drop out the ε of the δ-ε usual definitions. 
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